Original Research ARTICLE

Front. Neuroeng., 08 February 2010 |

Glycine-spacers influence functional motifs exposure and self-assembling propensity of functionalized substrates tailored for neural stem cell cultures

Center for Nanomedicine and Tissue Engineering, A.O. Ospedale Niguarda Ca’ Granda, Milan, Italy
Materials Science Department, University of Milan-Bicocca, Milan, Italy
Biotechnology and Biosciences Department, University of Milan-Bicocca, Milan, Italy
Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia UdR Milan-Bicocca, Milan, Italy
The understanding of phenomena involved in the self-assembling of bio-inspired biomaterials acting as three-dimensional scaffolds for regenerative medicine applications is a necessary step to develop effective therapies in neural tissue engineering. We investigated the self-assembled nanostructures of functionalized peptides featuring four, two or no glycine-spacers between the self-assembly sequence RADA16-I and the functional biological motif PFSSTKT. The effectiveness of their biological functionalization was assessed via in vitro experiments with neural stem cells (NSCs) and their molecular assembly was elucidated via atomic force microscopy, Raman and Fourier Transform Infrared spectroscopy. We demonstrated that glycine-spacers play a crucial role in the scaffold stability and in the exposure of the functional motifs. In particular, a glycine-spacer of four residues leads to a more stable nanostructure and to an improved exposure of the functional motif. Accordingly, the longer spacer of glycines, the more effective is the functional motif in both eliciting NSCs adhesion, improving their viability and increasing their differentiation. Therefore, optimized designing strategies of functionalized biomaterials may open, in the near future, new therapies in tissue engineering and regenerative medicine.
biomaterial, nanostructure, neural stem cell, AFM, FTIR, Micro-Raman
Taraballi F, Natalello A, Campione M, Villa O, Doglia SM, Paleari A and Gelain F (2010). Glycine-spacers influence functional motifs exposure and self-assembling propensity of functionalized substrates tailored for neural stem cell cultures. Front. Neuroeng. 3:1. doi: 10.3389/neuro.16.001.2010
05 November 2009;
 Paper pending published:
24 November 2009;
12 January 2010;
 Published online:
08 February 2010.

Edited by:

Gabriel A. Silva, University of California , USA

Reviewed by:

Seung-Wuk Lee, University of California Berkeley, USA
Sungho Jin, University of California San Diego, USA
Ho-Wook Jun, University of Alabama at Birmingham, USA
© 2010 Taraballi, Natalello, Campione, Villa, Doglia, Paleari and Gelain. This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
Fabrizio Gelain, Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza 2, Milan 20126, Italy. e-mail: