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The goal of this study is to derive a minimally complex but credible model of respiratory 
CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop 
end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model 
that captures the essential mechanisms involved in the respiratory CO2 gas exchange 
process. Then, we simplified the candidate model to derive two lower-order candidate 
models. We compared these candidate models for predictive capability and reliability 
using experimental data collected from 25 pediatric subjects undergoing dynamically 
varying mechanical ventilation during surgical procedures. A two-compartment model 
equipped with transport delay to account for CO2 delivery between the lungs and the 
tissues showed modest but statistically significant improvement in predictive capability 
over the same model without transport delay. Aggregating the lungs and the tissues into 
a single compartment further degraded the predictive fidelity of the model. In addition, the 
model equipped with transport delay demonstrated superior reliability to the one without 
transport delay. Further, the respiratory parameters derived from the model equipped with 
transport delay, but not the one without transport delay, were physiologically plausible. 
The results suggest that gas transport between the lungs and the tissues must be taken 
into account to accurately reproduce the respiratory CO2 gas exchange process under 
conditions of wide-ranging and dynamically varying mechanical ventilation conditions.

Keywords: respiratory cO2 gas exchange, data-based modeling, closed-loop mechanical ventilation control

inTrODUcTiOn

It is anticipated that autonomous closed-loop controlled mechanical ventilators will be increasingly 
used in the future to enhance the safety of mechanical ventilation. Automation will enable standard-
ized treatment protocols as well as fill the gap between the increasing demands versus the limited 
number of respiratory experts. First, it is estimated that the failure to use recommended respiratory 
interventions in the intensive care unit (ICU) results in 170,000 preventable deaths per year in US 
(Pronovost et al., 2004). Thus, closed-loop-controlled mechanical ventilators can be an attractive 
option to translate the research knowledge into clinical practice via automatic knowledge transfer, 
which can potentially reduce errors, inappropriate interventions, and heterogeneity of knowledge 
and practice. Second, the number of prolonged mechanical ventilations (>96 h) was projected to 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2016.00008&domain=pdf&date_stamp=2016-02-03
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://dx.doi.org/10.3389/fbioe.2016.00008
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jhahn12@umd.edu
http://dx.doi.org/10.3389/fbioe.2016.00008
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00008/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00008/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00008/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00008/abstract
http://loop.frontiersin.org/people/294122/overview
http://loop.frontiersin.org/people/312828/overview
http://loop.frontiersin.org/people/39720/overview


TaBle 1 | Preclinical testing of closed-loop mechanical ventilation controllers reported in the literature.

reference endpoint controller Model Tuning Testing

Ohlson et al. (1982) PetCO2
PID × Ad hoc 6 (Dogs)

Ritchie et al. (1987) PetCO2 PID × Ad hoc 5 (Dogs)

Laubscher et al. (1994) RR and TV PI × Ad hoc 6

Linton et al. (1994) RR and TV PI × Ad hoc 27

Schäublin et al. (1996) PetCO2 Fuzzy logic × Ad hoc 30

Nemoto et al. (1999) PSV level Fuzzy logic × Ad hoc 13 (Retrospective)

Fernando et al. (2002) MMV level Alveolar ventilation equation ⚬ Ad hoc 1

Martinoni et al. (2004) PetCO2 Observer feedback + PI ⚬ N/A 15

Jandre et al. (2004) PetCO2 PI × Ad hoc 6 (Piglets)

Tehrani et al. (2004) PetCO2 Empirical steady-state model ⚬ N/A 6 (Pigs)
FiO2 PID + stepwise control

Hahn et al. (2012) PetCO2 PI ⚬ Root locus 18 (Models)

In Model, “⚬” denotes model-based control, whereas “×” denotes non-model-based control. Tuning denotes how the controllers were tuned. Testing shows the subjects used to 
validate the controllers.
PetCO2, end-tidal CO2 tension; RR, respiratory rate; TV, tidal volume; PSV, pressure support ventilation; MMV, mandatory minute ventilation; FOi 2

, inspiratory O2 tension.
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have more than doubled in 2020 compared with that in 2000 
(Zilberberg et al., 2008). It was also forecasted that the shortage 
of medical personnel with expertise in mechanical ventilation 
will begin in 2007 and will worsen thereafter (Angus et al., 2000). 
In this regard, autonomous and closed-loop-controlled mechani-
cal ventilators can be a viable solution to guarantee quality care 
without exacerbating the medical personnel’s workload.

