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important genes with aberrantly methylated CpG islands within the 
GBM genome, such as CD133, RASSF1A, BLU, SOCS1, NDRG2, 
CDKN2B, MYOD1, LRRC4, and PDGFB (Uhlmann et al., 2003; 
Bruna et al., 2007; Lorente et al., 2008; Martini et al., 2008; Tepel 
et al., 2008; Yi et al., 2008; Zhang et al., 2008).

Determination of the full extent of aberrant methylation within 
the GBM methylome using comprehensive genome-wide approaches 
remains necessary to discover other methylation-based biomarkers. 
Genome-wide methylation profi ling methods have been evolving 
over the past several years, primarily with the emergence of denser 
CpG island arrays and next generation sequencing approaches 
(reviewed in Zilberman and Henikoff, 2007; Gargiulo and Minucci, 
2009). Genome-wide approaches can be broadly grouped into strat-
egies that examine either unmodifi ed DNA, including restriction 
enzyme approaches [RLGS, DMH (differential methylation hybridi-
zation), DMH variants] and immunoprecipitation approaches 
(MeDIP, 5-meC, and MIRA), or bisulfi te-modifi ed DNA, including 
methylation-specifi c PCR such as Illumina GoldenGate and next 
generation sequencing. Genome-wide methylation  profi ling has 

INTRODUCTION
Cytosine methylation of CpG dinucleotides represents a major 
type of epigenetic modifi cation (Worm and Guldberg, 2002). Since 
CpG dinucleotides cluster in genomic regions called CpG islands 
that frequently overlap with promoter regions, one of the effects of 
cytosine methylation is the inhibition of gene transcription by ena-
bling interference via methyl-CpG binding proteins (Boyes and Bird, 
1992). As a potential mechanism for silencing tumor suppressors or 
other important genes, aberrant CpG island methylation has gained 
increasing recognition for its role in cancer (Jones and Baylin, 2002). 
One of the most prominent examples is the recent discovery that pro-
moter methylation of O6–methylguanine–DNA methyltransferase 
(MGMT) is associated with improved treatment response of gliob-
lastoma multiforme (GBM) patients to the alkylating agent temo-
zolomide (Hegi et al., 2005). Since MGMT is a major repair enzyme 
for temozolomide-induced DNA damage, the presumed mechanism 
responsible for the benefi t of promoter methylation is loss of repair 
activity via gene silencing of MGMT. In addition to MGMT, single 
CpG island/promoter approaches have identifi ed a number of other 
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been performed on cancer genomes including osteosarcoma using 
Me-DIP (Sadikovic et al., 2008), pancreatic adenocarcinoma using 
methylated CpG island amplifi cation (Omura et al., 2008), prostate, 
colon, and breast cancer using methylated CpG island amplifi ca-
tion (Chung et al., 2008), and lung squamous cell carcinoma using 
MIRA (Rauch et al., 2008).

Thus far, the most high profi le genome-wide methylation survey 
of the glioblastoma genome has been led by The Cancer Genome 
Atlas (TCGA) Research Network (2008). TCGA surveyed CpG 
dinucleotide methylation in a large group of GBM patient samples 
using the Illumina GoldenGate Assay Platform to accompany copy 
number and gene expression microarray analysis. The major limi-
tation of this platform is the relatively limited coverage, with only 
1,500 CpG sites independently evaluated, corresponding to approxi-
mately 1,200 genes. More recently, data generated from the Illumina 
HumanMethylation27 platform providing methylation information 
on 27,000 CpG sites has been released by TCGA. Additional studies 
that have surveyed methylation within gliomas have used McrBC-
based and DMH-based genome wide approaches (Waha et al., 2005; 
Ordway et al., 2006). Indirect examination of the GBM methylome 
has been performed using microarrays to track gene expression 
changes in GBM cell lines after pharmacological treatment with 
demethylating agents (Foltz et al., 2006; Kim et al., 2006).

Despite the advent of novel approaches using next generation 
sequencing technology, restriction enzyme-based approaches relying 
on differential cleavage of recognition sequences containing meth-
ylated and unmethylated CpG dinucleotides continue to be widely 
used for genome-wide methylation detection. The modifi ed MSRE 
technique used in the present study is a variant of DMH that uses 
the HpaII/MspI isoschizomer restriction enzyme pair to determine 
methylation of CpG dinucleotides in the context of CCGG recogni-
tion sites (Yan et al., 2002; Adrien et al., 2006). Similar approaches, 
such as MIAMI and HELP, have also relied on this isoschizomeric 
pair combination (Hatada et al., 2006; Khulan et al., 2006). The major 
advantage of this strategy is that comparison to a separate reference 
(control) sample is not necessary, limiting false positive calls from 
polymorphic variation at restriction sites and incomplete digestion. 
Aside from DMH, there are other restriction enzyme approaches that 
do not utilize the isoschizomeric pair of HpaII/MspI, including the 
fractionation of genomic DNA by McrBC, an enzyme that cleaves 
methylated sites (Ordway et al., 2006; Pfi ster et al., 2007). Recently, 
this approach was used along with a custom-designed microar-
ray called Comprehensive High-Throughput Arrays for Relative 
Methylation (CHARM) (Irizarry et al., 2008).

In this study, we demonstrate improved genome-wide methyla-
tion profi ling by coupling the MSRE approach described by Adrien 
et al. (2006) with Agilent high-density CpG island arrays, providing 
coverage of more than 20,000 CpG islands (Adrien et al., 2006). 
In silico analysis was used to optimize the assay, and our results 
pr ovide useful strategies for optimization of restriction enzyme 
approaches with available or custom microarrays.

MATERIALS AND METHODS
AGILENT CpG ISLAND MICROARRAY
High-density two-color Human CpG island microarrays (printed 
using 60-mer SurePrint technology) were purchased from Agilent 
(G4492A, Agilent Technologies, Santa Clara, CA, USA). Originally 

designed based on the UCSC genome hg17 but remapped to hg18, 
each Agilent microarray (Design ID 014791) contains 237,220 
probes that tile through each of the ∼27,000 CpG islands (includ-
ing an extra 95 bp of fl anking sequence on each end) with an aver-
age probe spacing of 100 bp. Each probe on the array is identifi ed 
by its location on the genome and its associated gene(s) based on 
UCSC annotations (Agilent Probe Design ID 014791).

