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This paper introduces an indirect train traffic monitoring method to detect and infer
real-time train events based on the vibration response of a nearby building. Monitoring
and characterizing traffic events are important for cities to improve the efficiency of
transportation systems (e.g., train passing, heavy trucks, and traffic). Most prior work falls
into two categories: (1) methods that require intensive labor to manually record events or
(2) systems that require deployment of dedicated sensors. These approaches are difficult
and costly to execute and maintain. In addition, most prior work uses dedicated sensors
designed for a single purpose, resulting in deployment of multiple sensor systems.
This further increases costs. Meanwhile, with the increasing demands of structural
health monitoring, many vibration sensors are being deployed in commercial buildings.
Traffic events create ground vibration that propagates to nearby building structures
inducing noisy vibration responses. We present an information-theoretic method for train
event monitoring using commonly existing vibration sensors deployed for building health
monitoring. The key idea is to represent the wave propagation in a building induced by
train traffic as information conveyed in noisy measurement signals. Our technique first
uses wavelet analysis to detect train events. Then, by analyzing information exchange
patterns of building vibration signals, we infer the category of the events (i.e., southbound
or northbound train). Our algorithm is evaluated with an 11-story building where trains
pass by frequently. The results show that the method can robustly achieve a train event
detection accuracy of up to a 93% true positive rate and an 80% true negative rate.
For direction categorization, compared with the traditional signal processing method, our
information-theoretic approach reduces categorization error from 32.1 to 12.1%, which
is a 2.5× improvement.

Keywords: train traffic monitoring, building vibration, information theory, causal analysis, wavelet analysis, indirect
sensing, directed information, wave propagation

1. INTRODUCTION

The transportation system is an important component of a city’s built environment and closely
related to the quality of people’s daily life. However, the occurrence of traffic events, if poorly
managed, will affect the efficiency of overall transportation systems (Weisbrod et al., 2003; Kittelson,
2010). One example is related to railroad crossings. When trains pass by, traffic must stop at
the intersection, resulting in congestion and an increase in fuel consumption and travel time.
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Therefore, real-time sensing andmonitoring of traffic events plays
a vital role in transportation control and city management.

However, current practices of traffic events monitoring require
dense deployment of dedicated sensors that are costly both for
deployment and maintenance. Traditionally sensing systems have
relied on directly instrumented systems (Zhang et al., 2004; Lynch
and Loh, 2006; Purohit et al., 2011; Sun et al., 2012; Nunes et al.,
2015). In particular, dedicated traffic sensors are developed and
deployed in many cities (e.g., vehicle detection loops and traf-
fic camera monitoring system are often used to monitor traffic
events) (Nadeem et al., 2004; Gubbi et al., 2013; Kostakos et al.,
2013). The demand of these dedicated sensors will increase with
the increasing need to understand and optimize transportation
systems. Furthermore, these systems are designed as “silo” sys-
tems, requiring one system to monitor each aspect of traffic, and
thus further increasing costs.

Meanwhile, with the increasing need of structural health mon-
itoring, many of these buildings are being instrumented with
vibration sensors to monitor their health (Ellingwood and Tallin,
1984; Doebling et al., 1996; Li et al., 2004; Sohn et al., 2004;
Lynch and Loh, 2006; Gentile and Saisi, 2007). The collected
building vibrations also contain the structural vibration induced
by ambient traffic events (Zheng et al., 2013). Most information
about the traffic events is carried by vibrations on the roadway
and thus coupled with the buildings through the ground. In this
paper, we present an algorithm using the building vibrations
to monitor the train traffic around the buildings. In general,
existing structural health monitoring systems collect building
vibrations with sampling rate around 100–1,000Hz (Sohn et al.,
2004; Lynch and Loh, 2006). Our algorithm is developed to focus
on the frequency range around 0–100Hz, which falls within
the typical structural vibration monitoring range. In this paper,
our algorithm and evaluation results show that it is feasible to
monitor the train traffic using ambient building vibration. By
utilizing the existing building vibration monitoring systems, the
need (and thus costs) of dedicated traffic monitoring systems
will be significantly reduced. In general, this research provides
an example showing the feasibility to expand the utilization of
building sensor systems for multiple purposes. With the develop-
ment of smart cities, more sensor systems will be deployed. These
kinds of multiple utilizations will reduce the overall cost of the
smart city sensing systems and/or improve robustness through
redundancy.

To monitor traffic events using building vibrations, we need to
understand how buildings respond to traffic events. We focus on
two research challenges in this approach. First, the complexity of
propagationmediamakes it difficult to apply physics-basedmeth-
ods, e.g., modal analysis, which requires detailed prior knowledge
about the building. Second, the deployment of vibration sensor
systems on different buildings does not obey the same criterion.
Finally, the data are very noisy because of effects from human
activities, machinery inside the building, etc.

To address these challenges, our approach uses causality
between the vibrations in various locations of a building to
represent the building vibration pattern, then detects and infers
the train events around the building by looking at the response of
the building vibration pattern to the train events. Causal analysis

characterizes causality between pairs of signals. Recent advances
in causal analysis show a new perspective to analyze the causality
between signals in an information-theoretic approach and have
been applied in data compression, economic analysis, and neu-
roscience (Marko, 1973; Zhao et al., 2003; Permuter et al., 2008,
2011; Quinn et al., 2011; Zheng et al., 2013). The information-
theoretic approach extracts the information exchanging between
two locations of sensors as features to depict the vibration patterns
in the corresponding physical interval. As a data-driven method,
our approach eliminates the requirement for detailed prior knowl-
edge about the structure. Meanwhile, causal analysis can extract
the direction and amount of information flow between pairs of
vibration signals. Thus, we can detect the changes in information
flow between multiple sensor pairs to extract building’s response
to ambient events. This method also provides physical insights
about the effects of the excitation events on building vibration.

