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Over the last decade, there has been an increasing interest in models for the evaluation 
and prediction of the condition of bridges in Canada due to their large number in an 
advanced state of deterioration. The models are used to develop optimal maintenance 
and replacement strategies to extend service life and optimally allocate financial and 
technical resources. The main process of deterioration of concrete bridges in Canada 
is corrosion of the reinforcing steel due to the widespread use of de-icing salts. In this 
article, numerical models of the diffusion process and chemical reactions of chloride ions 
in concrete are used to estimate the time to initiation of corrosion and for the progression 
of corrosion. The analyses are performed for a range of typical concrete properties, 
exposure and climatic conditions. The results from these simulations are used to develop 
parametric surrogate Markov chain models of increasing states of deterioration. The 
surrogate models are more efficient than physical models for the portfolio analysis of 
a large number of structures. The procedure provides an alternative to Markov models 
derived from condition ratings when historical inspection data is limited.

Keywords: concrete bridges, deterioration, Markov chain, transition probabilities, chloride ions content

inTrODUcTiOn

Reinforced concrete bridges are critical elements of the transportation network in Canada. Many 
of these bridges are reaching the end of their service life and showing advanced stages of deteriora-
tion. Due to the large number of structures requiring repairs or replacement, a rational procedure 
is needed to prioritize interventions and optimally allocate financial and technical resources. The 
main process of deterioration for concrete bridges in Canada is due to the use of de-icing salts 
to maintain bare pavement conditions during winter (NACE, 2012). Several physical models are 
available to predict the ingress of chloride ions in concrete. The simplest models are based on the 
diffusion equation (Crank and Gupta, 1975), while more advanced models can account for other 
ion transport mechanisms, types of exposure, climatic conditions (Conciatori et al., 2009, 2010), 
and chemical reactions (Samson and Marchand, 2007). Most models are developed for undamaged 
concrete elements; however, corrosion induced cracking of the concrete can greatly accelerate the 
deterioration process once corrosion has progressed (Jefremczuk, 2005).

The model used in this application is Transchlor® (Conciatori et al., 2010), which uses hourly 
climate data (precipitation, temperature, relative humidity, solar radiation) to replicate the applica-
tion of de-icing salts within a given climatic region. The model also differentiates between the types 
of exposure (direct, splash, or mist) for different bridge elements. However, the one-dimensional 
finite element program is computer intensive, which limits its application in practice to a limited 
number of cases.
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TaBle 1 | Example of Markov chain transition matrix.

Markov transition matrix

state at time t state at time t + 1

good (g) Fair (F) Poor (P)

Good (G) 95.3 4.6 0.1
Fair (F) 0 93.2 3.9
Poor (P) 0 0 100.0

FigUre 1 | Example Markov chain graph with three states.
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When data from inspections and condition assessments are 
available, statistical models for the evolution of condition states 
can be used as an alternative to physical models. Markov chain 
models have been used extensively for predicting conditions 
states (Jiang and Sinha, 1989; Cesare et  al., 1992; Thomas and 
Sobanjo, 2016). The transition probabilities for these models are 
usually estimated using statistics from inspection data but have 
also been derived from simulations with physical models that are 
correlated to condition states (O’Connor et al., 2011).

The transition probabilities can be parametrized as a func-
tion of physical characteristics of the concrete or of the climatic 
region. The latter approach is proposed in this work to derive 
parametrized transition probabilities for specified geographical 
regions as a function of concrete properties. For this purpose, a 
multinomial logit model is used for the transition probabilities as 
a function of diffusion properties of concrete for specific climatic 
and exposure conditions. The model is applied and demonstrated 
for bridges located in the Montreal area.

BriDge DeTeriOraTiOn MODeling

Decisions on the maintenance, rehabilitation, or replacement of 
bridges are based on evaluations of current condition and pre-
dicted residual life. Current condition is evaluated qualitatively 
from inspection reports and rating procedures and quantitatively 
using standards that account, among others, for the level of inves-
tigations performed for a specific structure (CSA, 2014). Similarly, 
future conditions can be qualitatively extrapolated from current 
conditions when historical data from inspections and condition 
ratings is sufficient to develop empirical prediction models or 
quantitatively by using numerical models of deterioration. In 
the latter case, predictions may be tainted by large uncertainties 
on the model, the history of exposure, and material properties, 
which must be accounted for in the development of maintenance 
and rehabilitation strategies (Estes and Frangopol, 2005).

