
May 2018 | Volume 6 | Article 331

SyStematic Review
published: 01 May 2018

doi: 10.3389/fbioe.2018.00033

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

Edited by: 
Danilo Emilio De Rossi,  

Università degli Studi  
di Pisa, Italy

Reviewed by: 
Gholamreza Anbarjafari,  

University of Tartu, Estonia  
Andrea Bonarini,  

Politecnico di Milano, Italy

*Correspondence:
Chen Wang  

chen.wang@unige.ch

Specialty section: 
This article was submitted to  

Bionics and Biomimetics,  
a section of the journal  

Frontiers in Bioengineering  
and Biotechnology

Received: 21 July 2017
Accepted: 13 March 2018

Published: 01 May 2018

Citation: 
Wang C, Pun T and Chanel G  

(2018) A Comparative Survey of 
Methods for Remote Heart Rate 

Detection From Frontal Face Videos.  
Front. Bioeng. Biotechnol. 6:33.  
doi: 10.3389/fbioe.2018.00033

a comparative Survey of methods 
for Remote Heart Rate Detection 
From Frontal Face videos
Chen Wang1*, Thierry Pun1,2 and Guillaume Chanel1,2

1 Computer Vision and Multimedia Laboratory, Computer Science Department, University of Geneva, Geneva, Switzerland, 
2 Swiss Center for Affective Sciences, Campus Biotech, University of Geneva, Geneva, Switzerland

Remotely measuring physiological activity can provide substantial benefits for both 
the medical and the affective computing applications. Recent research has proposed 
different methodologies for the unobtrusive detection of heart rate (HR) using human 
face recordings. These methods are based on subtle color changes or motions of 
the face due to cardiovascular activities, which are invisible to human eyes but can 
be captured by digital cameras. Several approaches have been proposed such as 
signal processing and machine learning. However, these methods are compared with 
different datasets, and there is consequently no consensus on method performance. 
In this article, we describe and evaluate several methods defined in literature, from 
2008 until present day, for the remote detection of HR using human face recordings. 
The general HR processing pipeline is divided into three stages: face video processing, 
face blood volume pulse (BVP) signal extraction, and HR computation. Approaches 
presented in the paper are classified and grouped according to each stage. At each 
stage, algorithms are analyzed and compared based on their performance using the 
public database MAHNOB-HCI. Results found in this article are limited on MAHNOB-
HCI dataset. Results show that extracted face skin area contains more BVP informa-
tion. Blind source separation and peak detection methods are more robust with head 
motions for estimating HR.

Keywords: heart rate, remote sensing, physiological signals, photoplethysmography, human–computer interaction

iNtRODUctiON

Heart rate (HR) is a measure of physiological activity and it can indicate a person’s health and affective 
status (Malik, 1996; Armony and Vuilleumier, 2013). Physical exercise, mental stress, and medicines 
all influence on cardiac activities. Consequently, HR information can be used in a wide range of 
applications, such as medical diagnosis, fitness assessment, and emotion recognition. Traditional 
methods of measuring HR rely on electronic or optical sensors. The majority of these methods 
require skin-contact, such as electrocardiograms (ECGs), sphygmomanometry and pulse oximetry, 
and the later giving a photoplethysmogram (PPG). Among all cardiac pulse measurements, the 
current gold standard is the usage of ECG (Dawson et al., 2010), which places adhesive gel electrodes 
on the participants’ limbs or chest surface. Another, widely applied contact method, is to compute 
the blood volume pulse (BVP) from a PPG captured by an oximeter emitting and measuring light 
at proper wavelengths (Allen, 2007). However, the skin-contact measurements can be considered as 
inconvenient, unpractical, and may cause uncomfortable feelings.
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table 1 | Classification of state-of-the-art methods.

Dimensionality 
reduction

Blind source 
separation

Independent component 
analysis

Poh et al. (2010), Poh et al. (2011), Pursche et al. (2012), Kwon et al. (2012), Lewandowska et al. 
(2011), Sahindrakar et al. (2011), Datcu et al. (2013), Jensen and Hannemose (2014), Yu et al. (2015), 
Lam and Yoshinori (2015), Kumar et al. (2015), and McDuff et al. (2017)

Principle component 
analysis

Lewandowska et al. (2011), Wei et al. (2012), Rubinstein (2013), Irani et al. (2014), Balakrishnan et al. 
(2013), and Chen et al. (2017)

Other dimensionality methods Wei et al. (2012), Rubinstein (2013), and Tran et al. (2015)

Optical modeling Green channel Verkruysse et al. (2008), Pursche et al. (2012), Stricker et al. (2014), Li et al. (2014), Zaunseder et al. 
(2014), Muender et al. (2016), Mestha et al. (2014), Kumar et al. (2015), and Moreno et al. (2015)

Other optical modeling methods Pursche et al. (2012), Stricker et al. (2014), Li et al. (2014), Zaunseder et al. (2014), Muender et al. 
(2016), Mestha et al. (2014), Kumar et al. (2015), and Moreno et al. (2015)

Motion-based methods Balakrishnan et al. (2013), Rubinstein (2013), and Irani et al. (2014)

Machine learning Monkaresi et al. (2014), Tarassenko et al. (2014), Osman et al. (2015), and Villarroel et al. (2017)
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In the past decade, researchers have focused on remote  
(i.e., contactless) detection methods, which are mainly based on 
computer vision techniques. Using human faces as physiologi-
cal measurement resources was first proposed in 2007 (Pavlidis 
et  al., 2007). According to Pavlidis et  al. (2007), the face area 
facilitated observation as it featured a thin layer of tissue. With 
facial thermal imaging, HR can be detected based on bioheat 
models (Garbey et al., 2007; Pavlidis et al., 2007). After that, the 
PPG technique, which is non-invasive and optical, was used for 
detecting HR. The method is often implemented with dedicated 
light sources such as red lights or infrared lights (Allen, 2007; 
Jeanne et al., 2013).

In 2008, Verkruysse et al. (2008) showed the possibility of using 
PPG under ambient light to estimate HR from videos of human 
face. Then in 2010, Poh et al. (2010) developed a framework for 
automatic HR detection using the color of human face recordings 
obtained from a standard camera. This framework was widely 
adopted and modified in Poh et al. (2011), Pursche et al. (2012), 
and Kwon et al. (2012). For all those methods, the core idea is to 
recover the heartbeat signal using blind source separation (BSS) on 
the temporal changes of face color. Later in 2013, another method 
for estimating HR based on subtle head motions (Balakrishnan 
et al., 2013, Rubinstein, 2013) was proposed. Besides, researchers 
(Li et al., 2014; Stricker et al., 2014; Xu et al., 2014) investigated 
the estimation of HR directly by applying diverging noise reduc-
tion algorithms and optical modeling methods. Alternatively, the 
usage of manifold learning methods mapping multi-dimensional 
face video data into one-dimensional space has been studied to 
reveal the HR signal as well.

