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Most of the literature accepts, despite many controversial results, that during oxida-
tion/reduction films of conducting polymers (CPs) move from electronic conductors to
insulators. Thus, engineers and device’s designers are forced to use metallic supports to
reoxidize the material for reversible device work. Electrochromic front experiments appear
as main visual support of the claimed insulating nature of reduced CPs. Here, we present a
different design of the biomimetic electrochromic front that corroborates the electronic and
ionic conducting nature of deep reduced films.The direct contact PEDOT metal/electrolyte
and film/electrolyte was prevented from electrolyte contact until 1 cm far from the metal
contact with protecting Parafilm®.The deep reduced PEDOT film supports the flow of high
currents promoting reaction induced electrochromic color changes beginning 1 cm far from
the metal-polymer electrical contact and advancing, through the reduced film, toward the
metal contact. Reverse color changes during oxidation/reduction always are initiated at the
film/electrolyte contact advancing, under the protecting film, toward the film/metal contact.
Both reduced and oxidized states of the film demonstrate electronic and ionic conductivi-
ties high enough to be used for electronic applications or, as self-supported electrodes, for
electrochemical devices.The electrochemically stimulated conformational relaxation model
explains those results.

Keywords: conducting polymers, electrochromic front, redox reactions, ionic conductivity, reduced films

INTRODUCTION
Conducting polymers (CPs) submitted to electrochemical reac-
tions have been proposed as a very simple material model (reactive
macromolecules, ions and solvent) of the intracellular matrix from
living cells (Otero and Martinez, 2013a). Driven by electrochem-
ical reactions they originate biomimetic devices such as artificial
muscles and actuators, electrochromic windows (UV-vis or IR),
fast charge/discharge batteries, or supercapacitors mimicking elec-
tric organs or new artificial chemical synapses (Otero et al., 2012).
Designing such biomimetic devices requires conductive (elec-
tronic and ionic) materials. Designers and development engineers
approaching to those materials envisaging new applications realize
that most of the literature asserts the insulating nature of films of
conducting polymers in its reduced state claimed by the conduct-
ing/insulator transition model (Ofer et al., 1990; Aoki and Kawase,
1994; Zykwinska et al., 2003; Heinze et al., 2010). Different designs
of the electrochromic front border show that the oxidation of deep
reduced electrochromic films supported by a glass always starts at
the polymer–metal interface used for the film connection with the
electrical generator (Tezuka and Aoki, 1989; Tezuka et al., 1995,
1996). The final conclusion is that the reduced film is an insulator
forcing the reaction beginning only through those polymer chains
in direct contact with the metal. In those designs, the ensemble
glass, polymer film, and metal are immersed inside the electrolyte.
As final consequence reduced self-supported films of those mate-
rials are discarded as basic component of the above-mentioned
devices and as electronic conductors for electrochemical purposes
or devices.

Different experimental results contradict the insulating nature
of deep reduced films of CPs. High spin (Petr and Dunsch, 1996;
Zykwinska et al., 2003; Osterholm et al., 2008b) and charged
states (Osterholm et al., 2008a) content in reduced films were
detected by EPR or Raman spectroscopic studies. Full polymeric
electrochromic devices, not including any metal contact inside
the device, have been developed (Invernale et al., 2010). The
conductivity of freestanding polypyrrole films reduced at high
cathodic potentials for long times keeps high counterion content
and electronic conductivities over 10−3 S cm−1 measured in inert
atmosphere (Otero and Ariza, 2003; Otero and Martinez, 2014b).
Deep reduced films support metal electrodeposition from aque-
ous solutions with flow of high current densities (Otero and Ariza,
2003). Freestanding films of CPs can be reduced by slow potential
sweeps up to high cathodic potentials (more cathodic that −2V) in
different electrolytes (solvents and salts) and then reoxidized dur-
ing the subsequent anodic sweep getting stationary voltammetric
responses (Otero et al., 2014). Artificial muscles constituted by
freestanding films on isolating flexible tapes (Otero et al., 1993),
or by interpenetrated polymer networks (Plesse et al., 2005) or by
freestanding bilayer of two CPs (Kaneto et al., 1995) also support
stationary voltammetric cycles from the reduced (supposed isolat-
ing) state to the oxidized states giving reverse bending movements.