IN SILICO SIMULATION OF AMPLICON GENERATION AND 
HYBRIDIZATION
Hybridization to the Agilent CpG island array was simulated in sil-
ico based on the most updated Homo sapiens Genome hg18 within 
the UCSC database (Kuhn et al., 2009) and the probe design of the 
Agilent CpG island microarray (eArray, design ID 014791). Most 
of the in silico analysis was performed using CRAN R version 2.7.0 
in conjunction with BioConductor 2.3 (Gentleman et al., 2004). 
The entire human genome hg18 was imported into R through 
package BSgenome and was ‘digested’ into fragments based on the 
location of BfaI restriction sites (C/TAG). Each Agilent CpG island 
microarray probe was mapped and assigned to a fragment based 
on its sequence. Probes containing the BfaI recognition site(s) 
(C/TAG) were determined to be problematic due to possibility 
of non-specifi c or dual fragment binding and are thus removed 
from analysis (designated as Partial binding probes in Table 1). 
The compiled list of probes with their hybridizing fragments, 
fragment size, and number of internal HpaII/MspI restriction 
sites were exported to a MySQL database and also into a BED fi le 
for the UCSC Genome Browser (Kent et al., 2002). Fragments 
without HpaII/MspI restriction sites (C/CGG) were designated 
as insensitive fragments and were expected to have identical MspI 
and HpaII intensities (i.e. log

2
 ratio ∼0) (Figure 1). Therefore, 

probes corresponding to these insensitive fragments provided a 
large internal control group because they remain unaffected by 
the degree of methylation.

ACQUISITION AND DERIVATION OF GENOMIC DNA SAMPLES
Both the GBM tissue sample and normal human brain sample had 
been collected and archived through an IRB approved protocol and 
obtained from the UCLA Brain Tumor Translational Resource. The 
GBM tissue was derived from a treatment-naïve newly diagnosed 
patient. Normal brain tissue was derived from the right frontal 
lobe of a trauma patient. Both tissues were stored at −80°C until 
DNA extraction. Genomic DNA was isolated from the GBM and 
normal human brain samples and from the U87MG human GBM 
cell line using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, 
Valencia, CA, USA).

FULLY-METHYLATED AND UNMETHYLATED CONTROL SAMPLE 
GENERATION
Fully-methylated control
Methylation of all genomic CpG sites in vitro was achieved by treat-
ing 4 µg genomic DNA (normal brain) with 16 units of SssI enzyme 
(NEB, Ipswich, MA, USA) and 160 nmol S-Adenosylmethione 
for 6 h at 37°C twice. The product was  purifi ed using the Zymo 
Clean and Concentrator Kit (Zymo Research Corp., Orange, CA, 
USA), in which the DNA was eluted using 20 µL of PCR-grade 
H

2
O. The typical yield after purifi cation was 2 µg. Using bisulfi te 
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 sequencing of uncloned DNA, sample CpG Island regions were 
verifi ed to have complete methylation of all CpG sites (data 
not shown).

Fully-unmethylated control
‘Removal’ of all methylation markings was achieved by subjecting 
10 ng of genomic DNA (normal brain) to whole-genome ampli-
fi cation with the GenomiPhi V2 Amplifi cation Kit (Amersham 
Biosciences, Piscataway, NJ, USA) according to manufacturer’s 

instructions with unmodifi ed dCTP. The typical yield was 4–7 µg. 
Using bisulfi te sequencing of uncloned DNA, sample CpG Island 
regions were verifi ed to have complete absence of methylation of 
all CpG sites (data not shown).

AMPLICON GENERATION
Two separate experiments were performed for each sample 
except for the unmethylated control in which only one experi-
ment was performed. Amplicon generation was based on the 
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FIGURE 1 | Schematic diagram of in silico annotated genomic DNA and 

MSRE method. (A) Using in silico simulation, genomic DNA can be separated 
into MSRE sensitive and insensitive BfaI fragments (fl anked by gray boxes) 
based on the presence or absence of internal HpaII/MspI sites (CCGG) (blue 
squares). Microarray probes binding to sensitive fragments are represented with 
green rectangles. Probes binding to insensitive fragments are represented by 
blue rectangles. Sensitive fragments can have multiple CCGG sites that can be 
fully methylated, partially methylated, or completely unmethylated in tandem. 
Methylated CCGG sites (CCmGG) are indicated with a red dot placed above the 
blue square. (B) Genomic DNA is fragmented with BfaI, ligated to H12/H24 

linkers, digested with HpaII and MspI in parallel, amplifi ed, differentially labeled 
and co-hybridized to Agilent CpG island arrays. Uncleaved fragments will have 
high intensities compared to cleaved fragments since only uncleaved fragments 
are amplifi ed. Fully methylated fragments are cut by MspI but not HpaII, 
resulting in amplifi cation of HpaII digested fragments only with resultant M-
value [log2 (HpaII/MspI)] > 0. Completely unmethylated or partially methylated 
(not all CCGGs methylated in tandem) fragments are cut by both MspI and 
HpaII. With the absence of amplifi cation, these fragments resulting in low signal 
intensities in both channels (HpaII and MspI ∼ 0) with M = 0. Insensitive 
fragments should not be cut by either enzyme, resulting in M = 0.
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which is used as background noise in Feature Extraction soft-
ware. Refer to Figure S2 in Supplementary Material for signal 
distribution).