Despite their promising potential, closed-loop mechanical 
ventilation controllers have not yet penetrated, at least as much as 
anticipated, into clinical practice. This may be attributed to many 
reasons [such as conservatism and inertia (Cabana et al., 1999; 
Dent and Goldberg, 1999; Rubenfeld et al., 2004)], but a critical 
challenge may have been the concerns raised on the safety of these 
autonomous systems. Indeed, proving the validity and safety of 
closed-loop-controlled mechanical ventilators in preclinical test-
ing is not trivial (see the limited number of subjects used in the 
testing of closed-loop mechanical ventilation controllers reported 
in the literature summarized in Table 1). In fact, even the new 
modes available in the commercialized mechanical ventilators 
[such as PAV (Younes, 2002), NAVA (Sinderby et al., 1999), ASV 
(Laubscher et al., 1994), and SmartCare™ (Dojat et al., 1992)] 
have not been extensively evaluated (Verbrugghe and Jorens, 
2011; Cordioli et al., 2013; Rose et al., 2013).

Mathematical models of physiologic system have been promoted 
as viable alternative to preclinical testing. Indeed, computational 
models may potentially be widely used to examine and assess the 
safety of a range of medical devices and systems, as suggested by 
the guidance document recently released by the U.S. Food and 
Drug Administration (FDA) on the reporting of computational 
modeling studies in the medical device submissions (CDRH and 
FDA, 2014). To rigorously assess the safety, efficacy and robustness 
of closed-loop mechanical ventilation controllers, a mathematical 
model of respiratory physiology is required that possesses several 
desired characteristics: (1) it must reproduce a realistic respiratory 
response to mechanical ventilation with accuracy for trustworthy 
assessment of mechanical ventilation controllers, (2) it must be 

low-order with minimum number of parameters for tractability 
in controller design and testing, and (3) it must be physiologically 
transparent to streamline the interpretation of the testing results. 
However, models of respiratory physiology reported in today’s 
literature do not fulfill all these characteristics. Most importantly, 
existing models are typically too complex to be used in Monte-
Carlo simulation-based testing (Chiari et  al., 1997; Anderson 
et al., 2003; Wolf and Garner, 2007; Cheng et al., 2010).

In pursuit of the ultimate goal of realizing a computational 
model of respiratory physiology applicable to the design and 
testing of closed-loop mechanical ventilation controllers, the goal 
of this study is to derive a minimally complex but credible model 
of respiratory CO2 gas exchange that may be used in systematic 
design and pilot testing of closed-loop end-tidal CO2 controllers 
in mechanical ventilation. We first derived a candidate model that 
captures the essential mechanisms involved in the respiratory CO2 
gas exchange process. Then, we simplified the candidate model 
to derive two lower-order candidate models. We compared these 
candidate models for predictive capability and reliability using 
experimental data collected from 25 pediatric subjects undergo-
ing dynamically varying mechanical ventilation during surgical 
procedures.

This paper is organized as follows. Section 2 outlines the 
model structure, its data-based modeling procedure, and the 
comparative analysis approaches. Section 3 describes the experi-
mental data and data analysis methods. Section 4 presents and 
discusses the results. Section 5 concludes the paper with future 
directions.

resPiraTOrY cO2 gas eXchange 
MODel

Model structure selection
Respiratory CO2 gas exchange process during mechanical venti-
lation involves the lungs, arteries, and veins as well as body tissues 
(Grodins et al., 1954; Khoo et al., 1982; Batzel and Tran, 2000)  
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FigUre 1 | essential components in respiratory cO2 gas exchange 
process: the lungs, arteries and veins, and the body tissues.
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(Figure 1). CO2 gas is produced in the tissues as a consequence 
of metabolism and is subsequently transported to the lungs 
via venous blood (whose CO2 tension is thus relatively high). 
CO2 gas is then excreted in the lungs by alveolar ventilation. 
 The arterial blood, whose CO2 tension is relatively lower than 
the venous blood, is delivered back to the tissues to collect CO2 
from them.

