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Over the last decade, executable models of biological behaviors have repeatedly pro-
vided new scientific discoveries, uncovered novel insights, and directed new experimental
avenues. These models are computer programs whose execution mechanistically simu-
lates aspects of the cell’s behaviors. If the observed behavior of the program agrees with
the observed biological behavior, then the program explains the phenomena.This approach
has proven beneficial for gaining new biological insights and directing new experimental
avenues. One advantage of this approach is that techniques for analysis of computer pro-
grams can be applied to the analysis of executable models. For example, one can confirm
that a model agrees with experiments for all possible executions of the model (correspond-
ing to all environmental conditions), even if there are a huge number of executions. Various
formal methods have been adapted for this context, for example, model checking or sym-
bolic analysis of state spaces. To avoid manual construction of executable models, one
can apply synthesis, a method to produce programs automatically from high-level speci-
fications. In the context of biological modeling, synthesis would correspond to extracting
executable models from experimental data. We survey recent results about the usage of
the techniques underlying synthesis of computer programs for the inference of biological
models from experimental data. We describe synthesis of biological models from curated
mutation experiment data, inferring network connectivity models from phosphoproteomic
data, and synthesis of Boolean networks from gene expression data.While much work has
been done on automated analysis of similar datasets using machine learning and artificial
intelligence, using synthesis techniques provides new opportunities such as efficient com-
putation of disambiguating experiments, as well as the ability to produce different kinds of
models automatically from biological data.

Keywords: executable biology, synthesis, verification, Boolean networks, signaling pathways

EXECUTABLE BIOLOGY
Investigating phenomena through the scientific method is an iter-
ative process of hypothesis-driven experimentation. We observe
the world around us, experiment with it, and, based on the exper-
imental data, come up with hypotheses trying to explain how the
systems that we study actually work (Figure 1A). These hypotheses
lead to new predictions that then need to be tested in the real world.
In biology, working hypotheses are referred to as mechanistic
models aiming to provide a mechanistic explanation for observed
phenomena. Executable Biology is an emerging field focused on
the construction of such mechanistic models as executable com-
puter programs. The basic construct of these computer programs
(or computational models) is a state-machine, which relates dif-
ferent states to one another by defining how given certain events
(e.g., a molecular signal), one state is transformed into another
(Fisher and Henzinger, 2007). The components composing such a
state-machine represent biological entities, such as cells, proteins,
or genes that react to events involving neighboring components
by state transformations. These state-machines can then be com-
posed together to form complex computational models represent-
ing biological behaviors. As opposed to quantitative mathematical

models such as stochastic and dynamic models, computational
models are qualitative, as they explain the cause of observed phe-
nomena. A major advantage of qualitative models is that different
models can be used to describe the same biological phenomena at
different levels of detail (abstraction), and that the different levels
can be formally related to one another. For example, models can
represent the molecular level, or, at a higher level of abstraction,
they may represent the cellular level.

Computational models can be used to test different mechanistic
hypotheses. Since the computational model represents a hypo-
thetical mechanism that results in the experimental data, when
we execute the model we can formally check whether a possible
outcome of the mechanism is consistent with the data. Due to the
non-deterministic nature of biological models, it is impossible to
exhaustively test that all possible executions of a model conform
to the data. Model-checking, on the other hand, is a technique that
systematically analyzes all possible outcomes of a computational
model without executing them one by one (Clarke et al., 1999).
Hence, if model-checking verifies that all possible outcomes of our
computational model agree with the experimental data, and that
all the experimental observations can be reproduced by the model,
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Fisher et al. Synthesizing executable models

FIGURE 1 | (A) The scientific method calls for the elaboration of a predictive
model of the system under study. The model should reproduce the existing
experimental results and should be predictive regarding future experiments.
By performing these experiments we validate the model, or refine it to a
better model that captures more facts about the system. (B) The same

process for executable biology calls for the elaboration of a model in the form
of a computer program. The model is compared with specifications obtained
from experimental observations. Failure to reproduce the experimental
results leads to a refinement of the model. Predictions are used to guide
further experimentation.