As shown above, remote HR detection has been an active field 
of research for the past decade and produced different strategies 
using diverse processing methods and models. However, many 
implementations were evaluated on different datasets and it is 
consequently difficult to compare them. Furthermore, no survey 
paper has been conducted, with the objective of gathering, clas-
sifying, and analyzing the existing work within this domain. The 
objectives of this article are first to fill this gap by presenting a 
general pipeline composed of several steps and how the different 
state-of-the-art methods can be classified based on the pipeline 
(presenting in Section “Remote Methods for HR Detection”). 
The second objective is to evaluate the mainstream methods at 

each step of the pipeline to finally obtain a full implementation 
with the best performance (presenting in Section “Comparative 
Analysis”). This objective is achieved by testing the methods on 
a unique set of data: the MAHNOB-HCI database. Given the 
methods’ popularity, this analysis is limited to color intensity-
based methods.

RemOte metHODS FOR HR DetectiON

To the best of our knowledge, we are unaware of existing reviews 
that touch upon this topic. To access the method performance, 
this article investigates several methods, which were published 
in international conferences and journals from 2008 until 2017. 
This time period was selected because 2008 was the year when the 
remote HR detection was first proposed. Methods that require no 
skin-contact and no specific light sources were exclusively taken 
into account because they are more likely to be applied outside 
the laboratory.

The existing remote methods for obtaining HR from face 
videos can be classified as either color intensity-based methods or 
motion-based methods. Currently, the intensity-based methods 
are the most popular (Poh et al., 2011; Kwon et al., 2012; Pursche 
et al., 2012; etc.) shown in Table 1. Intensity-based methods come 
from PPG signals captured by digital cameras. Blood absorbs 
light more than the surrounding tissues and variations in blood 
volume affect light transmission and reflectance (Verkruysse 
et  al., 2008). That leads to the subtle color changes on human 
skin, which is invisible to human eyes but recorded by cameras. 
Diverse optical models are applied to extract the intensity of color 
changes caused by pulse. As shown in Figure 1, hemoglobin and 
oxyhemoglobin both have high ability of absorption in the green 
color range and low in the red color range. But all three color 
channels contain PPG information (Verkruysse et  al., 2008). 
More detailed information on PPG-based methods can be found 
in the work of Allen (2007) and Sun et al. (2012).

Head motions caused by pulse are mixed together with other 
involuntary and voluntary head movements. Subtle upright head 
motions in the vertical direction are mainly caused by pulse 
activities, while the bobbing movements are caused by respira-
tion (Da et  al., 2011; Balakrishnan et  al., 2013). Motion-based 
methods for detecting HR stemmed from ballistocardiogram 
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FigURe 1 | Hemoglobin (green) and oxyhemoglobin (blue) absorption 
spectra (Jensen and Hannemose, 2014).

FigURe 2 | General schematic diagram for remote heart rate (HR) detection from face videos.
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(Starr et  al., 1939). Ballistocardiographic head movement is 
obtained by lying a participant on a low-friction platform from 
which displacements are measured to get cardiac information. In 
Da et al. (2011), head motion was measured by accelerometers 
to monitor HR. Balakrishnan et  al. (2013) proposed to detect 
HR remotely from face videos through head motions. The basic 
approach consists of tracking features from a person’s head, filter-
ing out the velocity of interest, and then extracting the periodic 
signal caused by heartbeats.

Both subtle color changes and head motions can be easily 
“hidden” by other signals during recording. The accuracy of HR 
estimation is influenced by the participants’ movements, complex 
facial features (face shape, hair, glasses, beards, etc.), facial expres-
sions, camera noise and distortion, and changing light conditions. 
Many papers in this field use strictly controlled experiment set-
tings to eliminate the influential factors. Besides well-controlled 
conditions, algorithms for noise reduction and signal recov ery are 
applied to retrieve HR information. For intensity-based methods,  
averaging the pixel values inside a region of interest (ROI) is often 
applied to overcome sensor and quantization noise. Subsequently, 
temporal filters are adopted to extract the signal of interest (Poh 
et al., 2010; Wu et al., 2012). As for motion-based approaches, 
similar algorithms are used such as face tracking and noise 
reduction.

To categorize existing methods, we divide the HR detec-
tion procedure into three stages based on the implementation 
sequence: face video processing, face BVP signal extraction, 

and HR computation (Figure 2). Face video processing aims to 
detect faces, improve the motion robustness, reduce quantization 
errors, and prepare the featured signals for further BVP signal 
extraction. There are more algorithm variations at this stage 
than at BVP signal extraction and HR computation. For BVP 
signal extraction, temporal filtering, component analysis, and 
other approaches are used to recover HR information from noisy 
signals. The HR computation stage aims to compute HR from the 
cardiac signal obtained from the previous stage. At this stage, the 
methods can be grouped into time domain analysis and frequency 
domain analysis. For the time domain processing, peak detection 
is diffusely applied to get the inter-beat interval (IBI) from which 
HR is computed. In frequency domain, the power spectral density 
is mostly used, where the dominant frequency is taken as HR. 
HR computation can become complex for applications including 
buffer handling functions to present HR results after a certain 
time period (Stricker et al., 2014).

experiment Setting
Only a few papers used public datasets for remote HR estimation 
from face videos (Li et  al., 2014; Werner et  al., 2014; Lam and 
Yoshinori, 2015; Tulyakov et al., 2016). While other researchers 
gathered their own datasets, where experiment settings vary sub-
stantially from camera settings, lighting situations to ground truth 
HR measurements as shown in Appendix I in Supplementary 
Material. The experimental setting often consists of placing a stable 
digital video camera in front of the participant under a controlled 
lighting condition. Furthermore, a ground truth HR measurement 
is also collected using a more traditional method. Figure 3 shows 
an example of the experimental setting. Finger BVP serves as the 
ground truth (13 out of 42 papers), while the face recordings are 
captured by the built-in camera of a laptop computer.

The digital cameras used for capturing videos are mainly com-
mercial cameras like web cameras or portable device cameras. 
Following the Nyquist–Shannon sampling theorem, it is possible 
to capture HR signals at a frame rate of eight frames per second 
(fps), under the hypothesis that the human heartbeat frequency 
lies between 0.4 and 4 Hz. According to Sun et al. (2013), a frame 
rate between 15 and 30 fps is sufficient for HR detection. Among 
existing research, captured video frame rate differs from 15  
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FigURe 3 | Experimental setup (Poh et al., 2010).
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(Poh et al., 2010) to 100 fps (Zaunseder et al., 2014). 30 fps, how-
ever, is the most often used within literature (Kwon et al., 2012; 
Pursche et al., 2012; Wei et al., 2012; etc.). It is important to note 
that for the majority of commercial digital cameras, the frame 
rate is not fixed. Sudden movements or illumination changes may 
force to drop or interpolate frames depending on the camera used. 
Frame rate is also closely related with frame resolution. Generally, 
cameras capture higher resolution frames at relatively low frame 
rates and vice versa. Both resolution and frame rate influence the 
HR estimation performance and computation load directly. By 
examining the table in Appendix I in Supplementary Material, it 
can be seen that the majority of research tends to utilize the video 
graphic array standard with a video resolution of 640 × 480 pixels 
per frame.