In this study, we model the lungs and the tissues as homogene-
ous compartments, while approximate the delivery of CO2 gas 
between them via arteries and veins as pure transport delays. The 
CO2 tension in the lungs (alveolar CO2 tension) is determined 
by the balance between CO2 supply from the venous blood and 
CO2 removal by the alveoli. The amount of CO2 gas supplied from 
the venous blood to the lungs depends on the difference between 
alveolar ( )CACO2

 versus mixed venous ( )CvCO2
 CO2 concentrations 

as well as cardiac output (Q), while the amount of excreted CO2 
gas is determined by alveolar CO2 tension ( )PACO2

 and alveolar 
ventilation ( )VA . Therefore, the rate of change in PACO2

 can be 
written as follows:

 
V P V P P Q C t CL ACO A ICO ACO vCO ACO
 

2 2 2 2 21= −  + − − λ τ( )  (1)

where VL is the effective lung volume, PICO2
 is the CO2 tension 

in the inspired air, τ1 is the transport delay between the tissues 
and the lungs, and λ = 863 mmHg lBTPS/lSTPD. The CO2 tension in 
the tissues ( )CvCO2

 is determined by the production of CO2 due 
to the body’s metabolic activity ( )VCO2

 and its removal from the 
tissues via arterial blood. The amount of CO2 gas removed from 
the tissues depends on the difference between CACO2

 versus CvCO2
 

as well as Q. Therefore, the rate of change in CvCO2
 can be written 

as follows:

 
V C Q C t C VB vCO ACO vCO CO
 

2 2 2 22= −( ) −  +τ  (2)

where VB is effective tissue volume in the body and τ2 is the 
transport delay between the heart and the tissues. By assuming 
that CO2 concentration and tension are related to each other via 
the Henry’s law (Khoo et al., 1982; Lumb, 2005):

 
C P x A vx xCO CO2 2

= + =α β, ,  (3)

where α =  0.0065  lSTPD/mmHg  l, β =  0.244  lSTPD/l, Eqs 1 and 
2 are reduced to the following with PACO2

 and PvCO2
 as state 

variables:

 

V P V P P Q P t P

V P

L ACO A ICO ACO vCO ACO

B vC

 



2 2 2 2 21= −  + −( ) − αλ τ

OO ACO vCO
CO

2 2 2

2
2= −( ) −  +Q P t P

V
τ



α  

(4)

Finally, denoting x P1 2
= ACO , x P2 2

= vCO , and u V= A, and not-
ing that PICO = 0

2
, yields the following state variable representa-

tion that dictates the respiratory gas exchange process during 
mechanical ventilation:

 





x t x t u t x t x t

x t x t
1 1 1 2 2 1 1

2 3 1 2

( ) = − ( ) ( ) + −( ) − ( ) 
( ) = −( ) −

θ θ τ

θ τ xx t2 4( )  + θ
 (5)

where θ1
1

=
VL

, θ αλ
2 =

Q
VL

, θ3 =
Q
VB

, and θ
α4

2=
V
V
CO

B

 and the 

transport delays are the unknowns to be derived from the data. It 

is noted that Q and VCO2
 are regarded as constants (see Limitation 

and Future Perspectives for details).
We intend to conduct data-based modeling using minute 

ventilation ( )V  and end-tidal CO2 tension ( )PetCO2
 data. To this 

aim, we assume that (1)  V V» A
 (i.e., negligible dead space ven-

tilation; see Limitation and Future Perspectives for details) and 
(2) P PetCO ACO2 2

»  (Burton, 1966; Coles et al., 1973; Ritchie et al., 
1987; Williams and Babb, 1997; Brunner, 2002) (see Limitation 
and Future Perspectives for details). Since Eq. 5 cannot be iden-
tified solely based on V  and PetCO2

 because x2 is not accessible, it 
is re-formulated into the following regression on ẍ1:

 

  



x t
d x t u t

dt
x t x t

x

T

1 1
1

2 2 1 1

3

1

( ) = − ( ) ( )  + −( ) − ( ) 

=

−

θ θ τ

Ω

tt u t x t u t
x t

x t u t
x t x t

( ) ( ) − ( ) ( )
− ( )

− ( ) ( )
−( ) − ( )












1

1

1

1 1

1





τ












 (6)

where x P1 2
= etCO , u V=  , τ  =  τ1  +  τ2, and 

Ω3 1 2 3 1 3 2 3 2 4= + θ θ θ θ θ θ θ θ θ
T
. Note that only τ, 

but not τ1 and τ2 individually, appears in Eq. 6 because only x1 
is measured. Both PetCO2

 and V data are given by discrete-time 
sequences. Thus, the regression Eq.  6 is discretized using the 
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forward difference approximation (Nakamura, 1993) (this model 
is called M3 hereafter):

 

x k
x k x k x k

T
x k x k

T
u k

s

T

s

1
1 1 1

2

3

1 1

2 2 1

1

( ) = +( ) − +( ) + ( )

=

−
+( ) − ( ) ( ) −

Ω

xx k
u k u k

T
x k x k

T
x k u k

x k x k

s

s

1

1 1

1

1 1

1

1

( ) +( ) − ( )