We then focused our analysis on fragments instead of the indi-
vidual probes assuming that all probes binding to the same fragment 
should provide concordant information. To do so, we used the in 
silico simulation to group all probes binding to the same fragment 
together and used each group of corrected probe values to calculate 
the median M value for that fragment. Sensitive fragments were 
assigned z-scores and p-values based on their M values compared 
to this insensitive population, assuming a normal distribution for M 
values. In addition, log

2
 of Cy-5 channel intensities (HpaII cut – rLog) 

of each sensitive fragment were also assigned p-values based on the 
distribution of the insensitive fragments. Overall, a fragment is called 
positive if it has a high M value and an adequate HpaII digest channel 
signal (features with signals lower than the bottom 5% of insensitive 
fragments were removed, p ≤ 0.95). Most positive fragments were in 
the 0.1–2.0 kb size range as predicted by the typical amplicon size 
range (Figure S3A in Supplementary Material). This is also apparent 
from the decreased signal intensity with increased fragment size seen 
in the insensitive fragments (Figure S3B in Supplementary Material). 
Various fragments were selected based on their M values and vali-
dated with bisulfi te sequencing (as described below). An empiri-
cal threshold was determined by performing a Receiver Operating 
Characteristics (ROC) analysis of the validated results. A BED fi le 
for the UCSC Genome Browser with detailed results was generated. 
For replicate experiments, data from M values and rLog values for 
both experiments were averaged after normalization. p-values were 
assigned after averaging the two experiments. The data has been 
uploaded into GEO (Submissions ID GSE19363).

METHYLATION-SPECIFIC (MSP) AND BISULFITE SEQUENCING FOR 
VALIDATION
To generate bisulfi te modifi ed DNA for manual validation, DNA 
samples were modifi ed using the EZ DNA Methylation-Gold Kit 
(D5006, Zymo Research Corp., Orange, CA, USA) following the 
manufacture protocol. This converts all unmethylated but not 
methylated cytosines to uracils.

Methylation-specifi c (MSP)
Primer sequences utilized to analyze the MGMT  promoter 
were 5′-TTTGTGTTTTGATGTT-3′ (upper primer) and 
5′-AACTCCACACTCTTCCAA-3′ (lower primer) for detection of  
unmethylated DNA and 5′-TTTCGACGTTCGTAGGTTTTCGC-
3′ (upper primer) and 5′-GCACTCTTCCGAAAACGAAACG-3′ 
(lower primer) for detection of methylated DNA (Esteller et al., 
1999). Positive and negative control samples for the MSP reac-
tion were U87MG DNA treated with SssI methyltransferase (NEB, 
Ipswich, MA, USA) and whole-genome amplifi cation of U87MG 
DNA using the GenomiPhi V2 Amplifi cation kit (Amersham 
Biosciences, NJ, USA), respectively.

Bisulfi te sequencing validation
Primers were designed with the assistance of the online tool MethPrimer 
(Li and Dahiya, 2002). To validate positive and negative calls, primers 
were designed to enable coverage of all CCGGs within the BfaI frag-
ment. Sequencing reactions were set up using the designed primers 

DMH method with several modifi cations (Yan et al., 2002). Most 
notably, BfaI was used instead of MseI for genomic fragmenta-
tion. Briefl y, 750 ng of each genomic sample was digested with 
25 units of BfaI (NEB, Ipswich, MA, USA) for 6 h at 37°C. This 
digested DNA was then ligated to  oligonucleotide linkers con-
sisting of annealed H-12 (5′-TAATCCCTCGGA-3′) and H-24 
(5′-AGGCAACTGTGCTATCCGAGGGAT-3′) oligonucleotides. 
Following ligation, the genomic DNA was divided into two equal 
portions for separate digestion with 20 units of HpaII (methyla-
tion-sensitive isoschizomer) or 40 units of MspI (methylation-
insensitive isoschizomer) (NEB). Each digest was subjected to 
PCR amplifi cation using the same H-12/H-24 primers with the 
following conditions: 72°C for 5 min, followed by 16 cycles of 97°C 
for 1 min, 62°C for 30 s, 72°C for 3 min, followed by 72°C for 
10 min. Amplifi ed HpaII-digested DNA was labeled with Cyanine 
5-dUTP (Cy-5) (Perkin-Elmer, Waltham, MA, USA), and ampli-
fi ed MspI-digested DNA was labeled with Cyanine 3-dUTP (Cy-3) 
(Perkin-Elmer) using the Bioprime Array CGH Genomics Labeling 
Module (Invitrogen, Carlsbad, CA, USA) according to the manufac-
turer’s instructions. The Cy-5 and Cy-3 labeled amplicons were then 
co-hybridized at 65°C for 40 h to the Agilent CpG island microar-
rays according to the manufacturer’s instructions. The hybridized 
slides were washed using the Agilent Oligo aCGH/ChIP-on-Chip 
Wash Buffer Kit.

DATA ANALYSIS
Hybridized microarrays were scanned with an Agilent DNA 
Microarray Scanner (UCLA Microarray Core) to create an image 
fi le. From this fi le, Cy-5 (HpaII digested) and Cy-3 (MspI digested) 
intensities for each probe were determined by the Agilent Feature 
Extraction 9.1 software using the CGH protocol v4.95 Feb07 
(Agilent Technologies). Two channel intensity readings were 
 collected from the Agilent Feature Extraction CGH workfl ow (Feb 
2007, using grid fi le 20070820) before any normalization was 
done (up to step 20 in Reference Guide from Feature Extraction 
9.1). The tab delimited Feature Extraction output fi le (.txt fi le) 
was loaded into a MySQL database. Data analysis was done in 
R based on the limma package (Smyth, 2005). As the main tool 
to analyze the microarray data, MA plots were generated based 
on the local background correction signals, where M is the log

2
 

of the Cy-5/Cy-3 ratio and A is the average log
2
 of the Cy-5 and 

Cy-3 intensities. A Loess curve was determined from the probes 
corresponding to the insensitive fragments (insensitive probes) 
and was used to correct every data point generated from the entire 
array (Cleveland et al., 1992). Application of the Loess correction 
enabled removal of the intensity dependent error from the two 
channels and also normalized the readings of insensitive probes, 
which were expected to have 1:1 ratio (or log

2
 ratio equal to 0) 

between the two digests (Figure S1 in Supplementary Material). 
Dye swapping experiments were not performed since it has been 
shown that such a Loess normalization without background sub-
traction appears to adequately correct for dye bias particularly in 
probes with high differential intensities between the dyes (sug-
gesting that methylated calls will have relatively increased reli-
ability) (Zahurak et al., 2007). The distribution of signal strength 
of insensitive fragments was signifi cantly higher than the noise 
level (measured by  technical control spots on Agilent Microarray, 
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directly on the bisulfi te treated sample sent to the UCLA Genotyping 
and Sequencing Core for sequencing. Any detectable cytosine peak 
signifi ed a methylated cytosine in genomic DNA.