Discrete Markov chain models are usually derived for a small 
number (3–4) of condition states. Four types of models are most 
often used for this purpose: (1) physical models to determine the 
time to the initiation of corrosion, (2) regression models, (3) dura-
tion models, and (4) artificial intelligence (AI) prediction models.

Regression models are the most commonly used by agencies for 
modeling asset performance. Adaptive methods and latent varia-
bles can be employed to gradually forecast condition as a function 
of previous performance and features as well (Washington et al., 
2010a). If inspection data on bridge condition are not available, a 
duration model can be used to determine the residual life defined 
as the period of time remaining before the threshold of lowest 
admissible performance is reached (Caner et al., 2008). Duration 
(also survival or reliability) analysis is a probabilistic method to 
predict the time to failure of a structure and is commonly used 
for mechanical and electrical components (Yang, 2007). Duration 
models may be parametric, semi-parametric, or non-parametric 
(Washington et al., 2010b). AI refers to computer techniques for 
automating decisions based on a set of inputs. AI techniques 
include genetic algorithm (GA), expert systems, case-based 
reasoning, and artificial neural networks (ANN). Sobanjo (1997) 
uses ANN for modeling bridge deterioration. A multilayer ANN 

is used to relate the condition of the bridge superstructure to the 
number of years of service of the bridge and other relevant inputs. 
Tokdemir et al. (2000) use ANN to forecast the bridge condition 
as a function of bridge geometry, level of traffic, years in service, 
and structural attributes as explanatory variables.

The development of deterioration functions for bridge is most 
often accomplished with discrete Markov chains. The Markov 
chain is defined for a sequence of condition states starting with 
a new structure and ending with a failed or obsolete structure 
(Micevski et  al., 2002). The condition states can be defined on 
either a qualitative or quantitative scale. The Markov chain is a 
memoryless process since the probability of transition probabili-
ties from one state to the next is only a function of the current 
state (Morcous, 2006). The Markov chain is completely character-
ized by the transition probabilities and the initial probabilities 
for each state. The transition probabilities are typically defined 
for a standard step or time interval of 1 year corresponding to 
the interval between inspections. The transition probabilities can 
be parametrized as a function of material properties, degree of 
exposure, and even number of years of service. The probabilities 
can be displayed on a directed graph [Figure  1 or in a matrix 
(Table 1)] (Jiang and Sinha, 1989).

MODeling OF chlOriDe iOns 
TransPOrT

In probabilistic service life prediction for reinforced concrete 
structures, modeling the time to initiation of corrosion is the 
most critical parameter (Shafei and Alipour, 2015). The time 
to initiation of corrosion corresponds to the time required 
for the chloride ion content (e.g., % of Cl− per unit weight of 
cement) to reach a critical level (Ccrit). Reported values for the 
critical level vary greatly due to differences in the definition of 
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FigUre 2 | Sample of climate data for Montreal (a) temperature; (B) relative humidity; (c) precipitation; (D) SOLAR radiation.
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initiation, the type of reinforcement, and the stochastic nature 
of corrosion. In some cases, the critical value corresponds to 
the depassivation of the protective layer at the surface of the 
reinforcing steel while from a practical engineering point of 
view it is identified as the level when the degree of deterioration 
of the concrete becomes unacceptable which is highly subjec-
tive (Deb, 2012).