−
+( ) − ( )

− ( ) ( )
−( ) − ( )τ

11

3 3





























= ( )ΩT kψ τ,
 

(7)
where Ts is sampling interval and τ is restricted to positive inte-
gers to be compatible with the discretization. Since the regres-
sion vector in Eq. 7 can be constructed solely based on x1 and 
u, Θ θ θ θ θ1 2 3 4, , ,{ }  and τ may be identified by fitting Eq. 6 to 
PetCO2

 and V .
We considered two avenues in deriving lower-order models 

from Eq. 4. First, noting that transport delays were not taken into 
account in many previous studies [see, e.g., Melo et al. (1993), 
Olofsen et al. (2010), Wang et al. (2010), and Karbing et al. (2011) 
versus Grodins et al. (1967), Khoo et al. (1982), Batzel and Tran 
(2000), Beda et  al. (2010), and Dunn and Whiteley (2010)], a 
lower-order model was derived by neglecting τ in Eq.  4. This 
results in the following regression model (called M2 hereafter):

 

x k
x k x k x k

T
x k x k

T
u k

s

T

s

1
1 1 1

2

2

1 1

2 2 1

1

( ) = +( ) − +( ) + ( )

=

−
+( ) − ( ) ( ) −

Ω

xx k
u k u k

T
x k x k

T
x k u k

s

s

1

1 1

1

1

1

1

( ) +( ) − ( )

−
+( ) − ( )

− ( ) ( )



























= ( )Ω2 2
T kψ  

(8)

where Ω2 1 2 3 1 3 2 4= + θ θ θ θ θ θ θ
T

. Second, Eq.  8 can be 
further simplified by aggregating the compartments associated 
with the lungs and the tissues. If we assume that gas exchange 
and metabolism occur in a single compartment representing the 
lungs and the tissues altogether, the following regression model 
results from Eq. 4 by setting x1 = x2 and τ1 = τ2 = 0, and then 
combining the two equations in Eq. 4 (called M1 hereafter):

 
x k

x k x k
T

x k u k
k

s

T T
1

1 1
1

1
1 1

1
1

( ) = +( ) − ( )
=

− ( ) ( )







 = ( )Ω Ω ψ  (9)

where Ω1
1 2=

+ +











V V

V
V VL B

CO

L B

T

αλ

λ

αλ



.

Model identification
Since Eq.  7 is a pseudo-linear regression model due to the 
dependence of the regression vector ψ3 on τ, it cannot be 
solved via standard linear least-squares method. In addition, 
its parameter vector Ω3 contains the products of unknowns 
θ1θ3, θ2θ3, and θ2θ4, which presents a challenge in deriving θi, 
i =  1, …,  4 from Ω3 uniquely. Further, standard least-squares 
method is not ideal in maximizing the predictive capability 
since it minimizes one-step-ahead prediction error instead of 
pure (i.e., infinite-step-ahead) prediction error. To cope with 
these challenges, we identified Θ and τ by solving the following 
optimization problem:

Θ Θ* * J, arg min arg min | ,τ τ{ } = ( ) − ( )





=
∑=

1
1

1 1
2

N
x k x k

k

N
  (10)

where {Θ*,τ*} is the set of optimal model parameters, N is the 
number of data samples used to solve Eq. 10, x1(k) is the PetCO2

 
data at sample time k, while x k1 | ,Θ τ( )  is the model-predicted 
PetCO2

 derived from Eq. 7 by

 
x k x k x k T k� � � �1 1 1

2
3 32 1 2 2| , ,Θ Ωτ ψ τ( ) = −( ) − −( ) + −( )s
T  (11)

where ψ τ

3 k,( )  is ψ3 computed using x k1 ( )’s, u(k)’s, and 
Ω3  =  Ω3(Θ). Once Θ is determined, the physical respiratory 
parameters can be derived as follows. First, VL is derived as 

VL =
−θ1

1 . Second, Q is derived as Q V
= L

αλ
θ2. Third, VB is derived 

as V Q
B = θ3

. Finally, VCO2
 is derived as V VCO B2 4= α θ . Thus, VL, 

VB, Q, and VCO2
 can be uniquely derived from Θ.