RESULTS
IN SILICO SIMULATION OF MSRE METHOD APPLIED TO AGILENT CPG 
ISLAND MICROARRAY INDICATES THAT BfaI IS SUPERIOR TO MseI FOR 
GENOMIC FRAGMENTATION
As diagrammed in Figure 1, we used Agilent CpG island arrays in con-
junction with the MSRE method described by Adrien et al. (2006). In 
terms of amplicon generation, the main difference was the use of BfaI 
(suggested by P. Yan, personal communication) instead of MseI for 
initial genomic fragmentation. To compare the theoretical CpG island 
coverage characteristics achievable with BfaI or MseI fragmentation, 
we performed in silico determination of all ‘evaluable’ CpG islands 
using the following criteria: (1) the CpG island has a hybridizing 

genomic fragment(s) tiled by Agilent probe(s) and (2) the fragment 
contains one or more HpaII/MspI (C/CGG) recognition site(s). The 
results of the in silico simulation are shown in Table 1.

First, we determined all CpG islands (retrieved from UCSC 
database, hg18) that could hybridize to probes and found 25,189 
of 28,226 total CpG islands were tiled by the Agilent CpG island 
array at 100 bp intervals. In silico BfaI digestion of the UCSC hg18 
human genome resulted in generation of 49,160 fragments (com-
prising ∼41 million base pairs, 832.4 bp average size) hybridizing to 
one or more of the ‘useable’ Agilent probe sequences, whereas MseI 
digestion resulted in generation of 35,651 fragments (comprising 
∼43 million base pairs, 1,200 bp average size). Probes (designated as 
partial binding) containing internal fragmentation (BfaI or MseI) 
were omitted due to potential poor or multiple binding. These frag-
ments were then subdivided into sensitive fragments, which have 
one or more internal HpaII/MspI (CCGG) sites, and insensitive 

Table 1 | In silico MSRE analysis with BfaI fragmented human genomic DNA hybridized to Agilent CpG island arrays.

 BfaI MseI

Cpg Island coverage Cpg Islands

Total Number of CpG Islands (UCSC track) 28,226 100% 28,226 100%

CpG Islands covered by Agilent probe design 25,189 89% 25,189 89%

CpG Islands covered by Agilent probe design and enzyme fragmentation 25,116 89% 25,129 89%

CpG Islands covered by sensitive fragments 24,877 88% 24,906 88%

CpG Islands covered by sensitive fragments (size in 0.1–2kb) 22,362 79% 20,021 71%

Gene coverage Genes

Genes covered by Agilent design 18,143 100% 18,143 100%

Genes covered by sensitive fragments 17,926 99% 17,694 98%

Genes covered by sensitive fragments (size in 0.1–2kb) 17,048 94% 16,135 89%

Genes covered by sensitive fragments in promoters (size in 0.1–2kb) 9,903 55% 9,225 51%

CCGG site coverage CCGG Sites

Monitored CCGG sites in Agilent design 315,025 100% 334,657 100%

Monitored CCGG sites in sensitive fragments (size in 0.1–2kb) 262,314 83% 226,621 68%

Monitored CCGG sites in promoter regions (size in 0.1–2kb) 116,093 37% 117,271 35%

Type of Probes and BfaI fragments Probes/Fragments

Total probes 237,220  237,220 

Total BfaI Fragments 7,700,000  19,000,000 

Fully binding probes (included in study) 212,883 100% 219,618 100%

Total binding fragments 49,160 100% 35,651 100%

MSRE sensitive probes 206,612 97% 216,290 98%

MSRE sensitive fragments 45,094 92% 33,511 94%

MSRE sensitive probes (0.1–2kb) 179,313 84% 160,738 41%

MSRE sensitive fragments (0.1–2kb) 41,682 85% 28,404 80%

MSRE insensitive probes 6,271 3% 3,328 2%

MSRE insensitive fragments 4,066 8% 2,140 6%

MSRE insensitive probes (0.1–2kb) 5,717 3% 3,214 1%

MSRE insensitive fragments (0.1–2kb) 3,682 7% 2,031 6%

Partial binding probes (excluded from study) 24,337 10% 17,602 7%

Partial binding probes (Internal BfaI site) 24,015 10% 17,280 7%

Unmapped/Multiple binding probes (different build) 322 0% 322 0%
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fragments, which have no internal CCGG sites (Figure 1A). For 
BfaI, this resulted in 45,094 ‘sensitive’ fragments and 4,066 ‘insensi-
tive’ fragments; for MseI, this resulted in 33,511 ‘sensitive’ fragments 
and 2,140 ‘insensitive’ fragments. In order to provide a conservative 
estimate of the effective coverage, only fragments with size in the 
range of 0.1–2 kb were deemed usable (Materials and Methods). 
We found by matching ‘sensitive’ fragments restricted to a range 
of 0.1–2 kb in length with the entire list of CpG islands tracked by 
UCSC that 22,362 CpG islands for BfaI versus 20,021 CpG islands 
for MseI met the criteria for ‘evaluability’ by our method. For BfaI, 
this number represents 89% the original 25,189 CpG islands tiled by 
the Agilent probe library design. Further demonstrating superiority 
of BfaI fragmentation over MseI fragmentation, we determined that 
BfaI enabled increased coverage per CpG island: 1.86 fragments 
per CpG island for BfaI compared to 1.42 for MseI (restricting to 
fragments 0.1–2.0 kb in size). We also surveyed the %GC content of 
fragments generated in both fragmentation schemes and found no 
signifi cant difference in distribution (Figure S4 in Supplementary 
Material). Based on this theoretical superiority of BfaI versus MseI, 
we conducted MSRE experiments with BfaI fragmentation.