The surrogate Markov model is derived by defining a set of 
discrete states for the chloride ion concentration at the depth 
of the reinforcement from the concrete surface. Historical 
climatic data are used to model the time series for the chloride 
content and uncertainties associated with transport properties 
are addressed by performing a set of analyses for optimally 
selected values from the probability distribution functions of 
the transport and diffusion parameters using the Rosenblueth 
point estimation procedure (Rosenblueth, 1975; Conciatori 
et al., 2009; Wolofsky, 2011). The simulation is used to generate 
a large sample of state transitions for estimating the transition 
probabilities. In this application, only direct exposure is consid-
ered since the analysis is performed only for the concrete deck. 
Hourly climate data was obtained for a period starting at the 
beginning of the service life (1965) of a typical older bridge in 
Montreal until present (Figure 2).

The TransChlor® model includes the effects of two primary 
chemical reactions: carbonation and adsorption of chloride 

ions by the cement paste. The model is implemented through 
a 1-dimensional linear finite element model for the transport 
of chlorides in space and a finite difference model in time. The 
transport modules include thermal and vapor transfers, liquid 
water transport with and without chloride ions, capillary suc-
tion, chloride ion diffusion in water, and carbon dioxide diffu-
sion in concrete (Conciatori et al., 2010; Wolofsky et al., 2015). 
Calculations are performed at intervals of 1 h which provide the 
adequate level of resolution for the simulation of temperature pro-
files, precipitation history, and wetting/drying cycles (Conciatori 
et al., 2008, 2010). Computing time for 45 years exposure period 
is in the order of 2–24 h depending on the performance of the 
computer.

eXPeriMenTal Design

TransChlor® allows a probabilistic analysis for up to four 
concrete properties to account for uncertainties on material 
properties. The four concrete properties are as follows: (1) the 
water vapor transport diffusion parameter (DHR), (2) the liquid 
water capillary suction parameter (DCAP), (3) the chloride ion 
transport diffusion parameter (DCL), and (4) the carbonation 
parameter ( )DCO2

. The four concrete properties are assumed to 
be mutually independent random variables that are fully charac-
terized by their mean and variance. The two-point Rosenblueth 
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TaBle 3 | Average values, distinct values, and associated probabilities 
(lognormal).

Parameter μ(mm2/s) c.O.V (%) X1(mm2/s) X2(mm2/s) F1 F2

DHR 1.3 × 10−4 30 9.28 × 10−5 1.67 × 10−4 0.573 0.427

DCAP 6.5 × 10−4 30 4.64 × 10−4 8.34 × 10−4 0.573 0.427

DCL 4.9 × 10−6 40 3.09 × 10−6 6.68 × 10−6 0.595 0.405

TaBle 2 | Distinct values and associated probabilities for normal and log-normal 
distribution.

Distribution Points associated 
probabilities

X1 X2 F1 F2

NormalN (μ, σ) μ+σ μ − σ 0.5 0.5

Log-normalLN (λ, ξ) eλ − ξ eλ+ξ α
α α

p

p m+
α

α α
p

p m+

Where αm=eλ (1 − eξ), αp=eλ (eξ − 1).

4

Zhang et al. Model of Chlorides in Bridges

Frontiers in Built Environment | www.frontiersin.org March 2018 | Volume 4 | Article 12

method for calculating moments of a random variable is used 
to propagate uncertainty in the transport model and to estimate 
the mean and variance of chloride ion concentrations as a func-
tion of time and depth inside a concrete element. Numerical 
integration methods or Monte Carlo modeling can be used 
in theory as an alternative, however, these are computation-
ally too intensive for the transport model (Conciatori et  al., 
2014). Details of the Rosenblueth point estimators method and 
comparisons with results from Monte Carlo simulations are 
presented in Conciatori et al. (2014). The Rosenblueth method 
is used to estimate the mean value of the chloride content and its 
SD as a function of time and depth into the concrete elements. 
In this work, only the three main contributors (DHR, DCAP, and 
DCL) to uncertainty are included in the analysis which requires 
a total of 23 = 8 simulations.

In the simulations, the lower value is represented by X1 and the 
upper value by X2. The formulas used to determine the distinct 
values (X1, X2) and the associated probabilities (F1, F2) are defined 
as follows (Rosenblueth, 1975; Conciatori et al., 2009):

 
F2 2

1
2

1 1 1
1 2

= − −
+













β
β (β )/

,
 

(1)

 F F1 21= − , (2)

 
X F

Fx x2
1

2
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(3)

 
X F

Fx x1
2

1

= − ⋅µ σ .
 