Our approach includes three steps: data collection, event detec-
tion, and event inference. First, we collect building vibration data
from multiple sensors. Second, the time of traffic events, which
is the time interval when train pass by the building in our case,
can be detected based on features extracted by wavelet analysis
and is effective for decomposing non-stationary signals. Third,
we infer the types of traffic events, which are direction of train
moving in our study, by causal analysis using information theory
and machine learning techniques.

We evaluate our results through the vibration sensing system
deployed in the 11-story tall building at Tsinghua University, Bei-
jing, China, for over 1month. This building experiences periodic
nearby passing trains that are the target of this study. In particular,
we focus on both the detection and the directional estimation
accuracy of our algorithm under different conditions.

In this paper, we have three key contributions as follows:

• We introduce a train event monitoring method using
commonly deployed vibration sensors for building health
monitoring.

• We analyze noisy building vibration patterns using an
information-theoretic approach and mining the information
conveyed in the noisy vibration signals.

• We evaluate the algorithm through field experiments con-
ducted for more than 1month in an 11-story real building
under train events.

The rest of the paper is organized as follows: Section 2 focuses
on physical insights of vibration propagation and information
exchanges inside building. Section 3 introduces our algorithm to
detectwhen the train event happens and infer the direction of train
in further steps. Section 4 shows the implementation of sensor
system, results and analysis of vibration signals collected in an
11-floor building with periodic passing trains. Finally, Section 5
summarizes the conclusion.

2. PHYSICAL INSIGHT FOR CAUSAL
ANALYSIS OF BUILDING VIBRATION

To better understand the problem, we discuss how building
vibrations are induced by passing trains and propagate inside
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building structures and then explain how these vibrations can be
analyzed as information exchanges using information-theoretic
approaches. Here, we assume that a train moves with a constant
speed when passing by the building, and dynamic characteristics
of the building structure remain constant (i.e., no damage is
incurred by the train-induced vibrations).

On the physical side of wave propagation, current studies on
train-induced building vibration have focused on analyzing and
predicting the effects of train-induced excitations on building
structures using two main approaches: physics-based methods
and data-drivenmethods. Physics-basedmethods use the physical
principles of wave propagation to analytically or numerically ana-
lyze the effects of train-induced vibrations on buildings (Ahmad
and Al-Hussaini, 1991; Hall, 2003; Adam and Von Estorff, 2005;
Ju, 2009). However, these methods oftenmake simplified assump-
tions to reduce the number of parameters (such as homogeneous
propagation medium or require detailed prior knowledge about
the ground and building structures). They may not be suitable in
practice due to complex urban space and building structure. Data-
driven methods are developed for analyzing structural response
to train events based on historical train-induced vibration data.
These approaches do not require detailed priori structural infor-
mation but may lack physical insights for observed phenom-
ena (i.e., we can observe correlation but not physical causation)
(Bahrekazemi, 2004; Xia et al., 2005).

In our scenario, the train excitation, which is a moving load
source (as Figure 1A shows), generates body waves and surface
waves in the ground that travel to nearby buildings (Balendra
et al., 1989; Chua et al., 1995; Hao et al., 2001; Hall, 2003; Lin
et al., 2005; Kouroussis et al., 2014), as shown in Figure 1B.
The waves propagate inside a building in both vertical and hor-
izontal directions. In each story, the vertical waves propagating
through the building consist of two parts: up-going and down-
going components (Bahrekazemi, 2004). The vibration propagates
through columns to the adjacent stories, but there exists time
difference between arrivals of waves from columns near the train
and away from the train. As soon as these shear waves arrive at
the next story, the horizontal waves begin to disperse through the
floor from the column location. These waves are mixed with the
reflectedwaves from the boundaries. The amplitudes, frequencies,

phases, and other dynamic features of these waves vary with the
characteristics of train excitations and building structure medium
that they have traveled through. Similar constructs can be used
in other sensing applications as well (Mokaya et al., 2015, 2016;
Lederman et al., 2017a,b).

Thus, the wave propagation from one place to another can
be interpreted as an information exchange (or information flow)
about building structures and train excitations between these two
places inside a building. If the characteristics of the train exci-
tation change (e.g., direction), the generated waves also change
(e.g., time-frequency contents, phases, and delays). Since dif-
ferent waves have different properties (e.g., speed, attenuation,
and reflection), the corresponding information exchange pattern
between the two locations may also change. As mentioned above,
this study assumes that the structural characteristics remain the
same over time and thus does not contribute to the changes in
information exchange.

This paper exploits the idea of representing wave propagation
as information exchanges to introduce a new method that infers
train event characteristics from building vibration response. This
method uses an information-theoretic approach to characterize
the information exchange relationship between the wave signals
collected from each pair of sensors, referred to as the causal-
ity between the signals. In particular, the concept of directed
information is introduced to quantify the amount of exchanged
information from one location to another, through investigating
the wave propagation between them. This paper is the first work
to infer ambient traffic conditions based on building vibration
response. This approach allows buildings to understand sur-
rounding events in a cost-effective way using vibration monitor-
ing systems that commonly exist in buildings (e.g., for seismic
activity or serviceability monitoring). In addition, the advantages
of data-driven approach lie in the less requirement of a priori
knowledge about physical properties of building structure. For
different buildings, the absolute value of directed information
between sensors will change with different natural frequency and
damping ratio. However, our method focuses on the changes in
the directed information value, instead of their absolute values, to
infer train events. Thus, the algorithm is robust across different
buildings.