MSRE ON FULLY-METHYLATED SSSI TREATED BRAIN SAMPLE 
CONFIRMS DISTINCT M-VALUE DISTRIBUTIONS BETWEEN PREDICTED 
INSENSITIVE AND SENSITIVE FRAGMENTS
As shown in Table 1, BfaI fragmentation results in generation of 
4,066 fragments designated as ‘insensitive’ based on the lack of 
internal HpaII/MspI sites. To confi rm that these fragments would 
remain ‘insensitive’ in a fully methylated sample, we analyzed fully-
methylated (SssI-treated) and fully-unmethylated (whole genome 
amplifi ed) genomic normal brain DNA using MSRE as described 
in Materials and Methods. For the fully-methylated sample, we 
observed the expected shift in M-values between the sensitive 
fragments compared to the insensitive fragments. For the fully-
 unmethylated DNA sample, sensitive and insensitive fragments 
showed no signifi cant difference in their M-values (Figure 2). 
Closer inspection of the M distribution (Figure 2C) indicates that 
there is a slight skew towards M > 0 in the methylated sample versus 
the unmethylated sample. This indicates that a small subset of the in 
silico identifi ed insensitive fragments may not actually be ‘insensi-
tive’, possibly due to the presence of polymorphisms in generating 
HpaII sites or altering BfaI sites. Given the negligibly small subset 
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FIGURE 2 | MSRE analysis of SssI treated and whole-genome amplifi ed 

normal human brain DNA samples. (A) MA plot (log2 ratio vs. average log 
intensity of both channels) of SssI-treated (completely methylated) normal brain 
DNA. Each dot represents average data from two experiments for a single 
fragment calculated based on the data from all available probes binding to that 
fragment (Materials and Methods). Insensitive fragments are shown in blue and 
sensitive fragments in green. (B) MA plot of whole-genome amplifi ed 
(completely unmethylated) DNA. Average data from two experiments is plotted 
as in (A) showing signifi cantly lower M values compared to SssI treated DNA. 

(C) M-value density plot of SssI-treated DNA. The blue curve represents density 
of M values for insensitive fragments, and the green curve represents density of 
M values for sensitive fragments. Area under both curves has been normalized 
to 100%. The ‘sensitive’ fragment curve is shifted to the right of the ‘insensitive’ 
fragment curve. p ≤ 0.005 and p ≤ 0.001 thresholds are indicated by red lines 
calculated relative to median of insensitive fragments (black vertical line). The 
area under the green curve to the right of the red line represents methylated 
fragments by MSRE analysis. (D) M-value density plot of whole-genome 
amplifi ed DNA. Sensitive and insensitive curves are closely superimposed.
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of these discrepant fragments, we utilized this ‘insensitive’ group 
of fragments by identifying corresponding probes (∼6,000) and 
using their M-values as an internal control for normalization of 
our experimental data and quality control (described in Materials 
and Methods).

We analyzed the positive control data to investigate the abil-
ity to detect methylated fragments based on their size and their 
number of internal HpaII sites (Figure 3). This result confi rmed 
our proposed criteria for fragment size limitation between 0.1–
2.0 kb (Figure 3A), with the optimal number of internal HpaII 
sites between 1–10 (Figure 3B). We suggest that every fragment 
result can be annotated with the fragment length and number of 
internal CCGG to guide the interpretation.

MSRE ANALYSIS OF NORMAL BRAIN, U87MG, AND GBM PATIENT 
SAMPLES CAN IDENTIFY DIFFERENTIALLY METHYLATED FRAGMENTS
To apply MSRE to actual human genomic DNA samples, we per-
formed two independent MSRE experiments on each of three 
samples – genomic DNA from normal brain (right frontal), the 
U87MG cell line and a GBM patient tissue – and averaged the 

results (M and A values). A list of differentially methylated frag-
ments possibly relevant to brain cancer was selected for bisulfi te 
sequencing (Table 2).

p-values for each fragment were assigned based on the M-value 
relative to the distribution of ‘insensitive’ fragment M-values as 
described in Materials and Methods. We initially chose fragments 
most likely to be differentially methylated in the three samples 
by applying arbitrary thresholds of p ≤ 0.005 for methylated and 
p ≥ 0.05 for unmethylated (p values were assigned using the insensi-
tive population as described in Materials and Methods). Depending 
on whether we predicted the fragment to be methylated or unmeth-
ylated in normal, U87MG and GBM genomic DNA samples, 
fragments were grouped into MMM (i.e. methylated in normal, 
methylated in U87MG and methylated in GBM), UMM, UUM, 
MUU, UMU, and UUU  categories. For each selected  fragment, 
bisulfi te sequencing primers were designed, and uncloned DNA 
samples were subjected to bisulfi te sequencing as described in 
Materials and Methods. The DNA bisulfi te sequencing results were 
tabulated in Table 2. All CCGGs within a fragment were sequenced 
with a few exceptions (labeled X). For confi rmation of fragment 
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FIGURE 3 | Distribution of fragments by number of fragment length and 

HpaII sites correlated with positive control results. The histograms were 
generated from the in silico determined (A) number of fragment length sites 
and (B) internal HpaII sites. Positive fragments for SssI treated human brain 
DNA were identifi ed using a p ≤ 0.005 threshold. Experimental results (gray 

bars) were compared with in silico prediction (100% methylated – white bars). 
The percentage of observed positives is depicted as red dots for each 
increment. In (A) the length of fragments was separated by 100 bp increments 
up to 5000 bp. In both plots, the red dot values drop off with increasing number 
of HpaII sites or fragment length.
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65 fragments were miscalled (3 false positive and 1 false negative). 
As a measure of the agreement between the replicate experiments, 
from the six total experiments on the three samples, we found 
that 7 of 72 validations has discordant methylation calls between 
the technical replicates using the threshold of p ≤ 0.005 (Table S1 
in Supplementary Material). In addition, unsupervised clustering 

methylation, we required methylation to be found at all fragment 
CCGG sites; in contrast, for confi rmation of lack of fragment meth-
ylation, we required that at least one CCGG was unmethylated even 
if other sites were methylated or unable to be sequenced. Out of the 
targeted 72 validations, we were able to generate 65 such confi rma-
tions. Based on the initial arbitrary p-value thresholds, only 4 of 

Table 2 | Bisulfi te sequencing validation of selected fragments.