(4)

The distinct values (X1, X2) and the associated probabilities  
(F1, F2) for a normal and log-normal distribution are shown in 
Table 2 (Conciatori et al., 2009).

The distinct values and associated probabilities are optimal for 
the estimation of the moments of the random variables and in 
particular for the mean value and the variance. Estimates of the 
initial moment of order n for the chloride ion content at time t 
and depth d are obtained with the following expressions:

 
Y t d P y t dn
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n
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(7)

where δj is the point estimate identifier (+, −) for variable j, 
and Pi is the probability associated with a given combination of 
transport properties. The average values of DHR, DCL and DCAP, 
coefficient of variation and distinct values with their associated 
probabilities are shown in Table 3. The average values and coef-
ficient of variation are determined from data bases for concrete 
typical at the time of construction of the bridges (Conciatori 
et  al., 2009). Previous studies also indicate the log-normal 
distribution is appropriate for the distribution of the diffusion 
parameters as well as for the distribution for the chloride con-
tent given the duration of exposure and depth into the concrete 
(Wolofsky, 2011).

The results are obtained as a function of depth in increments of 
2 mm into the concrete for three types of exposure: mist, splash, 
and direct. Figures  3 and 4 illustrate simulations results from 
the TransChlor® model for the eight cases at depths of 26 and 
50 mm for direct exposure. The digits in the legend stand for the 
distinct points (0 or 1 or 2) that are used for each simulation. 
The first three values, respectively, stand for DHR, DCAP, and DCL. 
For example, the curve (1,220) represents the lower value 1 for 
DHR, the higher value 2 for DCAP and DCL, and the value 0 for a 
deterministic value for ( )DCO2

. The simulation was performed for 
a duration of 16,425 days (approximately 45 years) incorporating 
hourly climate data (air temperature, relative humidity, precipita-
tion, and solar radiation). The depth of 50 mm is selected since it 
is common for the thickness of the concrete cover for reinforced 
concrete. The depth of 26 mm is not common and is used to illus-
trate the increase in deterioration rates when the reinforcement 
is not properly placed.

Figures  3 and 4 show that the chloride ion content fluc-
tuates significantly as a function of climatic exposure and 
concrete properties. However, for modeling the deterioration 
of concrete structures, it may be sufficient to determine 
the variability in the annual average level of chloride ions. 
The average annual total chloride ion content is shown in 
Figures 5 and 6 at depth of 26 and 50 mm for each of the eight 
simulations. These indicate that the average annual amount 
of chloride ions increases and reach a steady state after a few 
decades of service but can fluctuate significantly due to the 
variability in annual winter conditions. They also indicate 
that the level of chloride ions is very dependent on material 
properties which can vary among a population of structures 
with similar service life.

The objective of this work is to use Markov chains to capture 
the trends and variability observed in chloride ion content for 
a given location and concrete material properties as predicted 
by TransChlor®. The Markov model can then be used as a sur-
rogate model to the full finite element model to develop optimal 
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FigUre 3 | Dataset simulated from TransChlor® for 50 mm depth.

FigUre 4 | Dataset simulated from TransChlor® for 26 mm depth.
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strategies for the maintenance and replacement of bridges. The 
surrogate model is developed for a given climatic region and is 
applicable to a set of bridges with varying material properties. The 

transition probabilities of the Markov process are parametrized 
by using a logistic regression model where concrete properties are 
the independent variables.
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FigUre 5 | Annual average of chloride ions content based on TransChlor® Dataset for 50 mm depth.