then we have a guarantee that the model is realistic and represents
a mechanism that fits and explains the data. In case some of the
experimental data cannot be reproduced by the model then we
know that the hypothesis is wrong. We then need to refine the
model until it produces the additional outcomes. Furthermore, if
some of outcomes of the computational model disagree with the
experimental data then the mechanistic hypothesis represented by
the model may be wrong and we would need to revise the model
so it will only produce outcomes that are supported by the data.
In this case, the refinement of the model will offer new predictions
suggesting additional experiments in order to validate the mecha-
nistic hypothesis represented by the model. Executable biology is
therefore an interplay between collecting data in experiments and
constructing executable models that capture a mechanistic under-
standing of how a particular system works. By executing these
models under different conditions that correspond to the exper-
imental data and comparing the outcomes to the experimental
observations, we can identify inconsistencies between hypothetical
mechanisms and the actual experimental observations. Similar to
the scientific method, this iterative process leads to new hypothe-
ses, which serve to refine the mechanistic model and then need to
be validated experimentally (Figure 1B).

Instead of constructing executable mechanistic models manu-
ally, one can extract such models automatically from experimental
data using a technique called synthesis. Program synthesis is a
method used to extract computer programs from their high-level
specification. In biology, this concept is extremely appealing, as
we would like to avoid the laborious manual process of model
construction, which is prone to conscious and unconscious biases
and errors, and replace it with an automatic process to synthe-
size the model directly from the data. Obviously, such a process
could yield many different models explaining the same data set,

in which case another interesting point would be to identify a way
to differentiate between the different models. This could be in the
form of an experiment that could either verify or falsify a particu-
lar hypothetical model. Hence, automatically synthesizing models
of biological programs from experimental data has tremendous
advantages over manually constructed biological programs. Usage
of synthesis could lead to significant advantages in terms of time
and labor to produce models, in terms of our confidence in the
inferred features of models, and in terms of the next steps to take
to decide between multiple possible models.

MODELING METHODOLOGY
We now present the methodology of executable modeling, describ-
ing its steps as a workflow that a biologist might follow when
developing and analyzing an executable model. We accompany
the explanation with the details of a running example. We exem-
plify the process through a developmental model of a fragment of
the C. elegans vulval precursor cells (VPC) system. We will model
the lateral signaling mechanism that six adjacent VPC use to col-
lectively determine their fate. The description here follows closely
the elaboration of the synthesis process described in (Koksal et al.,
2013).

CHOOSE A SUITABLE ABSTRACTION LEVEL
Based on the biological question, we choose the level of abstrac-
tion, including the biological entities and their possible values
(states). The abstraction, coupled with assumptions given by the
biologist, defines a space of possible models, and the role of
synthesis will be to find models in this candidate space.

For example, we want to develop a model that explains how
VPCs coordinate to determine their fate. Specifically, we are inter-
ested in (i) identifying which pairwise protein interactions are
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Fisher et al. Synthesizing executable models

involved in the coordination; (ii) how the cells gain resilience
against “time conflicts,” which arise when two cells happen to
signal each other simultaneously; and (iii) how a cell avoids “self-
signaling,” which arises when a cell C1 signals its neighbors to take
fate 2° – how does C1 ensure that it does not listen to its own sig-
nal and incorrectly enter fate 2°? These three modeling questions
already dictate which entities and mechanisms must be preserved
by the modeling abstraction and which might be abstracted away:
the model must have an object per protein to uncover the effect
of protein interactions. Similarly, there will be an object per cell,

to enable modeling of inter-cell communication. Each such cell
model will be composed of multiple proteins that will interact
with proteins inside the cell as well as proteins (receptors) on
neighboring cells. Finally, to model the effects of different times
when signaling happens, our models will, in some fashion, need
to model the progress of time.

Figure 2A (top right) shows the model of our cell comprises
seven proteins and a decision circuit that models how the fates
are determined. The figure also shows how six (identical) cells
are connected into a system with the anchor cell (AC) and two

FIGURE 2 | (A) Partial model submitted to the synthesizer and the
resulting state machine produced by the synthesizer. On the right, we
see the structure of a cell with the components that comprise it. We
see the configuration of the six cells and the communication allowed
between them. Finally, we include some of the experimental data used
to specify which models are correct. On the left, we see the resulting

state transition diagrams produced for let23 (top) and lst (bottom).
(B) In the case that the synthesis engine can produce multiple possible
models that explain the data, we can ask for experiments that
distinguish between the different models. Such experiments are
expressed in terms of the experimental setting created for the
synthesis effort.
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Fisher et al. Synthesizing executable models

external proteins communicating the interaction between cells
(inter-cellular signaling). To define the model as an executable
program, we discretize both time and protein levels. The model
will execute in a fixed number of steps (10–15 steps in our set-
ting). Protein concentrations will use a small number of levels
(2–5). Discretization levels are set by the biologist. Protein behav-
ior is modeled with a protein response function, which is specific
to each protein. The model updates the protein level in each step.
The protein response function reads the current level of the pro-
tein as well as the levels of incoming proteins, and computes the
next state of the protein. The protein response function thus forms
a state machine, with one state for each discretized concentration
level, and transitions are predicates that test levels of incoming
proteins. Figure 2A (left) shows two protein response functions.