Group* Fragment ID† Gene symbol‡ Number  Normal  U87MG  GBM sample

   of CCGG sample sample

MMM chr10:135229565-135229903 SYCE1 3 MMM MUM$ MMM

 chr12:131079934-131081089 ACA49 3 MMM MMM MMM

 chr1:145866478-145867056 GPR89 3 MMM MMM MMM

 chr20:023284963-023285537 ZNF336 4 MMMM MMMM MMMM

 chr6:090652010-090653222 CX62 4 XXMM¥ MMMM Does not work

UMM chr13:087124735-087125107 SLITRK5 2 UU MM UU$

 chr14:037748387-037748685 SSTR1 3 UUU MMM MMM

 chr6:050799831-050800183 TFAP2D 2 UU MM MM

 chr7:019112767-019113232 TWIST1 2 UU MM MM

UUM chr17:032372476-032372929 LHX1 1 U U M

 chr1:208045714-208046314 IRF6 5 UUUUU MMUMM MMMMM

 chr9:125818538-125819400 LHX2 4 UUUU MUMM MMMM

 chrX:152871737-152872870 HCFC1 7 XUUUMMM MUUUUUU MMMMMMM

 chr8:143532178-143533219 BAI1 5 MMMMX¥ MMMUX MMMMX¥

MUU chr10:001585700-001586383 ADARB2 6 MMMMMM UUUUUU MMMMMM$

 chr10:048049157-048050543 GDF10 6 XXXMMM¥ UUUMUU MMMMMU

 chr17:044053995-044054197 HOXB9 2 MM UM UU

 chr2:003265074-003265765 TSSC1 4 MMMM UMMM UUUU

UMU chr10:119295143-119295348 EMX2 1 U M U

 chr9:037028047-037028315 PAX5 4 UUUU UMMM$ UMMM

 chr5:158463645-158464398 EBF 6 XUUUUU XMMMMX¥ XMMMMU

 chr6:041623636-041623785 FOXP4 2 UU MM UU

UUU chr4:054787325-054787708 PDGFRA 3 XUU XMM¥ XUU

 chr14:057781316-057781579 PSMA3 3 UUU UUU UUU

0.0001  chr3:044355121-044355290 C3orf23 1 U U U

< p-value  chr18:012244368-012244501 CIDEA 1 U M U

< 0.1 chr14:054025152-054025242 GMFB 1 U U U

 chr12:131915874-131916618 GOLGA3 2 UU UU UU

 chr17:077280432-077280558 MRPL12 1 U U U

 chr7:002248495-002248886 NUDT1 2 UU UU UU

 chr19:003957812-003958405 PIAS4 3 UUU UUU UUU

 chr1:170019347-170020451 KIAA0859 1 M M M

 chr11:031792051-031792413 PAX6 3 UUU UUU UUU

 chr11:060458232-060458699 HSPA5BP1 3 MMM MMM MMM

 chr16:004599240-004599499 FAM100A 2 MM MM MM

 chr16:087934348-087936057 ANKRD11 1 M U M

 chr22:042147111-042147420 MPPED1 3 MMM UMM MMM

 chr5:052441323-052441462 MOCS2 2 UU UU UU

 chr10:131155492-131155756 MGMT 3 UUM MUM MMM

*MSRE determined methylation group (1st position-normal, 2nd position-U87MG, and 3rd position-GBM) selected using p ≤ 0.005 for methylated and p ≥ 0.05 for 
unmethylated (e.g. MMM is methylated in all three samples, whereas UMU is methylated only in U87MG). Additional validations used for ROC analysis are shown 
(0.0001 < p-value < 0.1). (see Table S1 in Supplementary Material for microarray data).
†Based on UCSC hg18 genome.
‡Based on Agilent grid fi le.
$Incorrect prediction.
¥Inconclusive results.
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using dChip (Li and Wong, 2001) based on z-scores of log
2
 ratio of 

all fragments monitored by MSRE showed similarity of technical 
replicates (Figure S5 in Supplementary Material).

DETERMINATION OF p-VALUE THRESHOLD BY ROC ANALYSIS
To determine the correct threshold for methylation discrimination, we 
used the validation results to perform a receiver operating characteris-
tic (ROC) analysis. However, due to the selection criteria applied dur-
ing the fi rst round of validation, we lacked data points corresponding 
to 0.005 < p < 0.05. Therefore, we selected another 15 fragments with 
p-values encompassing this region and performed uncloned bisulfi te 
sequencing on each sample. Results from these 15 fragments provided 
45 more points for our analysis (bottom portion of Table 2). ROC 
analysis was performed by calculating True Positive Rate (TPR) vs. 
False Positive Rate (FPR) and Positive Predictive Value (PPV) and 
Negative Predictive Value (NPV) at different p-values(Figure 4).

Inspection of these graphs suggests that the optimal threshold 
lies between 0.001 ≤ p ≤ 0.005. At p ≤ 0.001, NPV = PPV = 87%, 
and at p ≤ 0.005 (Figure 4A), the FPR plateaus (Figure 4B). All 
validation results were indicated in the MA plots (Figure 5).

Using the threshold of p ≤ 0.001, we found that 5,521 fragments 
were methylated in the normal brain sample, representing 4,256 
CpG islands, whereas we found 7,047 and 6,782 methylated frag-
ments (5,174 and 5,045 CpG islands) for the U87MG and GBM 
patient DNA, respectively (Table 3 and Figure 6A). At this threshold, 
3,125 fragments covering 2,417 CpG islands were commonly meth-
ylated in all three samples. To compare differentially methylated 
CpG islands between samples, we used a more stringent positive 
threshold (p ≤ 0.001, PPV = 93%) and negative threshold (p ≥ 0.01, 
NPV = 98%) to lower false positive/negative rate. With this compari-
son, we were able identify 70, 480, and 145 uniquely methylated CpG 
islands in normal, U87MG, and GBM respectively (Figure 6B).