The Electrochemically Stimulated Conformational Relaxation
(ESCR) model states (Otero and Angulo, 1993; Otero et al.,
1995, 1996, 1997; Grande and Otero, 1998; Otero and Padilla,
2004), and the Structural Chemical Kinetics (SCK) (Otero and
Martinez, 2013b) corroborates that the film oxidation/reduction
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Martinez et al. Biomimetic color front

induces molecular (conformational) and macroscopic (swelling,
shrinking, compactions, and relaxation) processes. After reac-
tion induced structural closing the packed material traps over
20% of the counterions involved in the film redox processes,
as proved by EDX analysis (Otero and Martinez, 2014b), which
only can be expulsed very slowly through the packed film at
high reduction overpotentials. Thus, after a deep reduction at
high cathodic potentials any CP film keeps counterion and bal-
ancing polaron concentrations high enough to give electronic
conductivities higher than 10−3 S cm−1.

The electrochromic front methodology was designed to sup-
port the isolating and porous nature of deep reduced CPs (Tezuka
and Aoki, 1989; Tezuka et al., 1995, 1996). Films from oligomeric
solutions were casted on an insulating support, as glass. A metal
film (sputtered or by simple contact) allows the electrical con-
tact at the film top. The full system (a fraction of the metal,
the metal/polymer contact, and the polymer film) was immersed
in the electrolyte. After an anodic potential step the oxidation
induced color change starts at the metal/polymer interface and
the electrochromic front advances toward the film bottom. Ulte-
rior designs from Smela’s group, protecting now the film surface
from the electrolyte contact letting the lateral borders free to con-
tact the electrolyte, indicate that always the film reaction and the
color change start at the electrode borders advancing toward the
electrode center (Wang et al., 2004; Wang and Smela, 2009a,b).

In order to clarify this controversy, we will re-design here the
electrochromic front experiment.

MATERIALS AND METHODS
PEDOT/PSS films were obtained by evaporation from Aldrich
aqueous solution on a glass plate of 2 cm2. In order to ensure
the electrical contact, a platinum foil of 1 cm2 of area was put
in contact with the polymeric film contacting 3 mm of the film
top. The electrolyte–polymer contact was prevented in most of
the film surface area by surrounding the ensemble under pres-
sure and strain with two Parafilm® layers. About 1 mm of the
PEDOT/PSS film remains uncoated at the film bottom to allow the

PEDOT contact with the electrolyte. At the top, 2 mm of the Pt foil
keep uncoated to allow the electrical clamp contact (Figure 1A).
The electrochemical cell was a transparent tank containing 0.2 M
LiClO4 (Aldrich) aqueous solution. An ITO electrode (4 cm2) was
used as counter electrode. The reference electrode was a Crison
Ag/AgCl (3 M KCl). First the PEDOT/PSS was deep reduced at
−1V for 5 min to guarantee a deep reduced initial state. Then it was
submitted to consecutive square potential waves from −1.00 V for
10 s to 0.20 V for 10 s. Figure 2 shows two pictures of the cell with
the oxidized electrode (transparent blue light color) and reduced
electrode (blue dark color).

To ensure stationary responses, eight consecutive square poten-
tial waves were applied to the electrode. Color changes were
recorded in parallel using a compact Sony video camera. Images
were treated by Virtual Dub software and by ImageJ software
to evaluate de the color gradient evolution between consecutive
frames.