FigUre 6 | Annual average of chloride ions content based on TransChlor® Dataset for 26 mm depth.
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sUrrOgaTe MarKOV chain MODel

Modeling chloride ions content Prediction 
with Markov chains
Markov Chains are adopted to develop prediction models of 
chloride ions content for reinforced concrete with two concrete 
cover thicknesses (26 and 50 mm). The probability of being in a 

given future chloride state is determined only by the current state. 
This property is represented by a stochastic process (Xt) and a 
discrete state space as below (Parzen, 1962):

 
P X i X i X i X i X i

P X i X
i i i i i i

i i i

( )
(

+ + − − ……

+ +

= = = = =
= =

1 1 1 1 1 1 0 0

1 1

| ,
|

, , ,

== ii ),  (8)

where P is the transition probabilities and i is the step.
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TaBle 4 | Transition counts matrix of the chloride ions content for 26 mm depth.

categories content at year n + 1

0–10 10–20 20–30

Content at year n 0–10 N11 N12 N13

10–20 N21 N22 N23

20–30 N31 N32 N33

TaBle 5 | Counts for the initial state 1, 26 mm depth.

response Dhr DcaP Dcl counts

0–10 1 1 1 N11(1)

10–20 1 1 1 N12(1)

20–30 1 1 1 N13(0)

0–10 1 1 2 N11(3)

10–20 1 1 2 N12(1)

20–30 1 1 2 N13(0)

0–10 1 2 1 N11(2)

10–20 1 2 1 N12(2)

20–30 1 2 1 N13(0)

0–10 1 2 2 N11(3)

10–20 1 2 2 N12(1)

20–30 1 2 2 N13(0)

0–10 2 1 1 N11(0)

10–20 2 1 1 N12(1)

20–30 2 1 1 N13(0)

0–10 2 1 2 N11(0)

10–20 2 1 2 N12(1)

20–30 2 1 2 N13(0)

0–10 2 2 1 N11(0)

10–20 2 2 1 N12(1)

20–30 2 2 1 N13(0)

0–10 2 2 2 N11(0)

10–20 2 2 2 N12(1)

20–30 2 2 2 N13(0)
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computations with Markov chains
Given the initial state probabilities vector q(0), the future prob-
ability state vector q(t) at the transition periods t can be calculated 
as the matrix product (Collins, 1975):

 q t q Pt( ) ( )= ×0 , (9)
where,

 

P

P P P
P P P

P P

t

n

n

n n
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…
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1 1 1 2 1

2 1 2 2 2

1 2
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(11)

In this application, q(0) is defined as [1, 0, 0, 0, 0, 0], which 
states that for the probability that chloride ions content will be 
in the first category at time zero is 100%, which corresponds to 
a new structure.

State probabilities for the next time interval can be derived 
from Eq. 11:

 q q P q P q Pn n1 1 1 1 2 2 1 11 0 0 0( ) ( ) ( ) ( )= + +…+, , , ,  (12)

 q n q n P q n P q n Pn n n n n n( ) ( ) ( ) ( )= − + − +…+ −1 1 2 21 1 1, , ,  (13)

The expected chloride ion content at time t is determined from 
the calculated transition probabilities, where, t is the time in years 
as (Butt et al., 1987):

 
E t q t

i

n

i i( ( )) ( )Cl Cl= ⋅
=
∑

1  
(14)

where Cli is the middle value for state i.
The standard derivation is obtained as

 
E t q t

i

n

i i( ( )) ( )Cl Cl2

1

2= ⋅
=
∑ ,

 
(15)

 SD Cl Cl Cl( ( )) ( ) ( ( ))( )t E t E t= −2 2 . (16)

ParaMeTriZaTiOn OF TransiTiOn 
PrOBaBiliTies

In this study, DCL, DCAP, and DHR were employed to parametrize 
transition probabilities for the state probabilities of chloride 
content using a multinomial logit model (Allison, 2012):

 
ln

P
P

ij

ij1−









 = α α α α0 1 2 3+ + +D D DHR CAP CL

 
(17)

where α0 is a constant and α1, α2, and α3 are coefficients, and Pij 
are transition probabilities from state i to state j given the initial 
state i. The estimation of the surrogate model is detailed in the 
following steps:

 (1) The range of chloride content is divided into a given number 
(e.g., 3 or 6) of states (Table  4). Results for the chloride 
content at a given depth (e.g., 26  mm) are used to obtain 
transition counts for each period of reference (e.g., 1 year). 
The counts for the initial state 1 are shown in Table 5.