FIGURE 1 | (A) Train is passing by Rohm building (photo taken by the camera installed on the top of Rohm building); (B) physical insights of wave propagation from
train to building.
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3. CAUSAL ANALYSIS-BASED TRAIN
TRAFFIC MONITORING ALGORITHM

We introduce an information-theoretic algorithm to infer ambi-
ent traffic events using the causal relationship between vibration
responses of building structures. This algorithm consists of three
steps as shown in Figure 2: (1) collect building vibration data
from different locations (Section 3.1), (2) detect the time interval
of a train passing by the building using wavelet features (Section
3.2), and (3) infer the event characteristics based on directed
information (Section 3.3).

3.1. Data Collection
In this section, building vibration responses are collected to char-
acterize nearby train activities. Vertical acceleration responses are
measured using accelerometers installed at various locations of
building floors. We need at least two sensors for two reasons: (1)
the algorithm for event detection combines data from multiple
sensors to mitigate the effect of noise from specific concentrated
areas; (2) the directed information represents the information
exchanges between each pair of signals. More sensors provide
higher spatial resolution for information flow patterns, which
lead to more accurate and robust event inference. The locations
of sensor deployment are suggested as (1) deploy on the upper
floors: upper floors tend to have stronger train-induced vibrations
(Xia et al., 2005); (2) spread out sensors: this mitigates the noise
from concentrated areas; and (3) avoid areas with machines (e.g.,
elevator and fan) to reducemachine-induced vibration. Eachmea-
surement of sensor i at time t is denoted as xi(t). These vibration
signals are preprocessed by being quantized into S levels for com-
putational efficiency when calculating the directed information in
Section 3.3. The exchanged information between different loca-
tions of building is extracted from pairs of preprocessed vibration
data.

3.2. Event Detection
To characterize the train event, the algorithm first detects the
time interval during which a train passes by the building, referred
to as an event. The wavelet transform is used to capture the
characteristics of train-induced building vibration. We extract the
features by combining the wavelet coefficients of vibration signals
collected from all sensors on each floor. Based on the wavelet-
based features, the train event is detected using machine learning
techniques.

3.2.1. Extract Wavelet-Based Features
The building vibration signals are analyzed using wavelet trans-
form to extract features that are sensitive to train excitations.
Train-induced building vibrations are often non-stationary in

nature, meaning that their statistical characteristics change over
time. Thus, conventional signal analysis methods such as Fourier
transform and auto-regressive modeling are not suitable. In con-
trast, wavelet transform uses wavelet bases that are localized in
both time and frequency to represent signals. This allows wavelet
transform to represent the time evolution of the frequency con-
tents of the non-stationary signals. In addition, many classes
of functions can be represented by wavelets in a compact way
(Coifman et al., 1992). This compactness results in easier event
detection because fewer features can represent the event of inter-
est. Wavelet analysis has been widely applied as a promising tool
to extract structural dynamic characteristics in structural health
monitoring and other related fields (Chang, 1999; Hera and Hou,
2004; Taha et al., 2006; Noh and Kiremidjian, 2009; Noh et al.,
2009, 2011, 2012; Mirshekari et al., 2015, 2016a,b; Pan et al.,
2015a,b, 2016; Lam et al., 2016). Similarly, we use wavelet to
extract structural dynamic characteristics that change with train
activities.

The wavelets are generated from a mother wavelet, Ψ(t), by
scaling and time-shifting:

Ψs,τ (t) =
1√
s
Ψ

( t− τ

s

)
, (1)

where s is the scale factor and τ is the time-shift factor. Then, the
wavelet transform of the vibration signal xi(t) with respect to the
wavelet function Ψ(t) is defined as

γ(s, τ) =
∫

xi(t)Ψ∗
s,τ (t)dt, (2)

where Ψ∗
s,τ (t) represents the conjugate function of Ψs ,τ (t).

Since the signals are oscillatory, the average of wavelet coeffi-
cients over a small time window in each scale is used as features
for each sensor data. For every time window, the feature is a vector
with the length of the number of scales used for the analysis mul-
tiplied by the number of sensors. The size of the time window and
the number of scales are determined empirically and discussed
with more details in Section 4.2.3.

3.2.2. Detect Train Events
Machine learning algorithms are used to classify the extracted
features at every time window as train event or no event. In
particular, we considered Support Vector Machine (SVM) and
Random Forest as classifiers. SVM maps the features in the orig-
inal finite-dimensional space into a higher-dimensional space,
presumablymaking the classification easier in the new spacewhen
the decision boundary is non-linear (Cortes and Vapnik, 1995).
SVM is also robust to noise by allowing outliers to bemisclassified
(i.e., ignore some data for classification if they are likely to be

FIGURE 2 | Framework of the algorithm.
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outliers). This allows us to classify data while rejecting outliers at
the same timewithout using additional outlier detectionmethods.
Random Forest is a decision tree style algorithm that uses ran-
domized subsets of features to train a forest of decision trees and
chooses themode of their outputs as classification result (Liaw and
Wiener, 2002). The wavelet-based features of each time window
are input to classifiers. The corresponding training labels are
whether the train events happen in each time window. The classi-
fiers learn the mapping between the features and the labels using
the training dataset. Then with input feature of a new testing sam-
ple, the classifiers determine whether the corresponding building
response in the time window is influenced by the train event.

3.3. Event Inference
When a train event is detected, directed information between each
pair of sensor signals is used for inferring the characteristics of
the train event. The directed information quantifies information
exchange patterns or causality relationship among vibration sig-
nals at multiple locations in the building as features. Then, classi-
fication method is used to categorize the event characteristics.