Illumination is strictly controlled for some experiments (De 
Haan and Vincent, 2013; Mestha et al., 2014; etc.) with specified 
fluorescent lights and no natural sunlight. There is also research 
using indirect sunlight only or fluorescent lights as supplemen-
tary. The distance between the tester and the camera highly 
depends on the lens properties. The distance is commonly set at 
1.5 m to capture the entire face while minimizing the quantity 
of visualized background. In addition, the duration of recorded 
videos varies as well. Many face recordings are short-term with 
an approximate duration of 1 min. A setting description of refer-
ences can be found in Appendix I in Supplementary Material.

Face video Processing
ROI Selection
Facial ROI selection is used to obtain blood circulation features 
and get the raw BVP signal, which highly influences the following 
HR detection steps. First, it affects the tracking directly since a 
commonly applied tracking method uses first frame ROI (Poh 
et al., 2010; Kwon et al., 2012; Pursche et al., 2012; etc.). Second, 
the selected ROI regions are regarded as the source of cardiac 
information. The pixel values inside a ROI are used for intensity-
based methods, while feature point locations inside a ROI are 

used for motion-based methods. For intensity-based methods, 
when the selected region of the face is too large, the HR signal may 
be hidden in background noise. On the other hand, if the selected 
ROI is too small, the quantization noise caused by the camera 
may not be fully attenuated by the averaging of pixels intensity 
inside the ROI. For motion-based methods, significantly more 
computation time is required for a larger ROI. But there might 
not be enough feature points for effective motion tracking when 
the ROI is too small.

This step is similar for both intensity-based methods and 
motion-based methods (Figure 3). We classify the methods into 
two groups: box ROI detection and model-based ROI detection. 
Box ROI is the general area of the face regulated by a rectangle 
sometimes coupled with skin detection. While model-based ROI 
detection extracts the accurate face contours.

The easiest way of implementing a box ROI extraction is to 
manually select the desired area, such as the largest facial area 
with a rectangle as the bounding box on the first frame. This 
solution is applied for motion-based methods when the video 
resource contains solely hidden facial features, such as being 
covered by masks, or if the participants back is turned toward 
the camera (Balakrishnan et  al., 2013). It is simple but highly 
subjective. Among automatic box face detection methods, the 
face detector proposed by Viola and Jones (2001) is often applied 
for HR detection (Poh et al., 2010; Balakrishnan et al., 2013; Irani 
et al., 2014; etc.). This method works rapidly and achieves reason-
able detection accuracy which is 93.9% tested on MIT + CMU 
frontal face test set (Viola and Jones, 2001). To remove face edges 
and background area of the box ROI only part of the detected face 
area is used. According to Poh et al. (2010), 60% of width and full 
height of detected facial area are used. While Mestha et al. (2014) 
use the middle 50% of the rectangle’s width and 90% of its height. 
Some papers suggested to divide the roughly detected face region 
into a coarse grid with multiple ROIs, with the aim of removing 
the effect of head movements and facial expressions (Verkruysse 
et al., 2008; Sun et al., 2013; Kumar et al., 2015; Moreno et al., 
2015). Skin detection methods are usually applied with other face 
detection solutions such as box ROI approach for HR estimation. 
Further details on this specific group can be consulted in the work 
of Vezhnevets et al. (2003), Xu et al. (2014), Sahindrakar et al. 
(2011), and Kakumanu et al. (2007).

Model-based approaches have been applied with accurate 
localization and tracking of facial landmarks (Werner et  al., 
2014; Lam and Yoshinori, 2015; Tulyakov et al., 2016). Datcu et al. 
(2013) uses a statistical method called active appearance model 
to handle shape and texture variation. In Stricker et al. (2014), 
deformable model fitting by regularized landmark mean-shift 
(Saragih et al., 2011) is applied. Li et al. (2014) applies a similar 
model named discriminative response map fitting with 66 facial 
landmarks inside the face region which is detected a priori by a 
Viola Jones face detector (Viola and Jones, 2001). Tulyakov et al. 
(2016) uses the facial landmark fitting tracker—Intraface (De la 
Torre et al., 2015). Alternatively to previously explored detection 
methods used in HR estimation, several other approaches exist 
such as OpenFace (Baltrušaitis et al., 2016), which can detect and 
track facial landmarks. Each area selected per frame is dynamic 
when using these model-based methods. Overall this makes the 
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selection process more robust as it can vary in time based on the 
features themselves, increasing its efficiency when handling head 
motions and facial expressions. These algorithms, however, are 
more computationally expensive and time-consuming than box 
ROI detection. Further details on face detection methods can 
be found in Hjelmås and Low (2001), Vezhnevets et al. (2003), 
Rother et al. (2004), and Baltrušaitis et al. (2016).

Color Channel Decomposition
This step is specific for intensity-based methods. The basic idea 
is that the pixel intensity captured by a digital camera can be 
decomposed into the illumination intensity and reflectance of 
the skin. However, several approaches are proposed to relate the 
pixel value to the PPG signal. This can lead to various choices 
of color channel decomposition and combination. For example, 
Huelsbusch and Blazek (2002) separated the noise from the PPG 
signal by building a linear combination of two color channels to 
achieve motion robustness. An in-depth description of optical 
modeling can be found within the literature referenced in Table 1.

Color channels are based on the color models. There are mainly 
three color models applied in HR detection: Red-Green-Blue (RGB), 
Hue-Saturation-Intensity (HSI), and YCbCr where Y stands for 
luminance component and Cb and Cr refer to blue-difference and 
red-difference chroma components, respectively. The HSI model 
decouples the intensity component from the hue and saturation 
that carry color information of a color image. The skin-color lies 
in a certain range of H ([0 50]) and S ([0.23 0.68]) channels and the 
illumination changes information is separated in I channel. With 
each heartbeat, there is a clear drop in hue channel but its ampli-
tude is very small. For HSI model, only the H channel can be used 
for BVP signal extraction. It is motion sensitive but performs better 
than RGB model without head motions. According to Sahindrakar 
et al. (2011), YCbCr produced better results in detecting HR than 
HSI with limited rotation and no transition. Among these three 
models, the most robust model is still RGB.