 (2) Obtain the α0, α1, α2, α3 of the Eq. 17 using maximum likeli-
hood estimation.

 (3) Predicted values Pij as a function of the diffusion parameters 
are then obtained as

 
P e

eij

D D D

D D D=
+

+ + +

+ + +

α α α α

α α α α

0 1 2 3

0 1 2 31

HR CAP CL

HR CAP CL
.
 

(18)

Table  6 compares the performance of the predicted prob-
abilities for all the cases at 26 mm depth from STATISTICA® and 
Surrogate Markov chain Model and shows good agreement with 
the data obtained from the finite element model.
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TaBle 6 | Predicted probabilities from STATISTICA® and Surrogate Markov 
chain model for the cases of 26 mm depth.

cases 
(26 mm)

categories 0–10 10–20 20–30

1110 0–10 0.5000 (0.5000) 0.5000 (0.5000) 0.0000 (0.0000)

10–20 0.0000 (0.0000) 0.9970 (1.0000) 0.0030 (0.0000)

20–30 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

1120 0–10 0.7500 (0.7500) 0.2500 (0.2500) 0.0000 (0.0000)

10–20 0.0000 (0.0000) 0.8710 (0.9300) 0.1290 (0.0700)

20–30 0.0000 (0.0000) 0.3750 (0.4760) 0.6250 (0.5240)

1210 0–10 0.5000 (0.0000) 0.5000 (0.5000) 0.0000 (0.0000)

10–20 0.0256 (0.0256) 0.9744 (0.9670) 0.0000 (0.0074)

20–30 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

1220 0–10 0.7500 (0.7500) 0.2500 (0.2500) 0.0000 (0.0000)

10–20 0.0000 (0.0000) 0.8966 (0.8560) 0.1034 (0.1540)

20–30 0.0000 (0.0000) 0.2000 (0.1190) 0.8000 (0.8810)

2110 0–10 0.0000 (0.0000) 1.0000 (1.0000) 0.0000 (0.0000)

10–20 0.0000 (0.0000) 1.0000 (0.9810) 0.0000 (0.0190)

20–30 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

2120 0–10 0.0000 (0.0000) 1.0000 (1.0000) 0.0000 (0.0000)

10–20 0.0000 (0.0000) 0.7000 (0.6690) 0.3000 (0.3310)

20–30 0.0000 (0.0000) 0.6667 (0.5990) 0.3333 (0.4010)

2210 0–10 0.0000 (0.0000) 1.0000 (1.0000) 0.0000 (0.0000)

10–20 0.0000 (0.0000) 0.9250 (0.9550) 0.0750 (0.0450)

20–30 0.0000 (0.0000) 1.0000 (1.0000) 0.0000 (0.0000)

2220 0–10 0.0000 (0.0000) 1.0000 (1.0000) 0.0000 (0.0000)

10–20 0.0000 (0.0000) 0.4000 (0.4540) 0.6000 (0.5460)

20–30 0.0000 (0.0000) 0.1563 (0.1816) 0.8438 (0.8184)

8

Zhang et al. Model of Chlorides in Bridges

Frontiers in Built Environment | www.frontiersin.org March 2018 | Volume 4 | Article 12

resUlTs anD DiscUssiOns

The transition probabilities from the Markov process are used to 
predict chloride ions content at various depths as a function of 
time and are compared to the TransChlor® results. Predictions are 
obtained at depths of 26 and 50 mm for a period of 45 years. The 
results show the state probabilities of content of chloride ions as 
a function of time. The state probabilities are used to obtain the 
annual average and SD of chloride content as a function of time 
and compared to the simulated values from TransChlor®. The 
blue and green lines correspond to the 95% confidence interval 
for chloride ion content and the yellow line corresponds to the 
data from the TransChlor® simulation. The results indicate a good 
agreement between the original and surrogate models.

