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Cell death is, perhaps paradoxically, essen-
tial for life. This is particularly so for
multicellular organisms, where cell death
plays crucial roles in regulating embryonic
development, tissue homeostasis, immune
function, tumor suppression, and infec-
tion resistance. Much of what is known
about cell death has been developed
through studies in the last two decades,
an era that has witnessed an explo-
sion of publication in the area of pro-
grammed cell death (PCD). In this Grand
Challenges monograph, I provide a short
background on what we’ve learned thus
far. I will then highlight areas that are
likely to be of strong focus in the future,
focusing primarily on distinct forms of
PCD including caspase-dependent apop-
tosis, programmed necrosis/necroptosis,
and autophagic cell death. The relevance
of these cell death pathways to disease is
described, and the potential that manip-
ulation of these pathways may be the key
to treating such diseases is considered. My
intent is not to provide an encyclopedic
review of the field, a task that would likely
fill many volumes. Instead, I wish to high-
light areas that are likely to be relevant to
our mission as we christen a new Frontiers
Specialty area, Frontiers in Cell Death and
Survival.

CASPASE-DEPENDENT APOPTOSIS
Perhaps the best-studied form of cell death
is apoptosis, a genetically programmed
mechanism for promoting the orderly
demise of cells upon receipt of a death
stimulus, or via failure to receive survival
signals. First described morphologically in
the context of dying thymocytes (Kerr
et al., 1972), apoptosis has been extensively
characterized over the last two decades.
These studies have revealed complex apop-

totic mechanisms that are interwoven with
cell cycle, cellular metabolic, and receptor
signal transduction pathways. Apoptotic
cell death is primarily engaged in eliminat-
ing damaged or stressed cells in a manner
that is likely to induce the least tissue dam-
age and local inflammation (Garg et al.,
2010). Central to the molecular events that
unfold during apoptosis, caspases are a
family of cysteine proteases with speci-
ficity for aspartate residues present on pro-
tein substrates (Thornberry and Lazebnik,
1998). These caspases specifically cleave
a variety of proteins involved in cellular
physiology, including those that modulate
DNA fragmentation, proteins that regu-
late the externalization of the phospho-
lipid phosphatidyl-serine on the plasma
membrane (thus serving as an engulfment
signal), DNA repair proteins such as poly-
(ADP-ribose) polymerase (PARP) and sig-
naling proteins required for cell survival
and energy metabolism (Elkon, 1999).

Caspases were originally discovered
by their involvement with cytokine pro-
cessing; indeed, caspase-1 was originally
termed interleukin-1 beta converting
enzyme (ICE) due to its ability to cleave
and process cytosolic pro-interleukin-1
beta (Cerretti et al., 1992; Thornberry
et al., 1992). Caspases were subsequently
found to contribute to apoptotic cell death
by Horvitz, Yuan and colleagues (Miura
et al., 1993; Yuan et al., 1993), and there
are two major families of these proteases
involved in apoptotic signaling, apical,
and executioner caspases (Thornberry
and Lazebnik, 1998). Apical caspases are
typically activated by dimerization with
adaptor proteins that promote their acti-
vation by induced proximity (Salvesen
and Dixit, 1999). Apical caspases include
caspases-8 and -10 that are activated by

binding of tumor necrosis factor (TNF)
family ligands such as CD95/Fas ligand,
TNF alpha and TRAIL (Ashkenazi and
Dixit, 1998), and caspase-9 which is acti-
vated by the release of cytochrome C from
mitochondria (Green and Reed, 1998).
Executioner caspases include caspases-3,
-6, and -7, and these proteases attain activ-
ity primarily through cleavage by apical
caspases (Pop and Salvesen, 2009). Since
the process involves a cascade of cleavage
events, apoptotic signals are thought to be
amplified beyond a “point of no return,”
thus leading to definitive cell death events
(Kroemer et al., 1995).