Among current detection methods, the main color space is still 
RGB, though some research criticizes that it intermixes the color 
and intensity information. According to Verkruysse et al. (2008), 
Stricker et al. (2014), and Ruben (2015), all channels contain PPG 
information, but the green channel gives the strongest signal-to-
noise ratio (SNR). Consequently, the green channel has been the 
most popularly used for extracting HR (Verkruysse et al., 2008; 
Li et  al., 2014; Zaunseder et  al., 2014; Chen et  al., 2015; etc.). 
However, Lewandowska et al. (2011) showed that the combina-
tion of the R and G channels contain the majority of cardiac 
information. Several research papers have also investigated the 
usage of all three color channels in conjunction with BSS for the 
BVP signal extraction (Poh et al., 2011; Kwon et al., 2012; Pursche 
et al., 2012; etc.).

Raw Featured Signal
Intensity-based methods use the intensity changes along the time 
as raw signal containing BVP information, while motion-based 
methods use the vertical component of the trajectories instead.

The spatial average is commonly employed in the majority of 
intensity-based methods, which aims to increase the SNR of PPG 
signals and enhance the subtle color changes (Verkruysse et al., 2008).  

Depending on the color channel selection, all pixels of the cor-
responding color channel within the ROI area are averaged at 
each frame. For a RGB video with n frames, the signal after spatial 
average can be expressed as a vector: X(j) = (x1(j), x2(j), …, xn(j)),  
j = 1, 2, 3 where j stands for the color channels. This method is 
simple and efficient to get raw featured signals for intensity-based 
methods. Several research papers used the spatial-averaged signal 
directly, as shown in Table  1. On the other hand, some works  
(De Haan and Vincent, 2013; Tulyakov et al., 2016) apply optical 
models and use the chrominance features for HR estimation, which 
takes light transmission and reflection on skin into consideration.

For motion-based methods, the location of time-series xk(n), 
yk(n) for each feature point k on frame n is tracked. Only the 
vertical component yk(n) is taken to extract the trajectory from 
each feature point. The longitudinal trajectories are then used as 
raw featured signals.

Face bvP Signal extraction
Now that the feature signal has been obtained from face videos, 
the heartbeat can be effectively extracted. This section is divided 
into two subsections exploring noise reduction and dimensional-
ity reduction methods.

Noise Reduction
As previously explored, color and motion changes caused by 
the cardiac activities are often noisy. Thus this step is applied 
on the raw signals to remove such changes in light and track-
ing errors. For intensity-based methods, the light variations are 
recorded together with intensity changes caused by blood pulses 
(Verkruysse et  al., 2008; Li et  al., 2014; Zaunseder et  al., 2014; 
etc.). For motion-based methods, trackers capture trajectories 
that are not solely caused by heartbeats, thus it is necessary to 
apply noise reduction as well (Balakrishnan et  al., 2013; Irani 
et al., 2014). We present noise reduction methods based on two 
categories: temporal filtering and background noise estimation. 
Temporal filtering contains a series of filters that remove irrelevant 
information and keep trajectories and color frequencies that are 
of interest. Background noise estimation uses the background to 
estimate the noise caused by light changes.

For temporal filtering, various temporal filters are applied to 
exclude and amplify low-amplitude changes revealing hidden 
information (Poh et al., 2010; Wang, 2017). It contains detrend-
ing, moving-average, and bandpass filters, which are often 
applied to reduce irrelevant noise (Li et al., 2014). A detrending 
filter aims to reduce slow and non-stationary trends of signals  
(Li et al., 2014). After applying a detrending filter, the low fre-
quencies of the raw signal are reduced drastically. This method 
is as effective as a high-pass, low-cutoff filter with substantially 
less latency. The moving-average filter removes random noise 
with temporal average of consecutive frames. It can efficiently 
smooth the trajectories and sudden color changes caused by light 
or motions. Additional methods such as a bandpass filter can also 
be used to remove irrelevant frequencies. Bandpass filters can be 
Butterworth or other FIR bandpass filters in the literature. It can 
be a Butterworth filter (Balakrishnan et al., 2013; Irani et al., 2014; 
Osman et al., 2015; etc.) or other FIR bandpass filters (Li et al., 
2014) with cutoff frequency of normal HR. The cutoff frequency 
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could be 0.7–4 (Villarroel et al., 2017), 0.25–2 (Wei et al., 2012), 
or other values. The parameter setting for these three types of 
filters differs from papers. For example, Ruben (2015) applies a 
fourth order bandpass zero-phase Butterworth filter, while Irani 
et al. (2014) employs an eighth order Butterworth filter to flat pass 
band maximally. More temporal filtering information applied for 
HR detection can be found in the work of Yu et al. (2014) and 
Tarvainen et al. (2002).

Background noise estimation methods target intensity cha n-
ges and are only suitable under some situations. It is based on 
the assumptions that (a) both the ROI and background share the 
same light source and (b) the background is static and relatively 
monotone (Li et al., 2014). Under these assumptions, the intensity 
changes in the background are caused by illumination only and 
are correlated with the light noise in the HR signal extracted from 
face recordings. Adaptive filters are applied on noised HR signal 
and background signal to remove the noise (Chan and Zhang, 
2002; Cennini et al., 2010; Li et al., 2014).

Once filtered, signals can be used either directly for post-
processing or for further signal extraction (dimensionality reduc-
tion). If the signal is used directly, the green channel is mostly 
used since it contains the stronger PPG signal (Verkruysse et al., 
2008). Under the second case, all the signal channels are kept.

Dimensionality Reduction Methods
The BVP signal is a periodic one-dimensional signal in the time 
domain. Dimensionality reduction algorithms are used to reduce 
the dimensionality from raw signals in order to more clearly 
reveal BVP information. The main idea is to find a mapping 
between higher dimensional space, such as three-dimensional 
RGB color spaces and one-dimensional space uncovering cardiac 
information. Dimensionality reduction contains classic linear 
algorithms, e.g., BSS methods [e.g., independent component 
analysis (ICA) and principle component analysis (PCA)], linear 
discriminant analysis, and manifold learning methods such as 
Isomap, Laplacian Eigenmap (LE), and locally linear embedding 
(Zhang and Zha, 2004). Wei et al. (2012) tested nine commonly 
used dimensionality reduction methods on RGB color channels 
and the result demonstrated that LE performs best for extracting 
BVP information on their dataset.

Blind Source Separation
After Poh’s publication in 2010, the mainstream technique to 
recover the BVP signal has been BSS which assumes that the 
observed signals (in our case the featured signals) are a mixture of 
source signals (BVP and noise). The goal of BSS is to recover the 
sources signals without or with a little prior information about 
their properties. The most popular BSS methods for HR detection 
from face video are ICA (Hyvärinen and Oja, 2000) and PCA 
(Wold et al., 1987; Abdi and Williams, 2010).

Independent component analysis is based on the assumption 
that all the sources are mutually independent. The basic princi-
ple is to maximize the statistical independence of all observed 
components in order to find the underlying components (Liao 
and Carin, 2002; Yang, 2006). For cardiac pulse detection, the 
observed signals are captured by camera color sensors, which are 
mixed with the heartbeat signals. Among various ICA algorithms, 

Joint Approximate Diagonalization of Eigen-matrices (JADE) 
(Cardoso, 1999) is popular for HR detection since it is numeri-
cally efficient in computation (Poh et al., 2010, 2011; Kwon et al., 
2012; Pursche et al., 2012; etc.). JADE is a high-order measures 
of independence for ICA. Further details on the JADE algorithm 
can be found in the work of Hyvärinen and Oja (2000), while 
methods for optimizing JADE is further described by Kumar 
et al. (2015).