To summarize the model semantics, each protein has a state
(concentration) to model how the protein concentration evolves
over time, which allows for control of when one protein triggers
another. Cells are networks of proteins in which all proteins take
their step simultaneously (synchronously); there is no need to
execute proteins of a cell in arbitrary order, because we are only
interested in time-sensitivity between cells. The six cells take steps
one after another, controlled by the scheduler that models the dif-
ferent rates of progress of the cells. The role of the scheduler will
be explained in the next subsection.

COLLECT DATA AND EXPRESS PRIOR INFORMATION AS A PARTIAL
MODEL
There are two common methods for narrowing the space of pos-
sible models. First, one can state biological “certainties,” such as
which proteins are believed to participate in the system under
study. Second, one can add the observed biological behaviors that
the model needs to reproduce.

Existing biological knowledge will be used to construct an ini-
tial model, called a partial model, which defines the space of
candidate models. We can think of the partial model as a para-
metric model whose parameters are determined during model
synthesis. The partial model may include known biological entities
(e.g., proteins), their possible states and interactions. For example,
in the model in Figure 2A, the previous biological knowledge
included the interactions between the entities and the encapsula-
tion of entities to cells, based on previous data on the behaviors
of the entities, the cells, and the VPC system in general. In addi-
tion, the structure of the protein response functions was decided
based on beliefs regarding the sensing capabilities of the proteins
and the assumption that all involved entities are represented in
the model. One might also fix the type of interaction between the
entities (inducing or inhibiting) and possibly restrict the number
of arguments to protein response functions based on the number
of active sites of the protein. These prior-belief restrictions define
the “structure” of the candidate space and narrow down the search
process.

The experimental data are used to test correctness of mod-
els in the candidate model space. The experimental data have to
be mapped to the model level: the environmental conditions are
viewed as the inputs to the model while the experimental obser-
vations are viewed as model outputs or intermediate states. In
the VPC example, each experiment is a mutation-phenotype pair,

where the mutation is the input to the computational model, while
the phenotype is the output from executing the model. In more
detail, the mutations either knock out a gene or constitutively turn
it on. For each mutation, the experimental data records the fate
taken by each of the six cells. There are three possible fates, and
in each experiment, all cells are identically mutated. Figure 2A
(bottom right) shows a portion of the table that maps mutations
to fates. Our model will execute by first reading the particular
mutation, which changes the behavior of the model. The model is
then executed for a predetermined number of time steps, cover-
ing the period during which the cells coordinate. When the model
terminates, it outputs the six fates.

Another possible example of model output is the time series
of a certain combination of entity values. In all cases, the experi-
ments are translated to the same constraint language that is used
to express the structural restriction on the models.

Because a model can have multiple executions, we distinguish
between allowable behavior and required behavior, using both
types of behaviors to decide whether a particular model is correct.
In Figure 2A, note that for the second mutation in the mutations-
to-fates table, the experiments have observed multiple fates. Pre-
sumably, this stochasticity in the cell is due to the loss of “synchro-
nization” between cells caused by the mutation. A correct model
will need to be able to reproduce each of the observed fates – they
represent the allowable behavior. The required behavior is that
each of these alternative fates must be reproducible. That is, there
must be an execution of the model that produces one observed
fate and another execution that produces the other fate. To endow
our model with the ability to reproduce this stochastic behavior,
we make the model non-deterministic. We view non-determinism
as an abstraction of stochasticity, in that our model will not tell us
the probability with which each fate can be reached, only whether
it can be reached. The benefit of using non-determinism is that
it is not necessary to use randomness to make the model behave
stochastically. To make the model non-deterministic, it will suf-
fice to control how the six cells interleave their steps; we call this
interleaving a schedule. The model includes a scheduler that can
non-deterministically select one of the possible schedules.