Two major forms of apoptosis have
emerged: (1 intrinsic, which involves the
release of cytochrome C from mitochon-
dria to the cytoplasm with the activa-
tion of apical caspase-9, and b) extrinsic,
which involves the binding of extracellu-
lar TNF family ligands to death receptors,
with the subsequent activation of apical
caspases-8 and -10 (Yuan, 1997). Intrinsic
apoptosis is regulated by proteins of the
Bcl-2 family, which itself includes both
pro- and anti-apoptotic members. These
Bcl-2 family proteins modulate the release
of cytochrome C under a variety of cellular
conditions, and are subject both transcrip-
tional and post-translational regulation
(Chipuk et al., 2010). Extrinsic apoptosis
is induced through ligated death recep-
tors, resulting in the generation of death
inducing signaling complexes (DISCs) that
result in caspase-8 and -10 catalytic activ-
ity (Kischkel et al., 1995; Walsh et al.,
2003). While these pathways are initiated
through distinct signals and pathways,
they ultimately result in executioner cas-
pase activity, and the orderly breakdown of
the cell. This culminates in the generation
of “apoptotic bodies,” fragments of the
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apoptotic cell that are readily engulfed by
neighboring phagocytes; this engulfment
of apoptotic cells prevents the release of
cellular contents into the local tissue envi-
ronment, and the ensuing inflammatory
response that might result (Krysko et al.,
2006).

Caspase-dependent apoptosis is
relevant to a variety of diseases, as
attested to by several thousand pub-
lished manuscripts on the topic. Cancer
cells have evolved numerous strategies
to limit apoptotic sensitivity, and these
include down-modulation of death recep-
tors, expression of death receptor decoy
molecules, altered expression of pro- or
anti-apoptotic Bcl-2 family genes (Evan
and Littlewood, 1998). Thus, significant
effort has been placed into developing
therapeutics that target intrinsic apop-
tosis regulators to resensitize tumor cells
to apoptosis using drugs such as the Bcl-
2 family BH3 domain mimetic ABT-737
(Garrison et al., 2012). The major prob-
lem such approaches face is that normal
cells are also often sensitized by these ther-
apeutics. Thus, identifying the pathways
that promote tumor cell apoptosis without
instigating the demise of normal cells is
a difficult but essential goal. “Overactive
apoptosis” has also been implicated in
several degenerative diseases, including
Alzheimer’s disease, multiple sclerosis,
Huntington’s disease, and diabetes and
others. As with cancer, modulation of
apoptotic pathways may have therapeutic
benefit only if they specifically target the
cells that are implicated in the pathologic
mechanism. While a challenging area,
there is significant interest in the poten-
tial that apoptotic manipulation may yield
clinical benefit in specific disease states.

PROGRAMMED
NECROSIS/NECROPTOSIS
An alternative form of programmed cell
death has emerged that does not appear
to require caspase activity that has been
termed programmed necrosis, or necrop-
tosis (Leist and Jaattela, 2001; Degterev
et al., 2005). Originally observed to occur
in response to artificial dimerization of
the DISC adaptor protein FADD that
is responsible for caspase-8 activation
(Ashkenazi and Dixit, 1999), this form
of cell death was observed to occur
without the participation of fcaspases

(Kawahara et al., 1998). This form of
death was also found in TNF alpha-
treated L929 cells cultured in the presence
of pan-caspase inhibitors (Vercammen
et al., 1998). Subsequent studies by
the laboratory of Jürg Tschopp revealed
that Jurkat cell lines deficient in com-
ponents of the DISC are sensitive to
TNF alpha-induced/caspase-independent
cell death (Holler et al., 2000), and that
this form of cell death requires the par-
ticipation of the death domain contain-
ing serine/threonine kinase RIP1 (Stanger
et al., 1995). This caspase-independent
death was also observed in L929 fol-
lowing siRNA-mediated caspase-8 knock-
down, implicating DISC regulation of
this alternative form of cell death (Yu
et al., 2004). This form of RIP1-dependent
necroptosis was also observed to occur in
T cells lacking FADD and caspase-8 activ-
ity (Bell et al., 2008; Ch’en et al., 2008),
demonstrating that necroptosis may serve
as a backup pathway to ensure the timely
demise of lymphocytes following their
clonal expansion (Bell and Walsh, 2009).