RESULTS AND DISCUSSION
The reduced PEDOT film is casted on an isolating and transpar-
ent glass (Figure 1A). At the top a Pt foil allows, by direct contact,
the electronic contact and the current flow. The ensemble is sur-
rounded, under strain and pressure, with a transparent Parafilm®
in order to protect most of the deep reduced film, the film–metal
interface and most of the metal from the direct electrolyte contact.
At the electrode top, 1 mm of uncoated Pt foil allows the electri-
cal connection, through a metal clamp, with the generator. At the
electrode bottom, 1 mm of unprotected PEDOT film allows the
CP/electrolyte contact (Figure 1A). Thus the Parafilm® protects
from the electrolyte direct contact 10 mm, from the metal/PEDOT
contact to the PEDOT/electrolyte contact, of the PEDOT film sur-
face and lateral sides. This new design reproduces, at a larger scale,
a theoretical transversal strip from the metal until the solution
(Figure 1B) in the middle of a CP film coating a metal electrode.
Here, the metal–polymer contact is far from the solution, further-
most than in any film coating a metal. Only a small fraction (1 mm)
of the film remains uncovered at the film bottom (imitating the

FIGURE 1 | (A) Scheme of the new electrochromic front border design. The
conducting polymer PEDOT–PSS film was casted on glass (2 cm2). A Pt foil
having 1 cm2 of surface area allows the metal/CP electrical contact at the top.
The Pt/polymer contact and most of the PEDOT film were surrounded with

two Parafilm® layers under strain to prevent the direct electrolyte contact.
Around 1 mm of the CP remains uncoated at the bottom allowing there the
direct CP/electrolyte contact. (B) The new design mimics a transversal cut of
a conducting polymer (CP) film: metal/CP/electrolyte.
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Martinez et al. Biomimetic color front

FIGURE 2 | Experimental cell: left side ITO counterelectrode, right side
PEDOT–PSS film casted on glass showing a transversal Pt foil on the
top allowing the clamp electrical contact. A half of the Pt foil and most
of the conducting polymer was coated with two layers of transparent
Parafilm®. (A) Reduced PEDOT–PSS film. (B) Oxidized PEDOT–PSS film.

polymer/solution interface of the coated metal electrode). If the
deep reduced film is an insulator requiring the metal/polymer con-
tact inside the electrolyte to start the polymer re-oxidation both,
film oxidation and color change will be inhibited.

Figure 2A shows the blue dark uniform color of the polymer
film after reduction at −1.00 V for a long time. Figure 2B shows
the blue light color of the polymer film inside the electrolyte after
oxidation at 0.2 V for a long period of time. Starting from the deep
reduced film, after a potential step from −1.00 to 0.20 V, the poly-
mer oxidation, visualized by the color change from blue dark to
blue light, is initiated (Figure 3A) at the electrode bottom narrow
strip in direct contact with the electrolyte. The electrochromic
front advances through the PEDOT film from the film bottom,
underneath the transparent Parafilm®, toward the polymer/metal
contact, Figure 3A from the left picture to the right picture.

Thus, the oxidation induced color change is initiated at the
narrow PEDOT strip in direct contact with the electrolyte, at the
electrode bottom,1 cm far from the film/metal interface at the elec-
trode top. The electrons extracted from the PEDOT strip chains
during its oxidation must flow to the potentiostat through the
1 cm deep reduced film present between this strip and the metal
contact. This result unambiguously indicates that the electronic
conductivity of 1 cm of the dark blue and deep reduced film at
−1V for long time supports the current flow required to initiate
the PEDOT oxidation at the other film end: the reaction starts
at the place where counterions, required for the reaction charge
balance, are available from the solution. This oxidation drives the
film color change from blue dark (reduced) to blue light (oxidized)
and the oxidation progress drives the advance of the blue dark oxi-
dized front by consumption of the reduced blue light film toward
the polymer/metal contact. The color advance toward the metal

contact underneath the Parafilm® indicates that the ionic con-
ductivity through the oxidized film from the solution toward the
oxidized/reduced front is also high enough to allow the reaction
progress.