MRSE CAN DETECT MGMT PROMOTER METHYLATION
To examine whether MGMT promoter methylation could be detected 
by our approach, we compared the MSRE profi ling results with meth-
ylation-specifi c PCR (MSP) on MGMT (Hegi et al., 2004) and bisulfi te 
sequencing determination of the three samples. The MGMT CpG 
Island is covered by two BfaI fragments (Figure 7A). One fragment 
(Fragment 1) is 502 bp and contains 12 CCGG sites. The other frag-
ment (Fragment 2), coinciding with the MSP primers, is 265 bp in size 
and contains 3 CCGG sites. Using a threshold of p ≤ 0.001, the 502-bp 
fragment was not found to be methylated in any of the samples by 
MSRE whereas methylation of the 265-bp fragment (Fragment 2) was 
detected for the GBM sample, but not for U87MG or normal brain 
(Figure 5). However, by MSP, both the U87MG and GBM sample but 
not normal brain are methylated (Figure 7B). When this fragment 
was subjected to bisulfi te sequencing, we found that the GBM frag-
ment was methylated at each of the three CCGG sites (Figure 7C). In 
contrast, the U87MG fragment was unmethylated at one of the three 
CCGG sites within the fragment, whereas the normal brain sample 
was unmethylated at two of the three CCGG sites.

DISCUSSION
In this study, we have described a genome-wide methylation profi ling 
approach utilizing MSRE combined with Agilent 244K CpG island 
microarrays that has been optimized via in silico restriction enzyme 

analysis of the human genome sequence. In silico comparison between 
MseI and BfaI fragmentation demonstrated that BfaI provides better 
coverage and fragment characteristics for MSRE when reasonably 
amplifi ed fragments sizes (<2.0 kb) are  considered. To explore the 
feasibility of the method, we applied MSRE to genomic DNA from 
normal brain tissue, U87MG GBM cell line, and a GBM patient tissue 
sample. Uncloned bisulfi te sequencing was used to cross validate ∼120 
fragments to determine the sensitivity and specifi city of the calls from 
our analysis. The validation results also provided the basis to estimate 
a threshold separating methylated and unmethylated fragments.

The MSRE approach is derived from DMH, one of the most 
commonly used techniques for large-scale methylation profi l-
ing of cancer genomes (Huang et al., 1999; Yan et al., 2009). 
The main advantage MSRE has over DMH is that methylation 
determination relative to an independent reference sample is 
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not necessary since parallel HpaII and MspI digestions of the 
same sample are compared simultaneously (Adrien et al., 2006; 
Hatada et al., 2006). However, since such methylation sensitive 
and insensitive isoschizomers are essentially limited to this sin-
gle pair, a possible advantage of DMH compared to MSRE is 
the potential to use an enzyme cocktail selected from the entire 
set of methylation sensitive restriction enzymes. However, in 
terms of coverage, our in silico simulation indicates that solely 
monitoring CCGG restriction sites enables coverage of nearly 
all CpG islands covered with only a small number of predicted 
insensitive fragments (8.3%). Furthermore, increasing the 
number of monitored restriction sites per fragment by using 
additional methylation sensitive restriction enzymes appears to 
be disadvantageous based on recognition that the major limita-
tion of both DMH and MSRE is the necessity for every CCGG 

restriction site within a fragment to be methylated in tandem in 
order to detect methylation. Another important benefi t of the in 
silico analysis was identifi cation of MSRE insensitive fragments 
based on the lack of the internal CCGG sites. This small group 
of fragments can be easily tracked in every assay, and provided 
an internal control group that was used for normalization of 
our two-color data in order to determine the M-value threshold 
indicative of fragment methylation. In addition, this insensitive 
population provides the signal intensity range of binding frag-
ments. Utilizing such information can reduce dye bias and batch 
effects between microarray experiments.

From our bisulfi te sequencing validation of individual CpGs, 
we most commonly observed that fragments contained either 
complete methylation or absence of methylation at all CpGs 
(including those outside of CCGG sites). This observation 
provided additional support for the utility of restriction based 
approaches to detect ‘native’ genomic methylation. However, in 
a minority of instances, we observed patchy methylation (not 
full tandem methylation) of the CCGG sites within the frag-
ment such that a predominantly methylated fragment would 
remain undetected by MSRE. One strategy to lessen the impact 
of this limitation is to use a restriction enzyme for fragmentation 
that generates more sensitive fragments with lower numbers of 
internal HpaII sites. We performed in silico simulations with 
various enzymes to determine numbers of sensitive fragments 
containing one to three HpaII sites. We found that AluI (34,474) 
and HpyCH4IV (29,320) could generate a signifi cantly increased 
number of sensitive fragments with low numbers of HpaII sites 
(1–3) compared to BfaI (15,868) or even BfaI/MseI (21,110) 
(Table S2 in Supplementary Material). However when enzymes 
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FIGURE 5 | Bisulfi te sequencing validation results superimposed on MA 

plots. Bisulfi te sequencing results (Table 2) were mapped on the corresponding 
MA plots for normal brain, U87MG and GBM DNA samples. Red dots represent 
validated methylated fragments (all CCGG sites are methylated in tandem), black 
dots represent fully unmethylated fragments, and blue dots represent mixed 

methylation of CCGG sites which are expected to be called unmethylated by 
MSRE. Light blue dots represent insensitive fragments, and light green dotes 
represent sensitive fragments. Light red highlighted sensitive fragments have 
M-values with p ≤ 0.001 and HpaII channel intensity with p ≤ 0.95. Also, the 
position of MGMT Fragment 2 (265 bp) has been indicated with a blue triangle.

Table 3 | Methylated fragments and corresponding CpG islands 

detected by MSRE analysis of human genomic DNA samples.