The parameters in M1 and M2 can be determined by solving 
optimization problems similar to Eq.  10 in order to maximize 
predictive capability, so that an objective comparison can be 
made on the three candidate models.

comparative Model analysis
The three candidate models were compared in terms of predictive 
capability and reliability. First, the predictive capability was meas-
ured in terms of the root-mean-squared error (RMSE) between 
PetCO2

 data [x1(k)] versus model-predicted PetCO2
 (x k1 | ,Θ* *τ( ) ; 

note that τ* = 0 for M1 and M2):

 
RMSE * *= ( ) = ( ) − ( )





= =
∑ ∑1 1

1

2

1
1 1

2

N
k

N
x k x k

k

N

k

N

ε τ | ,Θ
 
(12)

Second, the reliability was measured in terms of the asymptotic 
variance (Ljung, 1999), which represents the expected parametric 
variance estimated by the prediction error and the parametric 
sensitivity:

 

Var S

d
d

d

* * *

*
T

Θ Θ Θ Θ

Θ
Θ

0

1

1

1 1

−  ≈ ( ) ( )

= ( ) ( )
=
∑

N

N N
k k

N N

N
k

N

λ

λ
ε ε  (( )











−

dΘ

1  (13)
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where λ εN
k

N

N
kΘ*( ) = ( )

=
∑1

1

2
  is the prediction error variance 

associated with ε k( ) , and SN(Θ*)is the inverse sensitivity covari-
ance matrix. Finally, the Akaike’s Information Criterion (AIC) 
(Burnham and Anderson, 1998) was used to compare the overall 
quality of the candidate models by rewarding the predictive 
capability and penalizing the model complexity simultaneously:

 
AIC ≈ ( )







 + +

+( )
− −=

∑N
N

k K
K K

N Kk

N

ln 1 2
2 1

11

2
ε  (14)

where K is the number of parameters in the model. The first term 
in Eq. 14 denotes the predictive capability (i.e., the goodness of 
fit), while the second term reflects the model complexity. The 
third term is to compensate for finite sample size (Burnham and 
Anderson, 1998).

MeThODs

experimental Data
The PetCO2

 and V  data used in this study were extracted from a large 
and anonymized physiologic database, which was constructed out 
of a standardized set of clinical data collected as part of a larger 
investigation which was approved by the Children’s and Women’s 
Health Centre of British Columbia. We selected 25 anonymous 
pediatric subjects receiving pressure-controlled mechanical ven-
tilation during a surgical procedure. These subjects were selected 
based on the evidence of a large change in the ventilation setting 
made by the caregivers, manifested by their variability in respira-
tory rate (RR), peak inspiratory pressure, and I:E ratio (the ratio 
between inspiratory time versus expiratory time), rendering the 
corresponding data appropriate for data-based modeling analysis. 
The data were collected as trend values every 5 s using a standard 
respiratory module (M-CAiOVX, Datex-Ohmeda, Finland) and 
then saved via a custom-built, centrally located data collection 
software.

Data analysis
The PetCO2

 and V  data thus recorded were used to solve the opti-
mization problems (e.g., Eq. 10 for M3) to derive the candidate 
models for each subject. A constrained optimization routine 
in MATLAB’s Optimization Toolbox was used. Multiple initial 
parameter values were employed to assure that the solution con-
verged to the global minimum. The model-predicted PetCO2

 was 
produced by applying u V=   and the requisite initial conditions 
on x P1 2

= etCO  to Eq. 11. In deriving M3, the optimization problem 
was repetitively solved while the value of τ was varied via exhaus-
tive search within a domain that was specified a priori based on 
the physiologically relevant values reported in the literature [see, 
e.g., Khoo et al. (1982) and Batzel and Tran (2000)]. In this way, 
multiple candidate solution sets (i.e., {Θ*,τ*}) were derived for 
different τ. Then, the optimal solution set was determined as the 
one associated with the minimum J value.

Once the optimal data-based models (M1, M2, and M3) cor-
responding to the 25 subjects were derived and the corresponding 

model-predicted PetCO2
 produced, the candidate models associ-

ated with each subject were compared with each other using 
RMSE, asymptotic variance and AIC, which were computed 
by Eqs  12–14, respectively. The number of data samples that 
was used to compute RMSE, asymptotic variance, and AIC was 
dependent on subjects, since the amount of data available from 
each subject was different (see Table 2). The significance in differ-
ence among the candidate models was assessed as follows. First, 
the difference in predictive capability was analyzed using the 
paired t-test. Second, the difference in reliability associated with 
each element in Θ* * * * *