3.3.1. Extract Directed Information-Based Features
The causality relationship between vibrations at different sensor
pairs represents the information exchange patterns between these
signals. Conventional vibration signal analysis methods often
extract vibration characteristics from each sensor individually.
But these methods demand dense implementation of sensors for
fine-grained understanding of the structure and events (Pines and
Lovell, 1998; Lynch and Loh, 2006; Kim et al., 2007; Xu et al.,
2016). In contrast, the causal analysis extracts relational infor-
mation between different sensors’ measurements, which provides
richer information than that from only a single sensor measure-
ment. The causality inferred from vibration signal represents the
directionality of wave propagation in the structure under various
loading conditions. Analyzing the vibration data directly to infer
wave propagation information is difficult in practice due to a
high level of noise. To this end, we utilize information theory to
quantify the causal relationship. The information theory is based
on the probabilistic modeling of information (or uncertainties) in
random variables (or processes). Thus, this approach is suitable
for dealing with noisy vibration signals with high uncertainties.

Directed information quantifies the causality between two
stochastic processes (i.e., a sequence of random variables) using
an information-theoretic approach. A keymeasure in information
theory is entropy, which quantifies the amount of uncertain-
ties (or lack of information) in random variables (Jaynes, 1957;
Anderson, 2008). For example, let X and Y be random numbers
representing the numbers from tossing fair 4-sided and 12-sided
dies, respectively. X has higher predictability than Y. Thus, the
entropy of X is smaller than the entropy of Y. When the two
random variables or processes are dependent (i.e., knowledge of
one process provides information about the other process and
vice versa), mutual information can quantify the shared informa-
tion between them (Comon, 1994; Schreiber, 2000). For example,
let another random variable Z= 1 if Y = 1 and Z= 0 otherwise.
Then knowing Y increases the predictability of Z and vice versa
because of the shared information between them. This shared

information is computed as the gained information (or reduc-
tion in uncertainties) about one variable due to knowing the
other variable, typically referred to asmutual information.Mutual
information is a symmetric measure (i.e., the gained informa-
tion about Y by knowing Z is same as the gained information
about Z by knowing Y). On the other hand, directed information
is an asymmetric measure that quantifies the directionality in
the dependency between two stochastic processes, quantitatively
depicting the causality (or feedback) relationship between them
(Massey, 1990).

In our problem, we define two stochastic processes Xi(t) and
Xj(t) to represent building vibrations at sensor locations i and j,
respectively, and then define the directed information between
them using their joint probability density function (PDF). If Xi(t)
and Xj(t) are independent, their joint PDF is equivalent to the
product of their marginal distributions for all times n1, . . . , nN,

P(Xi,n1:nN ;Xj,n1:nN) = P(Xi,n1:nN)P(Xj,n1:nN), (3)

where Xi,n1:nN and Xj,n1:nN represent the collections of Xi(t) and
Xj(t), respectively, for t= n1, . . . , nN. Then, the mutual infor-
mation of Xi and Xj (I(Xi; Xj)) is quantified as the distance (or
information discrepancy) between the joint PDF and the prod-
uct of the marginals by using the concept of Kullback–Leibler
divergence (Dhillon et al., 2003; Veyrat-Charvillon and Standaert,
2009) (i.e., the mutual information measures the degree of depen-
dency). The distance here represents the information gain that we
revised our belief from Xi and Xj are independent to that Xi and
Xj are dependent:

I(Xi,n1:nN ;Xj,n1:nN) = E
[
log P(Xi,n1:nN ;Xj,n1:nN)

P(Xi,n1:nN)P(Xj,n1:nN)

]
. (4)

Mutual information is always non-negative. And mutual infor-
mation will be zero when Xi(t) and Xj(t) are independent. This
mutual information does not represent any directionality in infor-
mation flow. To introduce directionality, an alternative factor-
ization in terms of the joint PDF is proposed. This factorization
can represent the information feedforward and feedback (Massey,
1990):

P(Xi,n1:nN ;Xj,n1:nN) =
←−P (Xi,n1:nN |Xj,n1:nN)

−→P (Xj,n1:nN |Xi,n1:nN),
(5)

where ←−P (Xi,n1:nN |Xj,n1:nN) =
∏N

k=1 P(Xi,nk |Xi,n1:nk−1 ;Xj,n1:nk−1)
and−→P (Xj,n1:nN |Xi,n1:nN) =

∏N
k=1 P(Xj,nk |Xi,n1:nk ;Xj,n1:nk−1). If we

consider Xi as an input and Xj as an output,←−P (Xi,n1:nN |Xj,n1:nN)
and −→P (Xj,n1:nN |Xi,n1:nN) correspond to information feedback and
feedforward, respectively.

Similar to the definition of the mutual information where we
compare the true joint PDF to the PDF computed as if the pro-
cesses are partial dependent, the directed information from Xi
to Xj is defined as the information discrepancy between the true
joint PDF and the PDF computed as if Xi depends on Xj but not
vice versa. Thus, the directed information is defined as

I(Xi,n1:nN → Xj,n1:nN) = E

[
log

P(Xi,n1:nN ;Xj,n1:nN)
←−P (Xi,n1:nN |Xj,n1:nN)P(Xj,n1:nN)

]
.