Principle component analysis can be used to extract both the 
intensity-based pulse signal and the head longitude trajectories 
caused by pulse (Lewandowska et al., 2011; Balakrishnan et al., 
2013; Rubinstein, 2013). For motion-based method, the frequency 
spectra of the PCA components with the highest periodicity is 
selected quantified from spectral power, meanwhile the com-
ponent with maximum variance is selected for intensity-based 
method as BVP signal (Lewandowska et  al., 2011). Compared 
with ICA, PCA has lower computation complexity. PCA is 
concerned with finding the directions along which the data have 
maximum variance in addition to the relative importance of 
these directions. For HR detection, the goal of applying PCA is 
to extract the cardiac pulse information from the head motions 
or pixel intensity changes, represented it into principal compo-
nents consisting of a new set of orthogonal variables (Abdi and 
Williams, 2010; Balakrishnan et al., 2013). Mathematically, PCA 
depends on the Eigen-decomposition of positive semi-definite 
matrices and the singular value decomposition of rectangular 
matrices (Wold et al., 1987).

HR computation
Once the BVP signal is effectively extracted, a post-processing 
procedure follows. HR can be estimated from time domain 
analysis (peak detection methods) or frequency domain analy-
sis. Signals can be transformed to the frequency domain using 
standard methods, such as the Fast Fourier Transform (FFT) 
and discrete cosine transformation (DCT) methods. Currently, 
supervised learning methods are only applied at this stage for 
both the time and frequency domains.

Frequency domain algorithms are the most common post-
processing methods within the literature. The extracted HR signal 
is converted to the frequency domain either by FFT (Poh et al., 
2010; Pursche et  al., 2012; Yu et  al., 2013; etc.) or DCT (Irani 
et al., 2014). Using these methods, there is an assumption that the 
HR is the most periodic signal and thus, has the highest power 
of the spectrum within the frequency band corresponding to 
normal human HR. The drawback is that it can only compute 
the HR over a certain period instead of detecting instantaneous 
HR changes.

Peak detection methods (Poh et al., 2011; Li et al., 2014) detect 
the peak of HR signals in the time domain directly. With the 
detected peaks, IBI can be calculated. The IBI intervals are then 
averaged and the HR is computed from the average IBI. IBI allows 
for the beat-to-beat assessment of HR, however, it is quite sensi-
tive to noise. To achieve more reliable results, a sliding window of 
short-time period is often implemented to average the HR result 
over the whole video (Li et al., 2014; Ruben, 2015).

Supervised learning methods have also been investigated as 
a potential solution for HR calculation (Monkaresi et al., 2014; 
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Tarassenko et  al., 2014; Osman et  al., 2015). Monkaresi et  al. 
(2014) and Tarassenko et al. (2014) both use supervised learning 
method for power spectrum analysis. With features extracted 
from PSD, auto-regression or k-nearest neighbor classifier is 
used to predict the HR signal with a degree of accuracy. Osman 
et al. (2015) extract the first order derivative of green channels 
as the features. A feature at time t is positively labeled, if there 
is a ground truth BVP peak lies within a certain time tolerance 
and vice versa. These data are then used to train a support vector 
machine algorithm, capable of predicting IBI.

Discussion
Developed methods tend to be strongly tied into the dataset 
and the specific experiment protocol they were designed for. 
Unfortunately, this means that they neither generalize nor adapt 
to other datasets or scenarios, especially real-life situations. This 
section analyses the limitation aspect from setting to results.

Experiment Setting
As shown in Section “Experiment Setting,” experimental settings 
can vary significantly. For most experiments, both the partici-
pants’ behaviors and the environment are well-controlled which 
are not applicable for practical use. Non-grid motions like facial 
expressions are more difficult to handle compared with grid 
motions, e.g., head rotate horizontally or vertically. Detecting HR 
from face videos with spontaneous facial expressions is valuable 
for further study such as long-term monitoring and affective 
computing.

So far, there is no research designed specifically to test each 
influential factor of experimental setting such as video resolution, 
frame rate, and illumination changes. Consequently, it is diffi-
cult to distinguish whether the study results are affected by the 
experimental setting or the implemented approach. For example, 
low video resolution will lead to a limited number of pixels in the 
face area, which may be insufficient to extract the BVP signal.  
A high frame rate provides more information but may increase 
the computational load.

Furthermore, most of the self-collected datasets are not pub-
licly accessible, complicating further investigations as researchers 
must continuously collect and construct new datasets, which 
can be time consuming. In fact, it complicates evaluation as 
methods are tested cross-dataset. A few studies used the open 
dataset MAHNOB-HCI (Li et  al., 2014; Lam and Yoshinori, 
2015; Tulyakov et al., 2016). However, their results for the same 
method are not consistent with each other (Li et al., 2014; Lam 
and Yoshinori, 2015). This is probably due to differences in the 
implementation.

Besides, participants with darker skin tone are also rarely used 
within both self-collected and open datasets. The higher amount 
of melanin present in darker skin tones absorbs a significant 
amount of incident light, and thus degrades the quality of the 
camera-based PPG signals, making the system ineffective for 
extracting vital signs (Kumar et al., 2015). Equipment limitations 
also exist. For example, the majority of digital cameras are unable 
to hold stable frame rates during recording, which can impact 
HR computation. Video compression is another factor that can 
influence performance (Ruben, 2015). According to McDuff 

et  al. (2017), even with a low constant rate factor to compress 
videos, the signal-to-noise ratio degrades considerably in face 
BVP signals.

Method Discussion
The ROI definition is important since it contains the raw BVP 
signals. However, as mentioned in Section “ROI Selection,” there 
is still no consensus on which ROIs are the most relevant for 
HR computation. For example, Pursche et al. (2012) claim that 
the center of the face region provides better PPG information 
compared with other facial parts. By contrast, Lewandowska 
et al. (2011) and Stricker et al. (2014) assert that the forehead can 
represent the whole facial region although it can be unreliable 
if covered with hair. In Datcu et al. (2013), cheek and forehead 
are suggested as the most reliable parts containing the strongest 
PPG signals. Moreno et al. (2015) believe that forehead, cheeks, 
and mouth area provide more accurate heartbeat signals, in 
comparison with other parts such as nose and eyes. While Irani 
et al. (2014) state that the forehead and area around the nose 
are more reliable. These differences are caused specifically by 
the datasets used. For example, with videos containing head 
motions and facial expressions (Lewandowska et  al., 2011; 
Stricker et al., 2014), the eyes and mouth areas tend to be less 
stable than the forehead area, since they are influenced by facial 
muscles.