VERIFICATION OF MODELS
The model we have described so far is not specific to synthesis. In
fact, one can develop the model entirely manually. It will be desir-
able to verify this model, which would mean to ensure that for
each mutation, the model produces the indicated fates no matter
which schedule is selected by the scheduler, and that all alter-
native fates are produced by some schedule. This verification is
performed without explicitly enumerating all schedules, as there
are too many. Instead, the model is translated into logical con-
straints which are supplied to a solver, which in turn is asked to
find a schedule that fails to produce the indicated fates. If the solver
proves that no such schedule exists, the model has been verified.

SYNTHESIZE AND ENUMERATE ALTERNATIVE MODELS
It is usually tedious to manually develop a complete model that
verifies against the experiments. To employ synthesis, we ask the
synthesizer to complete the partial model into a verifiable model.
At the technical level, the synthesis works as a search process. The
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Fisher et al. Synthesizing executable models

partial model defines a space of candidate models. Each candidate
corresponds to one possible completion of the partial model. Most
of the candidate models are typically incorrect (i.e., they disagree
with the experimental data), and the synthesizer needs to find a
candidate that is correct. As in verification, the search is formulated
as solving of a set of constraints. The translation to constraints is
performed by a tool (a special compiler) that accepts any partial
model and produces logical constraints.

Usually, this will be formed as a type of constraint satisfac-
tion problem, and it is the role of a given solver to search for a
solution for it. The translation back and forth between the con-
straint language and the models and their potential behavior is
the main programing task in this endeavor. If the solver man-
ages to find a possible solution then this is a potential model.
If the synthesizer fails to find possible models, the prior knowl-
edge and assumptions have to be reconsidered in order to enlarge
the search space, for example, by adding additional protein inter-
actions. Having synthesis algorithms produce useful information
for such enlargement is an ongoing research topic.

In the VPC case study, the laborious aspect of model devel-
opment is to write protein response functions that collectively
behave as the real cell. Therefore, these response functions will be
produced by the synthesizer. These functions will describe how
proteins respond to suppression and activation, informally, how
long it takes for proteins to become activated. If no such function
can be found, we assume that the model is missing an interaction,
and the prior knowledge needs to be revised, as done by Fisher
et al. (2007). Figure 2A (top right) shows the partial model sup-
plied to the synthesizer; the response functions for three proteins
need to be synthesized. Given the table with experimental data and
the number of steps to be taken, the synthesizer completes the par-
tial model with protein response functions. Two of the synthesized
response functions are shown on the left. This model is correct in
that it can be verified as described above.

ANALYSIS OF THE SPACE OF FEASIBLE MODELS
The synthesizer has discovered that multiple models match the
data. It is therefore natural to ask whether these models represent
alternative match the data. It is therefore natural to ask whether
these models represent alternative explanations of how the cells
behave. Given how we posed the problem, these models are equiv-
alent, because we have fixed the interaction network and solved for
transfer functions. Hence, our models will differ only in their pro-
tein responses, which we typically do not consider to be different
explanations. To arrive at an alternative explanation, we pose to the
synthesizer a different partial model (with a different set of inter-
actions) and ask whether response functions exist for that model.
An alternative technique is to give the synthesizer a partial model
with a superset of interactions and then read out the synthesized
response functions: if a function ignores an incoming protein, then
we can remove that incoming edge, arriving at another model.
In Figure 2B, we show alternative models synthesized from our
partial model.

COMPUTE ADDITIONAL EXPERIMENTS TO CONDUCT
If alternative models exist, it is because we do not possess sufficient
experiments to narrow down the candidate space to a single model.

To rule out some alternative models, we can ask the synthesizer to
compute additional experiments for which the measurable result
differs between the alternative models. In theVPC case study, this is
done by searching the space of mutations (for which experiments
have not yet been performed), looking for a mutation such that at
least two alternative models differ in their fate outcomes. Perform-
ing this experiment and adding its result to those that guide the
synthesis process is guaranteed to rule out some of the models. If
no such experiment exists, then, from the point of view of the exist-
ing experimental system, it is impossible to distinguish between the
alternative models, and additional experimental methods need to
be considered in order to facilitate ruling out some of these models.