 θ θ θ θ1 2 3 4, , ,{ } was analyzed by applying the 
paired t-test to the asymptotic variance corresponding to each 
element in Θ*. The difference was regarded as significant in case 
p < 0.05. Third, in comparing the candidate models by AIC, the 
frequency in which M1, M2, and M3 attained the minimum AIC 
values was counted across the 25 subjects in order to assess how 
many times each of the candidate models was suggested as the 
best model among them.

resUlTs anD DiscUssiOn

A parsimonious and credible model of respiratory mechanics 
and physiology may expedite the design, analysis, testing, and 
deployment of closed-loop mechanical ventilation controllers. As 
an initial step toward such a computational model, the goal of this 
study was to derive a minimally complex and credible respiratory 
CO2 gas exchange model applicable to the design and pilot test-
ing of closed-loop end-tidal CO2 controllers during mechanical 
ventilation. The novelty of this study is that we have rigorously 
compared respiratory CO2 gas exchange models with different 
degrees of complexity. We have evaluated the reliability and physi-
ologic transparency of the respiratory parameters as well as the 
model accuracy in reproducing the relationship between minute 
ventilation and end-tidal CO2, which may offer unique value to 
the data-based computational modeling of respiratory physiology.

Data
On the average, 24.4 min length of data was available from each 
subject (Table  2). The ventilation settings were largely altered 
to yield considerable changes in PetCO2

 and V, as evidenced by 
Table 2 and Figure 2. In particular, Figure 2 shows that more 
than 30% change in V  (from its within-subject mean value) was 
made in 24 subjects, resulting in more than 29% change in PetCO2

 
in those subjects (again, from its within-subject mean value).

Predictive capability and reliability
Overall, the two-compartment models (M2 and M3) exhibited 
superior predictive accuracy than their one-compartment coun-
terpart (M1). Compared with M1, M2, and M3 achieved 35 and 
45% reductions in RMSE, respectively, which were statistically 
significant (Table  3). A representative model-predicted PetCO2

 
in response to V  is shown in Figure 3. In this subject, both RR 
(7–13 1/min) and tidal volume (TV; 31.2–56.9 ml/min) were var-
ied to yield a large change in V  and PetCO2

. This example indicates 
that M2 and M3 can reproduce the relationship between PetCO2

 
and V  with high fidelity, whereas M1 clearly exhibits deficiency. 
Due to its largely degraded predictive capability compared with 
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FigUre 3 | representative model-predicted PetCO2
 in response to V  associated with M1, M2, and M3.

TaBle 3 | rMse, asymptotic variance, and aic associated with the candidate models.

rMse (mmhg) asymptotic variance aic

q1
*  (%) q2

*  (%) q3
*  (%) q4

*  (%)

M1 1.95 (1.31–2.54) – – – – 3

M2 1.26 (0.88–1.80) 0.04 (0.01–0.30) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 11.82 (1.5–118.6) 5

M3 1.08 (0.68–1.58) 0.21 (0.08–0.45) 0.01 (0.00–0.03) 0.36 (0.21–2.85) 3.90 (1.4–36.0) 17

RMSE and asymptotic variance are shown in terms of median (IQR).
AIC corresponding to each model denotes the number of subjects in which the model was selected as the best model.

FigUre 2 | Distribution of the maximum percentage deviation of PetCO2
 and V  from their respective within-subject mean values.

TaBle 2 | The range of PetCO2
, V , mechanical ventilation settings, and the data length, shown in terms of median [interquartile range (iQr)].

PetCO2
 (mmhg) V  (lpm) TV (ml) rr (m−1) Ppeak (cmh2O) i:e ratio length (min)

Median (IQR) 40.8 (38.2–43.6) 2.24 (1.84–2.59) 226 (197–250) 10.7 (9.4–12.3) 13.1 (12.5–13.8) 1.02 (0.79–1.23) 24.4 (12.3–36.6)

( )Max Min
Mean

− 35.8% 89.1% 62.0% 60.9% 45.7% 108.8% –

PetCO2, end-tidal CO2 tension; V , minute ventilation; TV, tidal volume; RR, respiratory rate; Ppeak, peak inspiratory pressure.
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TaBle 4 | Parameters identified from the data-based modeling analysis 
[median (iQr)].

VL
* (l) VB

* (l) Q* (lpm) VCO
*

2
 (lsTPD/min) τ* (s)

M1 – – – – –

M2 0.05 
(0.03–0.11)

0.11 
(0.04–0.31)

0.06 
(0.04–0.13)

1 × 10−4 
(1 × 10−4–3 × 10−4)

–

M3 2.28 
(1.36–4.63)

4.67 
(1.56–9.73)

1.20 
(0.39–2.95)

0.12 (0.04–0.15) 20 
(5–44)
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M2 and M3, the remaining investigation was devoted to the 
comparison between M2 and M3.