The most popular method to extract the face BVP signal is 
by far ICA, as previously detailed in Section “Face BVP Signal 
Extraction.” It works experimentally, nevertheless, it also has 
some limitations. Based on the Beer–Lambert law, reflected 
light intensity through facial tissue varies nonlinearly with 
distance (Wei et al., 2012; Xu et al., 2014), while both PCA and 
ICA assume that the observed signal is a linear combination of 
several sources. Supporting the possibility that ICA is not the 
best option, Kwon et al. (2012) demonstrated that ICA perfor-
mance is slightly lower compared with simple green channel 
detection methods. Besides, according to Mestha et al. (2014) 
and Sahindrakar et  al. (2011), ICA needs at least 30  s to be 
accurately estimated and cannot handle large head motions. 
The noise estimation method proposed by Li et al. (2014) can 
only be applied with monotone backgrounds. Also, it is not suit-
able for real-time HR prediction with its adaptive filter, which 
needs a certain time duration to guarantee estimation accuracy. 
For stable frontal face videos, the green channel tends to be a 
good solution, and provides a low computational complexity 
method for the extraction of BVP signals. Particularly noisy 
sources of the face can often be mitigated through the usage of 
methods like PCA or ICA, and can often achieve better results 
than using the green channel exclusively (Poh et al., 2011; Li 
et al., 2014).

At the HR computation stage, the frequency domain methods 
are not capable to detect instantaneous heartbeat changes, and 
are not as robust as time domain methods according to Poh et al. 
(2011). Supervised learning methods are mainly (three out of 
four papers) applied at this stage so far. There is one recent paper 
apply auto-regression to extract BVP signals after the video pro-
cessing (Villarroel et al., 2017), but there is no end-to-end usage 
of supervised learning methods. Future research might thus focus 
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on the development of machine learning methods trained to take 
raw videos as inputs and compute the HR information as outputs. 
Without inter-processing stage, the performance of supervised 
learning methods may be improved significantly.

HR Estimation
The HR discussed in this article is actually the average of HR 
during a certain time interval (e.g., 30 s or 1 min), which cannot 
reveal the instantaneous physiological information. The literature 
often computes HR by examining videos with various lengths and 
subsequently calculating the average HR over that time period. In 
reality, the time interval between two connective heartbeats is not 
stable. By contrast to averaged HR, we refer to instantaneous or 
dynamic HR when talking about HR calculated for each IBI. This 
information can be used to reveal short lived phenomenon such as 
emotions. It can further be used to compute heart rate variability 
(HRV). According to Pavlidis et  al. (2007) and Dawson et  al. 
(2010), HRV is directly related with emotion and disease diagnosis, 
which is of great value in medical and affective computing domain.

To the best of our knowledge, so far there is no work focusing 
on dynamic HR. Also, for average HR estimation, there are no 
state-of-the-art approaches that are robust enough to be fully 
operated under real situations with grid and non-grid move-
ments, illumination changes and noise caused by the camera. 
Even with well-established public dataset, one or two influential 
factors are still under controlled.

Commercial Applications and Software
Currently, for application purposes, PPG is mainly obtained 
from contact sensors. There are few commercial applications 
and software available estimating HR remotely from the color 
changes on faces such as Cardiio,1 Pulse Meter,2 and Vital Signs 
Camera.3 Cardiio and Pulse Meter are both phone applications. 
They present a circle or a rectangle on the screen for users to 
place their face areas and keep still for a certain time period. Vital 
sign camera is developed by Philips with both software and phone 
application. They apply frequency domain method to calculate 
HR. All these applications and software compute the average 

1 Cardiio. Cardiio. https://www.cardiio.com/ (Accessed: April 09, 2018).
2 Rapsodo. Pulse Meter. http://www.appspy.com/app/667129/pulse-meter (Accessed: 
April 09, 2018).
3 Philips. Philips vitals signs camera. http://www.vitalsignscamera.com (Accessed: 
April 09, 2018).

HR only and require users to stay stable. None of these products 
provide an estimation of their performance.

cOmPaRative aNalySiS

It is of great importance to quantify and compare the perfor-
mance of the main algorithms presented in the previous section. 
In this section, we study how the existing approaches perform 
in a close to realistic scenario with both gird and non-grid head 
movements.

Given the amount of workload, not all methods were tested 
exhaustively. For motion-based methods, only two methods 
were proposed and applied on face videos (Balakrishnan et al., 
2013; Irani et  al., 2014). Both of them required limited head 
movements. Our test dataset, MANNOB–HCI, is not ideal for 
this group of methods. Therefore, we focus on the validation of 
intensity-based approaches which are most often applied. Despite 
of this restriction, some methods evaluated in this section can 
also be used as reference for motion-based methods. This is 
for instance the case for ROI selection which can be used in a 
motion-based framework.

To offer a panoramic view of the state-of-the-art, this article 
attempted to cover the analysis with methods from different cate-
gories within each processing stage as previously stated in Section 
“Remote Methods for HR Detection.” The methods considered 
for comparative analysis are selected based on their popularity 
(times that they were adopted for other papers) and their category 
(supervised learning, dimensionality reduction, etc.).

The method validation is divided into two parts. In the first 
part, we test and compare the algorithms at each stage sequ-
entially as shown in Figure  4. For one stage, we test several 
alternatives while keeping the algorithms applied at the other two 
stages fixed. Once a stage has been tested, the best method on this 
stage will be chosen for the following stage test. Before that, the 
algorithms selected for fixed stages are based on simplicity. At the 
pre-processing stage, the main target is to find out the efficient 
face segmentation. For signal extraction, various algorithms are 
tested to compare the most efficient method capable of separating 
the HR signal from noise and irrelevant information. At the post-
processing stage, time domain and frequency domain methods 
are compared for HR computation. The second part focuses on 
the implementation of state-of-the-art methods presented in the 
work of Poh et al. (2011), Li et al. (2014), and Osman et al. (2015), 
which are used as baselines for validation.
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The state-of-art methods were tested on the MAHNOB-HCI 
(Soleymani et al., 2012) database. In MAHNOB-HCI, 27 partici-
pants (15 females and 12 males) were recorded while watching 
movie clips to elicit emotions, which can influence their HR and 
stimulate facial expressions. This public dataset is multimodal 
including frontal face videos and HR information recorded using 
a gold standard technique: ECG. The frame rate is 61 fps and the 
ECG sampling frequency is 256 Hz. Furthermore, this dataset is 
publicly accessible, allowing research to be easily reproduced. We 
filtered 465 samples (i.e., ECG and facial videos which each cor-
respond to an emotion-elicited movie clip) from MAHNOB-HCI 
obtained from 24 participants, where 12 were males and 12 were 
females.