Minimizing the number of experiments
Assume that you want to rerun the experiments, for example, to
increase your confidence in the measurements. Do you need to
perform all the experiments or is it sufficient to redo a small subset
of experiments? Indeed, prior knowledge may make some exper-
iments unnecessary. Alternatively, one or more experiments may
collectively make some other experiments superfluous, because no
new knowledge useful to model inference is present in the latter
set of experiments. This problem is again posed as a search over a
sufficient set of experiments that will infer the same set of plau-
sible models as the full set of experiments. In our case study, we
were able to reduce the number of experiments from 48 to 4.

DEVELOPING MODELS WITH SYNTHESIS
We now aim to generalize some considerations discussed above
and present questions that need to be answered in order to apply
synthesis effectively in biological domains. We follow the structure
of the previous section and revisit the issues that were highlighted
there.

CHOOSE A SUITABLE ABSTRACTION LEVEL
The first question that needs answering is whether the biological
question that we have in mind can be helped by synthesis. At the
current level, successful applications of synthesis are restricted to
constructing discrete models at a relatively low level of detail1.
For example, models of continuous evolution of protein networks
that match time series expression levels are more suited for other
methods. The synthesis techniques we talk about here are based
on constraint solving. Such techniques are more appropriate when
the values of entities can be represented by discrete values and
their changes over time are abstracted to talk about “what hap-
pens next,” ignoring the detail of “when exactly” it happens. This
dictates a relatively high level of abstraction and questions that
relate to, for example, possible interactions, causality, and nature
of interaction. The kind of models that can be produced are, for
example, Boolean networks (Kauffman, 1969), state transition dia-
grams (Efroni et al., 2007), and Petri-nets (Bonzanni et al., 2013).
Such programs will generally manipulate variables ranging over
discrete domains and changing by transition rules that set a next

1We consider work for parameter estimation of networks of differential equations
as belonging to a different class of applications. Indeed, the technique it relies on
is completely different to those used here. For a survey of available techniques for
parameter estimation we refer the reader to Jianyong et al. (2012).
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Fisher et al. Synthesizing executable models

value based on the current value of an entity and those affecting
it. The stress on current and next is intentional. It marks a clear
difference between the mathematical models that talk about the
transformation of values over time and the computational models
that we have in mind here.

SYNTHESIZE AND ENUMERATE ALTERNATIVE MODELS
One can look for differences or commonalities between all correct
models leading to further biological experimentation. For exam-
ple, one can look on the options synthesized for a certain part of the
system. If the set of options is very restricted, this means that the
existing knowledge and experiments lead to a good understanding
of the structure of this part of the system. If the number of options
is very large and potentially contradictory then additional infor-
mation about this part is missing. In particular, summarizations of
the entire space of correct models can give us information on what
is impossible (if no model uses such a feature) and what must be
true (if all models have such a feature). One of the questions that
will need resolution in order to make synthesis more applicable
in the biological domain is how to better classify the set of poten-
tial models and what kinds of questions can be asked about them,
which could also be useful for manual elaboration of models.

COMPUTE ADDITIONAL EXPERIMENTS TO CONDUCT
Similar techniques to those applied to produce the model result-
ing from synthesis can be used to search the space of experiments.
In particular, adding information about the cost of experiments
and their feasibility could narrow down the space of possible
experiments and suggest that the “easiest” experiments to perform
that would still give information valuable in ruling out potential
models.

OVER FITTING TO EXPERIMENTS
One of the issues in parameter estimation techniques is that of
over fitting models to noisy and unreliable data, leading to models
that are too restrictive. We stress that the approach to tackle over
fitting within the context of synthesis must be different. Here, the
technique itself is structured so as to determine a space of possible
models. It does not make sense to synthesize with only some of
the information in hand and then test the resulting models with
additional data. Indeed, the step that could lead to over fitting is in
the definition of the space of possible models and not in the parti-
tion of the space between “correct” and “incorrect” models. First,
since the technique can declare that a certain space does not con-
tain “correct” models, the risk of over fitting is somewhat reduced.
Over fitting may result in models that are not realistic but can
still explain all the observed phenomena. The predictions of such
models should lead to the identification of the errors in the defini-
tion of the search space. Second, the technique is geared toward the
production of multiple models and not the “best fitting model.”
The resilience to over fitting should be part of the definition of the
space of possible models and the type of correspondence between
the models and the experimental results. Removal of some of the
experimental results and testing them at a later stage, essentially
will lead to either of the two answers that we would have reached
in the first place: a narrower space of “correct” solutions or the
non-existence of a “correct” solution.