By stepping the potential back to −1.00 V the color changes
back to dark blue (reduced) and the new generated reaction
front also advances from the film bottom to the metal contact
(Figure 3B, from the left picture to the right picture). The ionic
conductivity through the reduced film underneath the Parafilm®
toward the solution is also high enough to allow the advance of
the reduced front.

The evolution of the front border is improved by color sub-
traction. Figures 3C,D were obtained by difference between the
first image (showing the film at the beginning of the potential
step), and each the subsequent ones. Figures 3E,F were obtained
by binarization (transparent/black related to a threshold color) of
Figures 3C,D.

The same results above described for the movement of the
oxidized or reduced front is reproduced every time when the elec-
trode is submitted to consecutive square potential steps: both,
oxidation and reduction processes start, every time, at the poly-
mer/electrolyte interface advancing underneath the Parafilm®
toward the polymer/metal interface. This stationary reproducibil-
ity also sustains that the conductivity of the deep reduced film is
always high enough to allow the initiation of the polymer oxida-
tion 10 mm far from the metal/polymer contact. If, as proposed by
the conducting/insulator model the reduced polymer was an insu-
lator, its re-oxidation at 10 mm from the polymer/metal contact
should become prohibited.

Those results unambiguously corroborate that both states (oxi-
dized and reduced) of the PEDOT film present high enough
electronic and ionic conductivities to support film electrochemical
reactions taking place far away from the metal contact. That means
that engineers and designers can use self-supported films of CPs as
electrodes for any electronic or electrochemical application (actu-
ators and artificial muscles; batteries and supercapacitors; smart
windows, glasses, or mirrors; smart membranes with tuned trans-
versal ionic conductivity; and chemical storage for drug delivery or
artificial chemical synapse, ionic sensors, biosensors and proprio-
ceptive sensors, and so on) (Otero et al., 2012;Otero and Martinez,
2013a, 2014b).

The origin of the conducting/insulator transition model dur-
ing the electrochemical reduction of CPs apparently comes from
the theoretical calculations of the insulating nature of an isolated,
ideal, and neutral (without any charge) chain of any CP. The rel-
atively high electronic and ionic conductivity of deep reduced
films here deduced or the contradictory results presented at the
introduction: high spin states and charged states (EPR and Raman
results), high concentration of counterions in deep reduced films
(XPS), film reduction reaction going on up to very high cathodic
potentials or different devices, as artificial muscles, only con-
stituted by polymers giving stationary voltammetric responses
(reduction and re-oxidation) at very low potential sweeps (to get a
deep reduced state) up to −3.5 V,does not contradict the calculated
insulating nature of neutral individual chains. According with the
ESCR model (Otero et al., 1995, 1996, 1997), CPs relax, swell,
shrink, and compact under oxidation/reduction control. Those
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Martinez et al. Biomimetic color front

FIGURE 3 | Advance of the electrochromic front border through
PEDOT–PSS films casted on glass in 0.2 M LiClO4 aqueous
solution. (A) Oxidation process at 0.20V after 0, 2, 6, and 9 s.
(B) Reduction process at −1.00V after 0, 2, 6, and 10 s. (C) Image
differences with that at time 0 s (using the image treatment program

“ImageJ”) for the oxidation process (A,D) image differences for the
reduction process (B,E) binarized images from (C,F) binarized images
from (D,G) schematic representation of the electrochromic oxidation:
the blue light color advances from the bottom by consuming the blue
dark color.