To reduce the possible risks of bias, we regulated the study 
from data source to performance validation. The face videos used 
for the study are from both genders and different skin tones. For 
one participant, 14–20 videos are used to avoid bias from a certain 
scenario due to a specific stimulus. All participants we selected 
offered their consent before experimentation, where the record-
ing duration surpasses 65 s. Among the 465 samples, 20 samples 
did not contain corresponding ECG signals and 1 recording 
presented faulty filtering. These samples were removed leaving 
a total of 444 samples. The validation followed by Li et al. (2014) 
and Lam and Yoshinori (2015) started each video recording with 
a delay of 5  s. Videos are subsequently cut into 30 s segments, 
and subsequently synchronized with their corresponding ECG 
signal. All the methods and evaluations are implemented using 
MATLAB R2016a. To validate obtained results, the HR ground 
truth is obtained by first detecting the R peaks from ECG signals 
using the TEAP (Soleymani et al., 2017), which uses the standard 
Tompkins’ method (Tompkins, 1993). Absent and falsely detected 
peaks are then manually corrected. The mean HR is the averaged 
value computed from the instantaneous HR. Thus, a precise aver-
age HR is guaranteed as ground truth.

comparison at each Stage
Face Segmentation
As shown in Section “Face Video Processing,” there is no con-
sistent conclusion about which part of the face reveals most 
HR information. Thus, there is an interest in comparing HR 
detection accuracy for several facial regions. The face region 
contains useful features of HR information that may differ 
from every frame since appearance changes are spatially and 
temporally localized. Instead of using a constant and prese-
lected ROI, we adopt OpenFace (Baltrušaitis et  al., 2016) to 
detect face segmentations automatically and dynamically. 
OpenFace can extract 66 landmarks from the face, marking 
the location of eyes, nose, eyebrows, mouth, and the contour 
of visage. We compared the performance of forehead, cheeks, 
chin, whole face, and extracted skin area (accurate face contour 
area without eyes and mouth), which are frequently selected 
as ROIs in the state-of-the-art. For the rectangular forehead 
area, we used the distance between inner corners of the eyes 
as the rectangle width, while the distance from the uppermost 
face contour landmark to the uppermost eyes landmark 
constitutes the rectangle height. Similarly, the cheek areas had 

the same width as eyes and the height is the distance between 
upper lip border and the lower eye border. For the skin area, 
we removed the eye and mouth regions to avoid noise caused 
by blinks and other facial expressions. The regions we tested 
are shown in Figure  5. Since all the five ROI selections are 
determined by facial landmarks, the ROI areas are dynamic 
and may change due to the head motions from frame-to-frame. 
Given that in the MAHNOB-HCI database, the participants’ 
electroencephalogram (EEG) was recorded using a head cap, 
the forehead area was partially covered by the sensors that may 
influence the performance.

To avoid influential factors from other processing steps, we use 
the spatial-averaged green channel directly of each ROI and then 
apply temporal filtering to obtain the HR signal. The cutoff fre-
quency is set from 0.7 to 2 Hz which corresponds to HR between 
42 and 120 bpm. The PSD method (Poh et al., 2010) is applied to 
calculate the averaged HR over 30 s.

Face BVP Signal Extraction
For this part, we tested the main methods mentioned in Section 
“Noise Reduction.” Temporal filtering with a detrending filter 
and a bandpass filter are applied on the raw featured signal before 
methods testing in this section. Three signal extraction methods 
were compared. PCA, ICA, and background noise estimation 
methods are evaluated on spatial-averaged RGB signals from 
extracted skin ROI. For ICA, the component with highest energy 
in the frequency domain is selected as the BVP signal, while the 
component with the highest variance is selected for PCA. The 
implementation of ICA and PCA follows Poh et al. (2011) and 
Rubinstein (2013), respectively. Background noise estimation is 
implemented following Li et al. (2014) and uses green channel for 
extracting HR signals after illumination rectification with nor-
malized least mean square adaptive filter. HR is estimated using 
the PSD of the extracted face BVP signal (Poh et al., 2010) as well.

HR Computing
The peak detection method and PSD method are evaluated for the 
calculation of HR. Selected ICA components extracted from skin 
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ROI are used as the HR signal. For peak detection, we applied the 
algorithm from the open source Toolbox for Emotional feAture 
extraction from Physiological signals (TEAP) (Soleymani et al., 
2017). There are different ways of computing PSD. In this section, 
it is estimated via the periodogram method following Monkaresi 
et al. (2014).

comparison on complete methods
We reproduced three methods from the work of Poh et  al. 
(2011), Li et  al. (2014), and Osman et  al. (2015). This was 
done to compare our analysis with the three main categories 
of HR estimation methods: ICA, background noise estima-
tion, and machine learning, respectively. We implement 
these three approaches step-by-step and set parameters as 

mentioned in the papers. The implementation schematic is 
shown in Figure 6.

Poh et al. and Osman et al. tested their method on self-collected 
datasets with BVP signals as ground truth, while Li et al. used 
both self-collected and the MAHNOB-HCI datasets.

The work of Osman et al. (2015) used finger BVP signals to 
label their extracted features. In our reproduction, ECG signals 
are used from MAHNOB-HCI. We followed the same method but 
labeled the feature positive if the R peak existed within the time 
tolerance of the detected peak from face videos. We randomly 
selected 12 subjects as training dataset and the other 12 subjects 
as testing dataset. For training, we have 5,000 positive features 
and 5,000 negative features as Osman et al. (2015). For testing, 
there are 6,765 positive features and 7,127 negative ones.
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FigURe 7 | Method performance at each stage. “best” indicate the best methods according to average performance. Other methods are tested against the  
best method (ns, non-significant; *, p < 0.05; **, p < 0.01). (a) Face segmentation performance. (b) Performance at face blood volume pulse (BVP) extraction.  
(c) Performance at heart rate (HR) computation.
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successfully detected face information which adds noise in face 
BVP signal. Considering the computation complexity and detec-
tion efficiency, Viola Jones face detector is suitable for slight head 
movements and can be used as a prior method for more complex 
face detection algorithms.

To see how head movements influence signal extraction, we 
tested the methods on one video with little head motions. For 
this situation, background noise estimation performs better since 
the illumination was the main source of noise. However, there is 
little difference between the root mean squared error of the green 
channel (12.12), PCA (12.51), ICA (11.80), and background noise 
estimation (11.69). Evaluating on all the samples, ICA performs 
better then background noise estimation (t = 2.27; p = 0.04) and 
PCA (t  =  4.84; p  <  0.001) as shown in Figure  7B. Under the 
experimental setting of MAHNOB-HCI, head motions tend to 
have a higher influence on the HR detection, rather than illumi-
nation changes.

For HR computation, Figure 7C shows that the implemented 
peak detection method is more robust than the PSD method 
(t = 2.52; p = 0.03). Peak detection reduces the error by averaging 
all the IBI over the video duration. For PSD, once the noise takes 
the dominant frequency and lies in the human HR range, there 
is no solution to detect the right HR. The best result from each 
stage is shown in Table 2 with extracted skin area, ICA and peak 
detection method.