ADDITIONAL EXAMPLES
We explore a few more examples of the usage of synthesis
techniques as described above.

SYNTHESIZING BOOLEAN NETWORKS FROM GENE EXPRESSION
EXPERIMENTS
Another example of synthesis is the following application to the
extraction of a Boolean network from experimental data (Guzi-
olowski et al., 2013). The existing biological knowledge consists
of the connections between the different biological entities along
with their directions. That is, the authors assume that they know
which proteins interact and, for every interaction, whether the
interaction is positive or negative. This information is summa-
rized in the form of a directed and annotated graph (G=V, E),
where V is a set of nodes, and E ⊆V ×V is the set of edges. The
annotation of edges with+ and− signs is given separately.

The assumption on the structure of the model is that it is a
Boolean network. That is, every biological entity corresponds to a
variable that is either on or off (0 or 1), and there are rules that
govern the changes in values of these entities according to the val-
ues of the entities that have an edge to them. In particular, the
function that sets the value of an entity is a Boolean function that
includes all the entities that affect the entity we are interested in
and where the sign of every interaction is respected. So, an entity
that affects positively cannot have an inverse effect with every other
possible combination of the other inputs and vice versa. It is well
known that such networks stabilize according to these rules. Thus,
there are certain states (assignments of values to all the variables)
in which updates produce no change.

The experimental framework assumes some inputs I ⊆V,
which are biological entities that can be affected by experiments,
and some outputs O⊆V, which are biological entities that can
be measured. Thus, the set of experiments that can be done on
this network are to set the values of the inputs (by mutation or
other intervention) and to measure the values of the outputs (e.g.,
phosphorylation values). Outputs are discretized to a number of
levels that correspond to noise level in the measurements. In this
particular case, the output is discretized to 100 levels. It is assumed
that the output values that are associated with a certain input cor-
respond to the stability point of the network when the inputs are
set to the experimental value.

The utility of the network is measured by the sum of the square
distance of the measured outputs from the output of the net-
work. For a specific experiment e and specific output o ∈O, we
write θe,o as the value of this output in this experiment. Simi-
larly, given a candidate Boolean network, the stability value of a
certain output under the same experiment is denoted ρe,o. The dis-
tance of a specific experiment is de= 1/m

∑
o(ρe,o− θe,o)2, where

m= |O|. That is, the average of the square of the distance from
the network prediction and the actual experimental results over
all outputs. The overall distance of the network is the average
of the distances overall experiments, that is d = 1/n

∑
ede, where

n is the number of available experiments. The network utility
is to minimize the distance of the network from experiments
and at the same time minimize the size of the network (as mea-
sured by the size of the functions that govern changes in variable
values).
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The authors of this research then pose this question as a search
question. Find the network that best matches the experimental
data with the minimal size. The initial search yields 16 models
that result from allowing two possible functions for four entities
(24
= 16 – not very surprising as searching for a minimum often

does). But relaxing the requirements to within a distance of 10%
from the possible minimum to take noise into account produces
about 10,000 possible networks.

The main strength of this analysis technique is that it is now
possible to analyze all these 10,000 networks simultaneously and
derive conclusions from their commonalities. For example, for
some entities the same functions occurred in all the models. Func-
tions that do not appear in even a single model are overruled. And
some entities had a very small number of possible functions. In
addition, the analysis can extract whether it is possible to perform
experiments within the given experimental framework that will
distinguish between models. That is, design an experiment over the
given inputs so that the two different networks will have different
values for the given outputs, and would thus be measurable by a
given experiment. Every two models that cannot be distinguished
by the experiments are considered equivalent from the point of
view of the experimental setting and they found that there are 91
such classes of models. They proceed to propose experiments that
will overrule some of these model classes.

The work of Sharan and Karp (2013) uses different underlying
techniques for searching; however, their definition of the problem
is quite similar to the setting above. As in the previous work, they
search for Boolean networks. Their assumptions regarding the
knowledge about possible interactions is weaker, in that they do
not assume that they know the directions of interaction and also
accept if interactions do not have an inhibition/activation anno-
tation. As a result, they allow more general functions for the next
state function of individual entities in the Boolean network. They
use the same measurement for the distance between the experi-
mental results and the network behavior. Finally, the underlying
solving techniques are through integer linear programing (ILP)
and not constraint (or Boolean) solving as we mostly do here.