A major feature of DR-induced necrop-
tosis is the involvement of RIP1. By
developing “necrostatins,” inhibitors of
TNF alpha-induced cell in FADD-deficient
Jurkats (Degterev et al., 2005), Yuan
and colleagues found that RIP1 catalytic
activity is vital to “necroptosis” (Degterev
et al., 2008). RIP3, a RIP kinase fam-
ily member, is also required for TNF
alpha-induced necroptosis, and forms
a complex with RIP1 following appar-
ent cross-phosphorylation of these two
kinases (Cho et al., 2009; He et al.,
2009; Zhang et al., 2009). The result-
ing RIP1/RIP3 containing “necrosome”
is then able to promote downstream
signals that promote the induction of
necroptosis (Vandenabeele et al., 2010).
Following its assembly, the necrosome
leads to the RIP3-dependent phosphoryla-
tion of Mixed Lineage Kinase Domain-like
Protein (MLKL), a process required for
necroptosis (Sun et al., 2012). The mito-
chondrial protein phosphatase PGAM5
and mitochondrial fission factor Drp1
have also been found to participate in
RIP3 mediated necroptosis, as well as that
form of death induced by reactive oxygen
species and calcium ionophores (Wang
et al., 2012). Thus, a picture emerges
in which, through stabilization of the

RIP1/RIP3 necrosome, multiprotein com-
plexes are formed that promote a necrotic
form of cell death that occurs quite dis-
tinctly from caspase-dependent apoptosis.

While necroptosis and apoptosis are
mechanistically and morphologically
distinct processes, there is significant
cross-talk between them. Importantly,
apoptosis signaling opposes the stabi-
lization of necrosomes following death
receptor ligation. Both RIP1 and RIP3
are known targets of caspase-8 mediated
cleavage (Lin et al., 1999; Feng et al., 2007),
and thus it has been proposed that DISC
assembly may prevent necrosome for-
mation via caspase-8 (Declercq et al.,
2009). Supporting this hypothesis, we
observed that a caspase-8 resistant form
of RIP1 introduced into RIP1-deficient
Jurkats underwent necroptosis instead of
apoptosis upon TNF alpha treatment (Lu
et al., 2011). An alternative explanation
holds that CYLD is the target of caspase-8
during the decision point between apop-
tosis vs. necroptosis (O’Donnell et al.,
2011), although this model is not mutually
exclusive from the aforementioned.

The existence of this alternative form
of cell death prompts several questions,
including the physiological relevance of
the pathway and how it may be implicated
in various disease states. While necroptosis
has been primarily revealed under rather
artificial conditions (e.g., using mutant
cells or conditions with high-dose cas-
pase inhibitors), its co-evolution with
caspase-dependent apoptosis is suggested
by the aforementioned cross-inhibition.
Why might cells require necroptosis when
apoptosis leads to an immunologically
quiescent form of cell death? One poten-
tial explanation for this is that this form
of death evolved to provide a “backup”
pathway. Indeed, cowpox virus produces
the factor CrmA, a potent apical caspase
inhibitor capable of blocking apoptosis
(Ray et al., 1992; Gagliardini et al., 1994).
Several viral encoded genes are similarly
produced to prevent apoptosis, and thus
it is clear that inhibition of apoptosis is
an important means viruses have exploited
to avoid immune clearance. Interestingly,
cytomegalovirus induces RIP3-mediated
necroptosis via the interferon regulatory
factor DAI (Upton et al., 2012). This virus
also produces a protein called viRA, a pro-
tein that disrupts assembly of RIP1/RIP3
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necrosomes and consequent necroptosis.
Thus, while the physiological function(s)
of necroptosis remains to be fully elabo-
rated, it is clear that this cellular process
has been around for a long time during
evolution. It is likely that necroptosis may
serve as an “Achille’s heel” in tumor cells,
and thus greater understanding of the pro-
cess may reveal novel therapies for cancer
therapeutics.

SUMMARY
Programmed cell death is clearly crucial
to myriad biological processes, and much
more is understood about the underly-
ing mechanisms that modulate these with
each passing day. This continued progress
is important since programmed cell death
is involved in numerous human diseases,
and as described above and in other
venues, targeting these mechanisms have
or will have therapeutic benefit. Key areas
of investigation are in understanding the
specific involvement of apoptosis, necrop-
tosis and other forms of cell death (e.g.,
“autophagic” cell death) in physiology and
pathology. In addition, investigation into
the mechanisms that regulate cell death,
especially necroptosis and other under-
explored forms of cell death, will be a sig-
nificant endeavor. I envision that Frontiers
in Cell Death and Survival will serve as
an important venue for studies regarding
apoptosis, necroptosis, and other forms of
cellular death.
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