 CpG islands* Fragments*

Total covered 22,362 41,682

SssI treated DNA 13,380 60% 20,945 50%

Genomiphied DNA 10 0% 21 0%

Normal Brain DNA 4,256 19% 5,521 13%

U87MG DNA 5,174 23% 7,047 17%

GBM DNA 5,045 23% 6,782 16%

*Only fragments with size in 0.1–2.0 kb range were included.
Criteria for positive call: M p-value ≤ 0.001 and HpaII digest signal p-
value ≤ 0.95.
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such as AluI and HpyCH4IV are utilized, compared to BfaI, two 
disadvantages are apparent: (1) decreased probe redundancy and 
(2) more ‘partial binding probes’. Both of these problems can 
be addressed by custom array design tailored to the particular 
fragmentation scheme. Ultimately, this issue of patchy meth-
ylation demonstrates where ‘massively parallel next-generation 
bisulfi te sequencing’ will be advantageous in assessing not only 
CGs outside of a CCGG context, but also each CG independently 
of others within the same fragment.

One issue that poses a limitation for methylation profi ling 
techniques such as MSRE is the inability to determine the rela-
tive abundance of methylation at a particular loci especially in the 
context of tissues containing a mixture of cell types. Our MSRE 
analysis enables only the categorical detection of methylation as 
being either present or absent. In theory, if individual fragments 
are not subject to any amplifi cation bias, then the HpaII intensity 
or the magnitude of the ratio may be useful to determine relative 
abundance of methylation. In future studies, quantitative bisulfi te 
validation techniques can be used to determine whether MSRE 
data can be used to give information on abundance of methylation. 
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FIGURE 6 | Comparison of methylation between U87MG, and GBM DNA 

samples. (A) Estimation of methylated fragments in all samples determined 
by using p ≤ 0.001 for each sample identifi es 3,125 fragments (covering 2,417 
CpG Islands). 4,414 fragments (3,321 CpG Islands) were common to both 
GBM and U87MG, 4,471 fragments (3,452 CpG Islands) common to both 
GBM and normal, and 3,518 fragments (2,704 CpG Islands) common to both 
normal and U87MG. (B) Estimation of uniquely methylated fragments using 
methylation determination based on p ≤ 0.001 and unmethylated 
determination based on p > 0.01. Fragments within the intermediate region 
with 0.001 ≤ p ≤ 0.01 are not categorized.

At this point, the major recommendation is to screen tissue for 
example to make sure the sample is predominantly tumor versus 
normal prior to DNA isolation minimize the mixture of cell types. 
A strategy of cell selection using laser capture dissection is limited 
by the DNA requirements of the assay.

In light of the new TCGA methylation data set using Illumina 
Infi nium HumanMethylation27 (Illumina, San Diego, CA, USA) 
for GBM, we attempted to compare our MSRE result of single 
GBM sample against TCGA methylation results of GBM sam-
ples (118 samples). We mapped all 27,578 loci monitored by 
HumanMethylation27 to our MSRE fragmentation scheme and 
found 14,402 loci overlapping with 11,337 ‘evaluable’ BfaI fragments 
(Figure S6 in Supplementary Material). To determine overlapping 
methylated GBM loci/fragments in both platforms, we fi ltered the 
TCGA data for loci methylated in more than 50% of 118 samples 
(using beta-value ≥ 0.6 for methylated call). Of the 4,854 methyl-
ated loci satisfying these criteria, 718 loci are located within our 
BfaI fragments and 175 loci are located in methylated fragments 
in our GBM sample (p ≤ 0.001). This indicates that MSRE and 
HumanMethylation27 can detect methylation in not completely 
overlapping set of CpG islands.

In summary, this method provides a cost-effective tool for 
broad genome-wide CpG island methylation analysis of cancer 
genomes such as GBM that utilizes as little as 1 µg of sample 
DNA. In contrast to approaches using sonication for genomic 
fragmentation or MeDIP/anti-MeC antibodies for methylation 
discrimination, we could exploit the assay’s use of restriction 
enzymes for both fragmentation and methylation determina-
tion to perform in silico simulations in the context of the Agilent 
CpG island probe design. In this way, we were able to predict 
overall coverage, identify an internal ‘control’ population of BfaI 
fragments not containing internal HpaII/MspI sites, understand 
fragment features infl uencing relative reliability of methyla-
tion determination such as fragment size, number of internal 
HpaII/MspI sites or probe reliability, and provide a rationale 
for selection of fragmentation enzymes and array design that 
enable increased ‘effective’ coverage. These data provide critical 
guidance to individuals seeking to determine the methylation 
status of individual CpG islands using restriction enzyme-based 
approaches. The methods can be adapted for other restriction 
enzyme approaches and can be applied to other array designs to 
indicate benefi cial compositional design alterations. For example, 
the importance of gene regulation via methylation of ‘CpG island 
shores’ has recently been identifi ed (Irizarry et al., 2009). MSRE 
coverage can be expanded to include these areas by altering the 
probe design and fragmentation enzyme.
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FIGURE 7 | BfaI fragment coverage of the MGMT CpG island and bisulfi te 

validation. (A) UCSC browser representation of MGMT CpG island showing 
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probes in green (note partial binding probes *), and methylation-specifi c PCR 
primers in red. Fragment 1 is 502 bp and contains 12 CCGG sites. Fragment 2 is 
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a portion of exon 1. (B) MSP results of human DNA samples confi rm bisulfi te 
sequencing with normal brain showing an unmethylated band, and GBM and 

U87MG showing a methylated band (as well as a unmethylated band). For 
controls, methylated SssI-treated DNA (pos.), and unmethylated whole genome 
amplifi ed DNA (neg.) were analyzed in parallel. (C) Schematic diagram of 
bisulfi te sequencing results on all CpG sites in Fragment 2 of uncloned GBM, 
U87MG, and normal DNA. Open circles indicate unmethylated CGs, and closed 
circles indicated methylated CGs. CGs in context of CCGG are enclosed in 
rectangles. Half-fi lled circles indicated sites where C peak (methylated) and T 
peak (unmethylated) from bisulfi te sequencing were detected evenly.
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