structural changes are corroborated by determination of dimen-
sional changes during oxidation/reduction (Otero and Martinez,
2014a), by its application to develop artificial muscles (Otero et al.,
1992) or smart membranes, which transversal ionic flow can be
tuned by the oxidation state (swollen or shrunk) of the film and
by the SCK model (Otero and Martinez, 2013b). In films of CPs
the oxidized material (polymer, balancing counterions, and sol-
vent) presents a swollen structure. During reduction the materials,
exchanging anions or cations, trap up to 30% of the counteri-
ons (and the balancing positive charges on the chains) inside the
film (Otero et al., 2014). The reduction reaction rate becomes
slower (Otero and Martinez, 2013b) going on up to very cathodic
potential limits. Getting a full-reduced film (without any coun-
terion inside) becomes a very difficult (for usual experimental

times) task for films thicker than 0.5 µm. So, any reduced mate-
rial keeps counterions and balancing polarons presenting a high
electronic conductivity, as underlined in the literature. Getting
lower electronic conductivities than 10−4 S cm−1 requires very
long reduction times (days or weeks), at high cathodic overpoten-
tials (more cathodic that −1V) and quite thin (<0.1 µm) films.
According with the Ohm’s law, higher conductivities than 10−4 S
cm−1 can support several milliampere per square centimeter of
current flow and fast electrochemical reactions, as those observed
in Figures 2 and 3.

The relatively high electronic conductivity of deep reduced
films, and results from Figure 3, also give some light on other
controversial point. Where the oxidation of a deep reduced film of
a CP coating a metal starts? The chronoamperometric responses
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FIGURE 4 | Scheme of the oxidation according to the ESCR model: the
oxidation of conformational packed and reduced film of any
conducting polymer starts by nucleation–relaxation at the
polymer/solution interface.

during re-oxidation present a large maximum (Otero and Boyano,
2003; Otero and Martinez, 2013b) indicating that the re-oxidation
begins by nucleation of the oxidized material. Supporters of
the conducting/insulator transition model advocate a nucleation
starting at the polymer/metal interface of the porous polymer film.
Thus extracted electrons flow to the metal from those insulating
polymer chains touching it: by oxidation those chains become
conducting, originating a reaction front that advances from the
polymer/metal interface toward the polymer/electrolyte interface.
Results presented in this paper unambiguously demonstrate that
the oxidation of deep reduced films in contact with a metal begins
at the polymer/electrolyte interface. We can conclude that the oxi-
dation of reduced and compacted films is initiated by nucleation–
relaxation (Figure 4) at the polymer/solution interface, as pro-
posed by the ESCR model (Grande and Otero, 1998; Otero and
Boyano, 2003; Otero and Padilla, 2004), advances toward the poly-
mer/metal interface originating expanding cylindrical columns of
oxidized polymer. From those expanding columns a good theoret-
ical modelization of the electrochemical responses is attained: the
ESCR model.

CONCLUSION
Deep reduced films of PEDOT–PSS protected from the direct elec-
trolyte contact present an electronic conductivity high enough
to support the initiation of electrochromic changes, driven by
oxidation/reduction reactions, at the polymer/electrolyte contact
located 1 cm apart from the metal/film electrical contact. The
electrochromic front advances, consuming the deep reduced film,
from the film bottom to the polymer/metal contact at the elec-
trode top. Those results support one of the hypothesis from the
ESCR model: the oxidation of deep reduced films of CPs start at
the polymer/electrolyte interface; in opposition to the conduct-
ing/insulator transition model stating that this oxidation begins
at the polymer/metal interface of the porous (ionic conductor)
and electronic insulator film, advancing from there toward the
polymer/electrolyte interface.

An important technological consequence merges from the rel-
atively high electronic and ionic conductivity of deep reduced

films: they can be used as self-supported electrodes or as electronic
conductors by engineers and designers to develop electronic or
biomimetic electrochemical devices as artificial muscles and actu-
ators; smart membranes tuning the transversal ionic flow by the
membrane oxidation-swollen or reduced-packed state; smart drug
(pharmaceutical, fertilizer, and neurotransmitter) deliverer; arti-
ficial chemical synapse; batteries and supercapacitors; smart win-
dows, mirrors and glasses; sensors biosensors and proprioceptive
sensors and devices; and so on.
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