(6)
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The directed information is smaller than or equivalent to
the mutual information. When Xj does not depend on Xi,−→P (Xj,n1:nN |Xi,n1:nN) = P(Xj,n1:nN), and directed information
is equal to the mutual information. Note that I(Xi,n1:nN →
Xj,n1:nN) ̸= I(Xj,n1:nN → Xi,n1:nN). With transform on equation
(6), the directed information can also be expressed using entropy
and conditional entropy:

I(Xi,n1:nN → Xj,n1:nN) = H(Xj,n1:nN)− H(Xj,n1:nN ||Xi,n1:nN), (7)

where

H(Xj,n1:nN ||Xi,n1:nN) =
N∑

k=1

H(Xj,nk |X
nk−1
j,n1

,Xnk
i,n1

). (8)

The entropy H(Xj,n1:nN) and H(Xj,nk |X
nk−1
j,n1

,Xnk
i,n1

) here are
functionals of the discrete distribution of variables Xj,n1:nN and
Xj,nk |X

nk−1
j,n1

,Xnk
i,n1

for k∈ {1, . . . , N}. When estimating directed
information, we use equation (7) for computational efficiency,
instead of equation (6) that involves estimating joint PDF. The
entropy values are estimated using the minimax rate-optimal
estimators under l2 loss (Jiao et al., 2013, 2015). Theminimax esti-
mator minimizes the maximum loss function between estimator
and functional of real distribution. The loss function is l2 norm of
difference between estimator and functional of real distribution.
We use empirical D-tuple joint distribution based on the collected
data to estimate the functionals of real distribution, and it has been
proved that empirical joint distribution of D-tuple converges to
the true joint distribution (Jiao et al., 2013, 2015). The estimator
converges faster and has less mean square error than conventional
MLE (Maximum Likelihood Estimator) (Jiao et al., 2015).

Using the building vibration data collected from different loca-
tions, directed information between all the sensor measurement
pairs is computed to obtain the causality between them. Based
on the known sensor locations, we can construct the building
vibration pattern graph under different train events. The differ-
ence between the directed information from sensor i to j and
their inverse directed information (i.e., directed information from
sensor j to i) is defined as feature. If the feature has a high absolute
value, the information exchange from sensor i to j has strong
directionality. The feature with value close to zero represents weak
directionality.

Since the directed information is computed at every time point,
the feature dimension is high when data sampling frequency is
high. Thus, we use windows to segment the original directed
information features and take an average value for each window.
The window sizes are determined empirically as investigated in
Section 4.3.2.

3.3.2. Infer Train Event Characteristics
This paper uses different train direction to illustrate the event
characteristics. The train direction is classified using the directed
information based features extracted from multiple sensor mea-
surement pairs. Supervised machine learning approach is used
for this purpose. The main challenge of our problem is the high
dimensionality of the directed information based feature. When
the number of training sample is relatively small, the classification

algorithm performance may become unstable. To address this
challenge, we use kernel support vector machine for classification
(Cristianini and Shawe-Taylor, 2000; Scholkopf and Smola, 2001).
Thismethod has an advantage in handling high-dimensional data.

4. EVALUATION

In this section, we evaluate our algorithm by deploying our system
in an 11-story building with a light rail line running 100m away.
During a 3-month period, we collected approximately 10GB of
vibration data, and 450 hours of video for ground truth. The
vibration data are collected from four groups of sensors deployed
on the 11th floor of building. Then, we extract wavelet-based
features and use machine learning to detect the time interval of
a passing train. Finally, with the detected time interval, we extract
the information exchanges inside building during train passing to
infer the directions of train.

4.1. Rohm Building Experiment Setup
We evaluate our algorithm for 1month on a train-building system
with nearby light rails. Here, we give a brief description of the data
collection system.

The deployment is done in the newly completed Rohmbuilding
at the Tsinghua University campus located in Beijing China. It is
an 11-story building with 3 basement levels, totaling 3,50,000 ft2.
The building houses the Electronic Engineering Department
of Tsinghua, and about 1,000 occupants work in the building.
This building is located around 80–140m away from a railway
(10 trains per day) and Beijing light-rail line 13 (1 million daily
riders, 5–11min between two trains), respectively. These lines
provide a regular active excitation to the building. The left side
of Figure 3 shows a top down view of the deployed building. The
center of the figure shows the train track location, and the right
side of the figure shows the photos of the sensor (top), light rail
track (middle), and the outside view of the building (bottom).

The building is deployed with 40 high-quality accelerometers.
These sensors are embedded in the floor of the building tomonitor
vibrations. The network of accelerometers is distributed over the
building to record its vibration at different locations and direc-
tions. The accelerometers are divided into 16 groups and deployed
on the 1st, 5th, 8th, and 11th (top) floor of the building, with
4 groups on each floor. These sensors are deployed at the same
location per floor (approximate location shown on left side of
Figure 3). Coaxial wires are used to connect the sensors to a data
collector on each floor, which sends the vibration data to a central
server through local area networks. In this experiment, we utilized
only the 11th floor sensors as it gives the largest swing and highest
sensitivity to our measurements. We collected data on weekdays
from June to August in 2015.

The precision of our single-axis sensor is 10−5 m/s2, with
highest sample rate of 1,024 samples per second. In our experi-
ments, we collected data at 200Hz totaling 400million data points
through the period of the experiment due to storage limitations.

There are trains passing by building in two opposite directions
daily: from North to South, and from South to North. About
70 trains with heavy loadings including cargo and thousands of
passengers pass by the building daily. Throughout the experiment,
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FIGURE 3 | Building, location of train track, and sensor deployment (vertical view).

we observed roughly 1,200 train passes. These vibrations are not
strong enough to be directly perceived by humans.

4.2. Event Detection Results and
Discussion
This section presents the train event detection results. We first
characterize the wavelet-based features extracted from building
vibration signals under different train events. Then, we explain
how to find the ground truth for evaluation using camera data.
Finally, the accuracies of event detection using two machine
learning techniques are presented and discussed.

4.2.1. Characterization of Wavelet-Based Features
In this section, we show the characteristics of the data to better
understand the signals.We first show both the time and frequency
domain of vibration signals through a train event. Then, we show
our wavelet transform technique provides multi-resolution to
show the existence of train event around building by capturing
characteristics of vibration.