The asymptotic variance (expressed as asymptotic standard 
variation) associated with θ1

*, θ2
* , and θ3

*  was reasonably small 
in both M2 and M3, which suggests that these parameters 
were adequately identified. Considering that θ1

*, θ2
* , and θ3

* are 
made up of VL

*, VB
*, and Q* (which are closely related to the time 

constants associated with x1 and x2), reliable determination 
of these parameters may be attributed to the dynamic, widely 
varying V  that resulted in informative transient components in 
the PetCO2

 response. On the other hand, the asymptotic variance 
associated with θ4

*  was relatively large for both M2 and M3. This 
may be at least in part attributed to the underlying assumption 
in these models that VCO

*
2
 is constant. Indeed, considering that 

V VCO
*

B
* *

2 4= α θ  where VB
* can be reliably derived from θ2

*  and θ3
* ,  

uncertainty in θ4
*  may arise from VCO

*
2
. This interpretation is in 

fact supported by the examination of SN(Θ*) in Eq. 13. For all 
the 25 subjects, we found that the smallest eigenvalue of the 
sensitivity covariance matrix SN

− ( )1 Θ*  associated with M2 and 
M3 was consistently aligned with the direction of θ4

* , which 
means that PetCO2  is more sensitive to θ1

* , θ2
* , and θ3

*  than θ4
* . The 

reason for the small sensitivity of PetCO2
 to θ4

*  may be because the 
corresponding regressor element is constant (i.e., 1), whereas 
the rest of the elements in ψ2 and ψ3 are widely varying. It may 
thus be concluded that the relatively large asymptotic variance 
associated with θ4

*  is caused by the lack of excitation in its direc-
tion by the data, which is essentially due to the assumption that 
VCO

*
2
 is constant.

The analysis of AIC suggested that M3 is overall superior to M1 
and M2, while M2 is superior to M1. The AIC results indicate that 
transport delay plays a crucial role in reproducing the respiratory 
gas exchange process under dynamically varying mechanical 
ventilation conditions.

Physiologic Transparency
The respiratory parameters derived for M2 were largely differ-
ent from those for M3 with statistical significance (see Table 4). 
Compared with the respiratory parameter values for adults 
reported in the literature, the respiratory parameters derived 
for M3 appeared to be more physiologically plausible than those 
associated with M2. In particular, the median values of VL

*, VB
*, 

Q*, and VCO
*

2
 derived for M3 were approximately 72, 31, 22, and 

46% of the typical adult values, which appears to be at least quali-
tatively reasonable considering that the data used in this study 
were acquired from pediatric subjects.1 In contrast, the respira-
tory parameter values derived for M2 were unacceptably small to 
be physiologically realistic. Further investigation of the models 
showed that the predictive accuracy of M3 drastically deterio-
rated when its transport delay was set to 0 (much worse than M2), 

1 The weights of the pediatric subjects were not available in the anonymized data. 
However, the median size of the subjects may be estimated by comparing the values 
of V and TV in Table 2 with those of typical adult values. For example, the median 
V of 2.24 lpm is approximately 36.3% of the typical adult value of 6.16 lpm (TV 
8.0 ml kg × weight 70 kg × RR 11 m), which is compatible to 72, 31, 22, and 46% of 
the typical adult values associated with VL

*, VB
* , Q, and VCO

*
2
, respectively.

which suggests that the parameters derived for M2 were actually 
optimized reasonably well to minimize the prediction error in 
the absence of transport delay. Therefore, the above observation 
is an additional evidence to support that wide-ranging changes 
in mechanical ventilation settings result in emphasized transient 
responses in PetCO2

 that may not be captured without transport 
delay.

The range of the respiratory parameters derived for M3 were 
wide; the interquartile ranges (IQRs) of VL

* , VB
*, Q*, and VCO

*
2
 were 

approximately 143, 175, 213, and 92% of the respective median 
values. The results suggest that the subjects were associated 
with a wide-ranging respiratory variability, though the valid-
ity of the absolute values of the respiratory parameters cannot 
be established. The fact that our model could reproduce the 
responses of all these subjects without any a priori knowledge of 
these subjects is notable, because its governing Eq. 5 was derived 
by explicitly considering physiologic principles rather than to 
simply fit the data. In sum, the ability to derive subject-specific 
respiratory parameters suited to each subject is the strength of 
our model.

limitation and Future Perspectives
This study has a number of limitations that need to be addressed 
in follow-up studies.