A similar application of synthesis to extract Boolean networks
is in (Dunn et al., 2014). The authors again search for a Boolean
network that matches a given experimental setting. Here, the
assumptions are somewhat different, leading to some different
choices. The relevant biological data correspond to possible con-
nections between the entities but this time without directionality
and without the label of activation/inhibition. Accordingly, it is the
role of the synthesis engine to find the exact connections as well
as the way that entities affect each other. The update functions for
the entities are restricted to a small set of possible functions. The
last choice significantly narrows the search space. The treatment
of the experimental data is also different. Here, the authors do
not assume the existence of inputs but rather search for an execu-
tion of the network from a given initial state corresponding to the
experimental setting to a final state corresponding to the measure-
ments. This time the experimental data are made Boolean by the
authors and the matching between an experimental measurement
and the state of the Boolean network has to be exact. As before,
the authors summarize all possible models in the space that match
the experimental data. They draw conclusions regarding common

features of all these models and experimentally verify some of their
predictions.

FUTURE PROSPECTS AND OPEN PROBLEMS
In all the cases discussed previously, executions of models were
considered bounded and of a certain length. It would be interest-
ing to lift this restriction and relieve the modeler from the need to
make this decision. Techniques that support such synthesis efforts
are in general more complicated, and it would be very interest-
ing to see them adapted for the biological context (Vardi, 2008;
Kupferman, 2012).

The level of abstraction we discussed above is very convenient
for synthesis. We assume that genes have discrete levels of expres-
sion. It would be very interesting to devise techniques that produce
models at various levels of abstraction, for example, accompany
the transfer functions supplied above by molecular interaction
models that could give rise to the same behavior.

In the detailed case study presented in an earlier section,
the model reproduced stochastic behavior with non-determinism
based on Boolean logic: a particular fate could either happen or
not happen. Logical modeling was sufficient in that case study,
because both the inputs to the model (mutations) and the out-
puts (fates) were discrete values. In modeling situations where the
data are quantitative and noisy, the modeling may need to prevent
discretization and may require stochastic reasoning with prob-
abilistic distributions, requiring that we change our underlying
reasoning engine from a logical one to a probabilistic one [see e.g.,
Fränzle et al. (2008)]. Genomic high-throughput data falls into
this category. Much more work is needed to make this modeling
transition.

When one considers synthesis, the most important part of the
synthesizer is the compiler that translates a partial model into
constraints. The construction of the compiler can be laborious,
especially if the model has advanced semantics, as it did in our
detailed case study in an earlier section. To simplify the process
of creating the compiler, it may be possible to rely on the recently
developed symbolic virtual machine (Torlak and Bodik, 2014),
which allows one to define the modeling language in a simple way,
by writing a so-called interpreter. The symbolic virtual machine
produces the compiler automatically from the interpreter. As we
have suggested, making such a tool easier for domain experts to use
is required and far from accomplished. The efforts described above
rely on extensive collaborations between biologists and computer
scientists. Gaining more experience in synthesis at a level that
will allow the creation of custom level tools that can be used for
general synthesis projects, rather than being custom made for a
certain synthesis effort is a very ambitious goal. Making such tools
usable by domain experts (biologists) is a further challenge. This
also implies that at this stage, potential users of the technique can-
not rely on existing tools and must invest in the development of
synthesis engines for their own needs.

Further case studies should also consider the size boundary
applied in the case studies described earlier. The current limit
of such techniques is applications to systems with a few tens of
proteins (working on standard desktop computers). Scaling the
techniques applied above to hundreds of proteins is a major chal-
lenge that will require improvements to the underlying solvers as
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well as finding more efficient ways to encode the specific synthesis
questions arising from biology in better ways.

CONCLUDING REMARKS
In recent years, we have seen an increase in the usage of executable
biology for modeling various biological systems and phenomena.
Advantages, such as the ability to automatically check whether
a model adheres to requirements arising from biological data
and to answer further queries about the model, make this set of
techniques more applicable. In computer science, the research on
verification of models has led to work on automatic synthesis of
models from their high-level descriptions. Here, we give a short
survey of this technique and how it can be used for biological mod-
eling. We summarize some of the main instances where synthesis
has been applied to the production biological models and how
this extra power gives further insights into the model in question.
Finally, we also discuss some of the future developments needed
in order to make this technique more applicable for biological
research.
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