We give an example of signal segment in Figure 4 to illustrate
the general nature of the captured signal. The data are collected
from 4 sensor groups described above at the time when a train
is passing. Based on the camera data, we manually labeled the
train passing time at 32–48 s. As Figure 4 shows, the measured
vibration signals are quite noisy, and the train event is not obvious
well bellow the noise floor as to make it not immediately visible.
This is due to the high amount of environmental noise in the
setting including outside traffic, heating and cooling systems of
the building, weather, building occupants, etc.

Figure 5 shows the same raw signals using Short-time Fourier
Transform (STFT) with window length of 0.25 s. Although the
general vibration frequency of current building is visible in this
figure, the train event cannot be seen from the time-frequency
features. This is due to the fact that short-time Fourier Transform
decomposes signals in fixed frequency resolution while the train

generates multiple frequencies. Note that although the low fre-
quency area (around 10Hz) in Fourier spectrum of sensor 3 signal
shows high energy values indicating an event happening at around
40–42 s, using this feature would incur frequent false positives
and negatives because (1) the time duration of high energy area
is short; (2) there exists many other peaks of similar magnitude
and durations; and (3) the high energy area does not appear in the
spectrumof any other three sensors. Although thewindow size for
STFTmay be tuned for each frequency to optimize the visibility of
the peak, it is difficult to apply different window size for different
frequencies for STFT, and it requires multiple parameter tunings
which makes the algorithm inefficient.

Wavelet analysis results of two vibration data series produced by
4 sensors using ContinuousWavelet Transform (CWT) are shown
in Figure 6. Here, we choose scale from 1 to 32, which includes
general frequency of Rohm building vibration of 10–80Hz. The
larger coefficients indicate stronger similarity between the signal
and the analyzing function. As Figure 6 shows, the wavelet coef-
ficient under the train event is significantly higher than wavelet
coefficient at the time with no passing trains (compared to the
raw time-domain signal in Figure 4 and short Fourier transform
shown in Figure 5). In particular, the coefficient corresponding
to the train passing event is most prominent from 8 to 24 in scale.
The result shows the advantage of wavelet analysis in detecting the
train-induced slight changes of vibration signals.

4.2.2. Train Event Labeling
To perform the evaluation, we need to properly label the segments
of the vibration input using ground truth (video). In our case,
we recorded the train passing time as the time when the head of
train arrive at one side of building, until the time that the end
of train leave the other side of building. In our experiments, we
observed that it took 12–20 s for a train to pass by the building
depending on its speed and length. This time interval recorded by
visual inspection may not represent the “true” time interval when
the vibration excited by train will influence the building. This is
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FIGURE 4 | Vibration signals for 60 s collected from 4 sensors deployed on the 11th floor as shown in Figure 3. The train passed by the building at 32–48 s
(as red boxes show). The building vibration due to train is not obviously visible due to the background noise. (A) Sensor 1. (B) Sensor 2. (C) Sensor 3. (D) Sensor 4.

A B

C D

FIGURE 5 | Short-time Fourier Transform (STFT) of vibration signals shown in Figure 4. The red boxes show the time duration of train passing. Similar to the
vibration signal, the train event is not obviously visible. (A) Sensor 1. (B) Sensor 2. (C) Sensor 3. (D) Sensor 4.

A B

C D

FIGURE 6 | Wavelet coefficients (scaled from 1 to 32) of the building vibration signals shown in Figure 4. The red boxes show the time duration of train
passing. The train event is clearly visible in the data from all four sensors between 38 and 45 s. (A) Sensor 1. (B) Sensor 2. (C) Sensor 3. (D) Sensor 4.
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FIGURE 7 | The histogram of 82 cases’ ratio of delay time to total time of train passing, which is calculated by cross-correlation. Y-axis represents the
number of cases, X-axis represents the ratio of delay time to total time length, and red line is the pdf curve of corresponding fitting normal distribution. (A) Ratio of
delay time from South to North. (B) Ratio of delay time from North to South.

due to the difference of speed of visual light vs. ground vibration,
and different strength of influence due to the ground composition.
We calculate and remove this time delay interval by using cross-
correlation to calculate the delay time between when the train
passed by the building and when the building got affected.

To obtain the ground truth of the train passing, we recorded
a total of 450 hours of usable video (image capture shown in
Figure 1A). Using the video, we obtained manually a binary
observation sequence indicating whether the train passes by the
building at each time fragment of 1 s and its direction. Then, we
divided the vibration data into fragments of the same length and
use average wavelet coefficients over scale 8–24 as the indicator,
which contains the information about the influence from train.
Through calculating the cross-correlation between observation
sequence and influence sequence, the time shift with which the
maximum cross-correlation value appears is regarded as the max-
imum possible delay between the two sequences. Because of the
velocity and length of train changes, the total time of train passing
by the building is also different. Here, we calculated the ratio of
delay time to total time length to see the distribution of delay
time. Figure 7 shows the histogram of delay time ratio’s distribu-
tion. Specifically, Figures 7A,B separately show the relationship
between delay time and directions of the train. As expected, the
train from south to north tends to get positive delay time ratio
and the train from north to south tends to get negative delay time
ratio. We can use these factors to calibrate the delay time based on
visual time and delay time and get the ground truth about when
the vibration of building was affected by train.

4.2.3. Train Event Detection Results
Using the wavelet results, we input the extracted wavelet coeffi-
cient as features to classification model to detect whether the train
passed by or not at corresponding time interval.

After extracting the wavelet coefficient as features, we use
supervised classification on time fragment for train event detec-
tion. Here, we considered Support Vector Machine (SVM) and
Random Forest (RF) as classifiers.