Figures 7A–D show results at a depth of 50 mm with six states 
over the range of chloride content from 0 to 30 kg/m3. For the 
scenarios 2120 and 2220, the average chloride content increases 
rapidly from the start of the service life to the seventh year and then 
slows down until the tenth year. Upon completion of the predic-
tion period of 45 years, the probabilities for state q5 (20–25 kg/m3)  
is approximately 70% for both scenarios. The scenarios 1120 
and 1220 exhibit a more gradual increase which stabilizes after 
the twentieth year of service 50% probability for the 15–20 kg/
m3 state. The comparison indicates that the concentrations are 
very sensitive to values of DHR. Conversely, changes in DCL do 
not significantly affect the evolution and levels of chloride ion 
content. The effect of DCAP is the least influential among diffusion 
parameters. Finally, the expected chloride content is overesti-
mated for some scenarios in the initial portion of the service life, 

FigUre 7 | Transition probabilities and expected categories of chloride ions content for cases at 50 mm considering 45 year period. (a) Case 1120, (B) Case 1220, 
(c) Case 2120, and (D) Case 2220.

http://www.frontiersin.org/Built_Environment/
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


9

Zhang et al. Model of Chlorides in Bridges

Frontiers in Built Environment | www.frontiersin.org March 2018 | Volume 4 | Article 12

however, the predictions improve over time and a good match is 
obtained after the initial stage of the service life.

Figures 8A–D show results obtained at a depth of 26 mm. In 
this case, the results are obtained for three states for a range of 
chloride content from 0 to 30 kg/m3. A smaller number of states 
are used in this case given that high levels of chloride content 
are attained earlier in the service life. For the scenarios 2120 
and 2220, the chloride ion content increases rapidly during the 
first 2 years of service, and then reaches a steady state after the 
third year. Upon completion of the 45-year prediction period, 
the probability (q2) in the state 10–20 kg/m3 is around 65%  
for the scenario 2120 and 75% for the scenario 2220. Meanwhile, 
for scenarios 1120 and 1220, the chloride content increases 
rapidly in the first year and thereafter maintains a relatively 
steady rate of increase, which starts to stabilize after the fif-
teenth year. The results indicate that DHR has most effect on 
the rate of penetration of chloride ions while DCL has an effect 
mainly on the long-term maximum level of chloride ions. The 
predicted values for the average chloride ion content is slightly 
underestimated for low values of DHR in the early years of the 
service life, but are well matched in all cases in the latter part 
of the service life.

cOnclUsiOn

Currently, there are significant concerns over the state of bridges 
in North America due to their advanced state of degradation. 
Thus, it is important to adopt efficient maintenance strategies 

to ensure that bridges are safe and in working condition for 
the longest possible period of time. The main mechanism of 
deterioration of concrete bridges in Canada is due to the 
widespread use of de-icing salts and the ingress of chloride ions 
and their effect on reinforcing steel. This paper presents a new 
method of forecasting the chloride ions content based on the 
Markov Chain-based stochastic model. Transition probabilities 
for this model are obtained for the states defined as increasing 
levels of chloride ion content, while simulation data from the 
TransChlor® model is used to estimate the parameters for the 
surrogate model. A logistic model is used to predict the transi-
tion probabilities between each level as a function of concrete 
properties. This model can then be used for a wide variety of 
bridges as well as for different climatic regions. This approach 
is particularly well-suited to the analysis of maintenance and 
replacement strategies over a large portfolio of structures located 
in diverse climatic regions. The deterioration models can also 
be used in conjunction with inspection data when the latter is 
available over a sufficient long historical period.

This research demonstrates that it is possible to forecast the 
content of chloride ions in concrete bridges efficiently using 
Markov Chain models. Future research with this approach can 
be used to relate stages in the process of deterioration to obser-
vations from periodic inspection reports as well as from more 
detailed surveys on the physical state of structural elements. 
The model can also be extended to other elements of the bridge 
besides the slab which are not directly exposed to chloride ions. 
This can be used to develop maintenance and replacement that 

FigUre 8 | Transition probabilities and expected categories of chloride ions content for cases at 26 mm considering 45 year period. (a) Case 1120, (B) Case 1220, 
(c) Case 2120, and (D) Case 2220.
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