First, the lungs of the subjects analyzed in this study were 
mostly normal without any lung disease. Therefore, the valid-
ity of our model in subjects with respiratory pathophysiology 
has yet to be evaluated. It may be that our model needs to be 
expanded to include more physiologic mechanisms relevant to 
accurately reproduce the CO2 gas exchange phenomena in the 
presence of lung diseases. Future work must make improvements 
to our model to develop and validate minimally complex lumped-
parameter models of respiratory CO2 gas exchange that can be 
used for both normal and pathologic conditions.

Second, the subjects examined in this study were subject 
to different anesthesia protocols and surgical procedures. This 
may not alter the conclusion regarding the validity of our 
model, because the model could yield physiologically plausible 
respiratory parameter values that accurately reproduced the 
data in all the subjects examined in this study. However, the 
values of the respiratory parameters associated with each 
subject may have been modestly affected in different ways to 
capture the influence of different anesthesia protocols and 
surgical procedures. To solidly establish the validity of our 
model, it must be tested against data collected under strictly 
standardized protocols.
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Third, several key mechanisms in the model were simplified. 
For example, CO2 production and cardiac output were assumed 
constant in the model presented in this study. Noting that the 
subjects were undergoing surgical procedures, it may be reason-
able to assume that CO2 production and cardiac output were 
stable due to the effect of anesthesia and the end-tidal CO2 was 
varied mainly by the change in the mechanical ventilator settings. 
However, it is possible that CO2 production and cardiac output 
may have changed, which may in turn have had an influence on 
the model parameters. The validity of the model presented in this 
study may be limited in subjects undergoing a large change in 
CO2 production and/or cardiac output. The models in this study 
also assumed negligible dead space ventilation and pulmonary 
shunt because accurate subject-specific estimation of dead space 
ventilation and pulmonary shunt solely based on minute ventila-
tion and end-tidal CO2 data is in general challenging. Though 
the subjects examined in this study were all healthy, even healthy 
subjects have non-zero dead space, which may further increase 
under anesthesia despite the mechanical ventilation. Thus, this 
assumption may have had an influence on the values of the 
model parameters. In addition, this assumption may be far less 
justified in subjects with lung disease, limiting the applicability 
of our model. Thus, our model must be improved to explicitly 
incorporate dead space ventilation and pulmonary shunt.

Fourth, the models presented in this study are continuous 
ventilation models. As such, the tidal nature of breathing was not 
explicitly incorporated in the models. It has been suggested that 
tidal ventilation models explicitly incorporating the discontinuity 
in breathing due to inspiratory and expiratory phases are more 
desirable than continuous ventilation models when attempting 
to obtain a rigorous and comprehensive understanding of physi-
ology and pathophysiology in respiratory gas exchange during 
mechanical ventilation [see, e.g., Hahn and Farmery (2003)] and 
the references therein]. The model presented in this work was 
able to reproduce the end-tidal CO2 response to minute ventila-
tion. On the other hand, the validity and utility of this model 
beyond end-tidal CO2 (e.g., the relationship between x2 and 
mixed venous CO2 concentration) still need to be investigated. In 
this regard, care must be taken in using this model in analyzing 

responses to mechanical ventilation other than end-tidal CO2. At 
the same time, efforts to extend our continuous ventilation model 
to include tidal nature of breathing may also be rewarding.

Finally, the model presented in this study did not incorporate 
oxygen (O2) gas exchange. Considering that the primary objective 
of mechanical ventilation therapy is to achieve adequate arterial 
oxygenation, a truly viable computational model of respiratory 
physiology for mechanical ventilation beyond closed-loop end-
tidal CO2 control must incorporate O2 dynamics. Future work 
must be conducted to expand our CO2 gas exchange model 
to enable the reproduction of both O2 and CO2 responses to 
mechanical ventilation.

cOnclUsiOn anD FUTUre WOrK

In our effort to derive a minimally complex, high-fidelity, and 
transparent data-based respiratory physiology model applicable 
to the design and pilot testing of closed-loop end-tidal CO2 
controllers, we conducted a comparative data-based modeling 
analysis of the respiratory CO2 gas exchange process. It was 
shown that a two-compartment model with transport delay was 
able to accurately reproduce the end-tidal CO2 tension response 
to dynamically varying minute ventilation challenge in human 
subjects. Future work will include further investigation of the 
model as well as the design of model-based closed-loop end-tidal 
CO2 controllers.
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