The average of wavelet coefficients over different time frag-
ments are calculated as features on each scale and each sensor.
For every time unit, we extracted the average wavelet coefficients
over scale 8 to scale 24 from each sensor. Thus, we will have t× 4
dimensional features, where t is the number of time unit. For

FIGURE 8 | The figure shows how accuracy of different methods
changes with increasing window length. “Wavelet+*” represents we use
wavelet analysis to extract feature; “Fourier+*” represents using Fourier
analysis to extract feature; and SVM and RF represent the classification
method Support Vector Machine and Random Forest, respectively.

the training set, the output is a binary label sequence indicating
whether there is a train passing during corresponding time or not.

As a baseline to our algorithmdescribed in the previous section,
we extract dynamic frequency domain features to identify the
effect from traffic events. This is extracted using Fourier analysis.
We analyzed the peak frequencies with amoving window of 1 s on
the vibration data. We calculate the corresponding power spectral
density and record the frequency and PSD of the 5 largest peaks.

Our dataset includes the vibrational data collected in the build-
ing and video ground-truth data. The dataset was down selected
to only include train passing through without light rail pass-
ing within 1min before and after to simplify the problem. This
includes 55 cases when there is a passing train and 60 cases when
there is no passing train. 90 (45 train, 45 no train) samples are used
to train binary classification models, and the remaining 25 cases
are used to test the accuracy of classification models. We labeled
the samples by combining collected visual data and delay time.

With sample rate of 200Hz and around 16-s long-time series,
the number of features is always much higher than sample num-
ber, which is unbalanced andmakes it difficult to trainmodels. As
discussed in Section 3, we use a sliding time window to increase
training accuracy. Figure 8 shows the classification accuracy of
the two algorithms (SVM vs. RF) using both feature selection
methods (wavelet and Fourier) over time. The performance of
random forest is better than that of a tuned support vector
machine. The optimal window length is around 0.25 s. We can
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see that when we use all wavelet coefficients during train pass by
as features, the accuracy is low due to small number of training
samples compared to number of feature. And when the window
length is too long (e.g., 1 s), the accuracy also decreases because at
this window length some information begins to be lost for event
detection.

Figure 8 also compares the two feature selection methods, one
is based on wavelet analysis and another is based on Fourier
analysis. We see that the accuracy of wavelet-based feature is
consistently higher than the accuracy to use Fourier-based feature.
The highest accuracy (wavelet with random forest) of 88% is
achieved at window length of 0.25 s based on features of wavelet
coefficient and Random Forest classification models.

We further present the confusionmetric of the prediction result
and ground truth in Table 1. From the table, we see that the
train passing event is correctly classified 93.3% of the time, corre-
sponding to 6.7% false negative. Similarly, the no train is classified
correctly 80% of the time, corresponding to 20% false positive.
This is likely due to the location of the testing building being next
to both rail and large roads. The effect of the train event is fairly
similar to existence of other large traffic. Thus, during training, we
only identified tests that have effect and no train and did not train
the difference between other large traffic events (trucks, buses,
etc.). This similarity raises the false positive events.

To see the sensitivity of the detection due to the system, we
also analyzed the effect of sample rate on train event detection
accuracy. By subsampling the vibration signals from a sample rate
of 200Hz, we simulate collecting vibration data with sample rate
of 100, 50, 25, and 1Hz. As Figure 9 shows, when the sample
rate is low, e.g., 1Hz, the highest train event detection accuracy
is only about 56%, which is close to 50% accuracy baseline of
blind classification. When the sample rate increases to 25Hz, the
accuracy achieved 84%, which is 28% higher than the accuracy
on sample rate of 1Hz. However, with sample rate increases
further to 50 and 100Hz, the accuracy drops. This is likely due
to that the majority of train vibration information exists in the
lower frequencies, i.e., near 25Hz. For example, this could include
general rumbling created by the train, or a cart in the hallway.
However, for increased accuracy, the distinctive features of the
train vs. no train passing are at higher frequencies. The initial drop
in accuracy could be due to the increasednoise introduced initially
at the mid frequencies.

4.3. Event Direction Inference Results and
Discussion
In addition to the existence of the train events, we further explore
the results of directional inference of the train through the use of
directed information between the multiple sensors.

4.3.1. Characterization of Directed Information
Features
In order to characterize beyond the existence of the train, we
explore the directionality of the train event. In this evaluation, we
use the same 4 sensors on the 11th floor of the building recording
vertical vibration to investigate their influence on each other (see
Figure 3). These 4 sensors will have 6 paired combinations (sensor
1 vs 2, sensor 1 vs 3, sensor 1 vs 4, sensor 2 vs 3, sensor 2 vs 4, and

TABLE 1 | The true positive, true negative, false positive, and false negative
of train event detection.

Ground truth

Train pass (%) No train pass (%)

Prediction result Train pass 93.3 20.0
No train pass 6.7 80.0

FIGURE 9 | Accuracy under different sample rates based on (1) red
line: wavelet coefficients as features and Support Vector Machine as
classification model; (2) blue line: wavelet coefficients as features and
Random Forest as classification model.

sensor 3 vs 4). First, we found that the building vibration patterns
without a passing train are rather random and show no consistent
patterns in directed information results. Thus, there is no inherent
bias in the information propagation without the train.

In our case, the signals will be quantized into 10 levels before
calculating directed information. The algorithm introduced in
Section 3 can detect the time and duration of train events automat-
ically. Then, we extract the vibration signals during train events
and quantize these signals. In general, to effectively estimate the
directed information, a large number of quantization level is
desirable, since with large quantization levels, the signal ampli-
tude range for each quantization level is small (i.e., higher signal
resolution) such that more information contained in difference
between signals can be extracted. However, this level cannot be
too large because of the limitation ofm ≈ SD+1

lnS .m is the sufficient
sample number for calculating directed information between two
signals and m< n, where n is the total sample number. So we
decidedmaximum quantization level of 10 based our current total
sample number and reorganized the data of sensor 1 and 2 into
twom× (n−m) matrix. The matrix will be input to calculate the
directed information along time series.