ReSUltS aND DiScUSSiON

Results at each Stage
For face segmentation, we can see from Figure  7A that the 
extracted skin area performs better than the other facial areas, 
followed by the entire facial region. Though skin area performs 
a bit better than face area, there is no significant difference 
between them (t = 1.72; p = 0.07). There is no noticeable differ-
ence between the left cheek and the right cheek and the forehead 
does not perform better than other facial areas. According to 
our results, the more skin area used as BVP resource, the better 
performance we can achieve (extracted skin area performs better 
than cheek, forehead, and chin areas). The facial expressions, 
such as laugh and blinks, tends to add extra noise to the BVP 
signals but does not influence it considerably when taking the 
whole face into consideration. We also compared the whole face 
area with the area detected by Viola Jones face detector (Viola 
and Jones, 2001). When there are no abrupt head moments and 
other interruptions, the featured raw signals obtained from these 
two methods are very similar. The Pearson correlation is statisti-
cally significant (r = 0.99; p < 0.001). When the video includes 
more spontaneous movements, OpenFace is more robust with a 
higher success detection rate and the correlation between the two  
methods is degraded (r  =  0.83; p  <  0.001). Viola Jones detec-
tor fails face detection on several frames and then uses the last 
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table 3 | Obtained performance for the complete methods.

method m (SD)/bpm RmSe/bpm ρ

Poh et al. (2011) 4.07 (13.04) 13.81 0.28
Li et al. (2014) 2.15 (10.04) 10.33 0.68
Osman et al. (2015) 3.37 (12.08) 12.79 0.47

Performance is measured by M (mean error), SD (standard derivation), RMSE (root 
mean squared error), and ρ (correlation coefficient).

table 2 | Obtained performance for the best method at each stage.

Stage m (SD)/bpm RmSe/bpm ρ

Face video processing (extracted skin area) 5.34 (14.98) 15.05 0.20
Blood volume pulse signal extraction 
(independent component analysis)

4.09 (13.37) 13.56 0.32

Heart rate computing (peak detection) 3.01 (12.14) 12.23 0.55

Performance is measured by M (mean error), SD (standard derivation), RMSE (root 
mean squared error), and ρ (correlation coefficient).
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Results From complete methods
The results of three methods tested on MAHNOB-HCI are shown 
in Table 3. Unsurprisingly the performance of Poh et al. (2011)’s 
method is significantly dropped than its self-reported results 
using the proprietary dataset (mean bias is 0.64, RMSE is 4.63, 
and correlation coefficient is 0.95). This is probably due to the 
fact that the original dataset is rather stationary and avoids head 
motions. Li et  al. (2014) and Lam and Yoshinori (2015) both 
tested the Poh et al. (2011) method on MAHNOB-HCI dataset. 
Our testing result is a bit worse than Li et al. (2014) whose mean 
bias is 2.04, RMSE is 13.6, and correlation coefficient is 0.36, but 
better than the result from Lam and Yoshinori (2015) (RMSE is 
21.3). Following Li et al. (2014) method, we obtained better per-
formance than Lam and Yoshinori (2015), but worse results than 
that presented by Li et al. (2014) themselves. Although evalua-
tions are all based on the MAHNOB-HCI dataset, samples, and 
algorithm parameters are not exactly the same. As to the method 
from Osman et al. (2015), we cannot really compare the results 
since it was tested on self-collected dataset only. It shows better 
result than Poh et al. (2011), but not as good as Li’s method. From 
our test, the method of Li et al. (2014) performs significantly bet-
ter than Poh et al. (2011) (t = 5.00; p < 0.001) and Osman et al. 
(2015) (t = 4.51; p < 0.001).

We can see from Tables 2 and 3 that the face segmentation 
influences results significantly. With the best performed method 
of each stage, it can achieve competitive results compared with 
complete state-of-the-art methods which are more complex. Thus, 
we obtained and proposed an efficient pipeline with extracted 
skin area, ICA and peak detection for detecting HR remotely  
from face videos.

This pipeline could be applied for other studies with front 
face recordings under environmental illumination. It is robust 
with facial expressions and limited head motions (translation 
and orientation), which is often the case for the majority of 
human–computer interaction processes (online education, 
computer gaming, etc.). The pipeline is expected to perform 
better under more stable conditions with less head movements. 

Interruptions such as hands partially covering the face will 
influence the performance of this method. Furthermore, if the 
illumination changes significantly during the HR detection 
process, noise estimation methods could be applied to improve 
the overall performance.

The main limitation of this study comes specifically from 
the selected database and testing methods. Possible risks of bias 
can derive from the small number of subjects (24 participants) 
and the selected data source (444 videos and corresponding 
ECG signals from MAHNOB dataset). The specific experi-
mental setting could favor some of the considered methods 
and could potentially be detrimental for others. For example, 
the forehead area is reported have a good performance 
(Lewandowska et  al., 2011; Stricker et  al., 2014), while our 
results showed that this was not significant, potentially due to 
the EEG head cap which partially covers the forehead area in 
MAHNOB videos.

cONclUSiON

Remote HR measurements from face videos have improved 
during the last few years. Among the research in this domain, 
the designed models, parameter settings, chosen algorithms, 
and equipment are plenty, complex, and vary enormously. Some 
approaches achieve high accuracy under well-controlled situa-
tions but degrade with illumination changes and head motions. 
In this article, we performed (a) the collection and classification of 
state-of-the-art methods into three stages and (b) the comparison 
of their performance under HCI conditions.

The MAHNOB-HCI dataset is used for algorithm testing 
and analysis since it is a publicly accessible dataset. Our results 
showed that at the pre-processing stage, accurate face detection 
algorithms performed better than rough ROI detection. The 
extracted facial skin area used as the source HR signal obtained 
better result than any other facial ROI. For signal extraction, 
under most cases, ICA method obtained decent results. When 
the background is monotone, removing the noise estimated from 
the background increased the HR detection accuracy efficiently. 
As for post-processing, peak detection in time domain was more 
reliable than the frequency domain methods. In conclusion, we 
built an efficient pipeline for non-intrusive HR detection from 
face videos by combining the methods we found to be the best. 
This pipeline with skin area extraction, ICA and peak detection 
demonstrated a state-of-the-art accuracy.

Though considerable progress has been made in this domain, 
there are still many difficulties. The state-of-the-art approaches 
are not robust enough when applied under natural conditions 
and are still unable to detect HR in real-time. Technically speak-
ing, machine learning methods may be promising for remote 
HR detection. Especially with finger oximeter as ground truth 
measurement, since the BVP signal detected from facial regions 
should have a similar shape with collected finger or ear BVP 
signals. So far there are only three papers using machine learning 
methods and both of them concentrate on the post-processing 
category. With the development of deep end-to-end learning, the 
robustness and accuracy of HR detection may increase efficiently 
even under naturalistic situations.
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