We constructed the vibration pattern with train in two dif-
ferent directions, northbound and southbound. Here, we use
simple threshold to find the direction of information exchange
between sensor pairs based on the extracted directed informa-
tion and inverse-directed information. For example, given sensor
1 and sensor 2, if the absolute value of I(1→ 2)− I(1→ 2) is
less than threshold, we regard the case as no directionality in
the information exchanges between sensor 1 and sensor 2. If
I(1→ 2)− I(2→ 1) is large than the threshold, we regard the
direction is from sensor 1 to sensor 2; If I(2→ 1)− I(1→ 2) is
larger than the threshold, the direction will be from sensor 2 to
sensor 1.
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FIGURE 10 | (A) Directions of information propagation among 4 sensor groups on the 11th floor when a train passes from South to North; (B) directions of
information propagation among 4 sensor groups on the 11th floor when a train passes from North to South.

Figure 10 shows the dominant vibration patterns when
there are trains passing by the building in different directions.
Figure 10A shows the northbound train, and Figure 10B shows
the vibration pattern for the southbound train. The arrow shows
the direction of the propagation of information using directed
information. More than 40% N–S cases have the same pattern as
Figure 10A shows, andmore than 45% northbound cases have the
same pattern as Figure 10B. Other patterns follow this general
trend. For the northbound trains, the vibration is first observed
from the southern end of the building (sensors 2–4) and prop-
agates to the northern part of the building. For the southbound
trains, the vibration information propagates from east (sensors 2
and 3) to west (sensor 4).

Over the whole train passing process, the building vibration
is a very complex process with coupling of excitation source
and structure properties. In the process of wave propagation, the
reflection, interference, and diffraction between wave and struc-
tures are very complicated. Besides, the train here is a moving line
excitation source, which makes the vibration pattern extracted
based on the overall process of train passing more complex. It is
hard to predict the vibration patterns inside building intuitively by
matching them with the train direction. However, since the time
of wave arrivals on different sensors varies with trains’ direction,
we can conclude that the vibration patterns are different under
different directions of train passing by the building. The change
of pattern revealed in two causal graphs demonstrates not only
the event’s influence on the building’s vibration characteristics
but also how the building reacts to different kinds of vibration in
different ways.

4.3.2. Train Event Inference Results
Based on extracted directed information features, we used a
classification model to predict the directionality of train events.
Here, we label each sample using the direction of the passing
train during the corresponding time interval. We also need to
decide the optimal window length of generating samples: when

FIGURE 11 | Accuracy of train direction prediction: (a) red line: using
directed information as features; (b) blue line: using cross-correlation
coefficients features.

the window length is too short, the uncertainty of value of directed
information will affect the extracted feature significantly; when
the window length is too long, we may lose the details about the
response of information exchanges inside building to train events
during the time window. In our method, support vector machine
is applied to classify the direction based on the extracted directed
information features.

To evaluate our classification system, Figure 11 shows the accu-
racy to infer the direction of train passing by the building using
different sliding window lengths. The red line shows the results of
our directed information approach, while the blue line uses cross-
correlation coefficients between sensor pairs. The results show
that the accuracy decreases with large window lengths. That is
because longer window length loses time resolution of features.
Figure 11 also shows that given the same classification method,
our directed information-based features achieve the directional
accuracy of up to 86.9%, compared to 66.9%when using the cross-
correlation-based method. This corresponds to a 2.5× reduction
in error.

In this paper, we evaluate the robustness of our algorithm to
some factors (e.g., weather condition, temperature, indoor people
activity, other traffic noise, etc.), by collecting data on different
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FIGURE 12 | Accuracy of train direction prediction (A) under different environmental temperatures between 66 and 96°F; (B) at different time of day
from 5:00 a.m. to 9:00p.m.

days and different time of a day with various temperature, noise
level, peoples activity, and weather conditions, including rainy,
sunny, and cloudy weather. Figures 12A,B show the algorithm
accuracy for different temperature level and time of the day,
respectively. Although the temperature may cause changes on the
physical properties of building structure, we found that our algo-
rithm is robust to temperature variations, as shown in Figure 12A.
In addition, the weather pattern was fairly consistent over a day
and closely correlated with temperature, which implies that our
method is also robust to weather. For Figure 12B, the accu-
racy starts decreasing at the beginning of business hours around
7:00 a.m. and then starts increasing around noon time and then
reaches the maximum value around 5:00 p.m. This may be due
to indoor activity and outside traffic noise during business hours.
On weekdays, indoor people activities are very frequent during
9:00 a.m. to 5:00 p.m. The traffic on the road between Rohm
building and train track is particularly busy during the afternoon.
There are several other factors may also affect the performance of
the algorithm, such as wind speed, which can be potential future
work for this project.

5. CONCLUSION

In this paper, we present a method to detect and characterize
train events through an information-theoretic approach using
a building’s vibration responses. We represent vibration prop-
agation in the building structure as information exchanges in
signals using directed information measure. Our event detection
method first identifies time of train passing using wavelet-based
features. Then, directed information estimators are used to study
the building’s vibration characteristics under different train event
conditions (southbound vs. northbound trains).We evaluated our
method using an 11-story building located near a light rail line
and achieved 93% true positive rate and 80% true negative rates
for train event detection. The directions of passing trains were

inferredwith accuracy of 86.9%,which is a 2.5× reduction in error
compared to conventional method.

The directed information based on causal analysis provides
a new perspective in analyzing building dynamics, with which
traditional physics-based analysis can be coupled, for further
improvement. While this paper focuses on the passing of trains,
it can similarly be applied to other significant traffic events in the
surrounding environment.
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