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Bone marrow transplantation (BMT) is used to treat hematological disorders, autoimmune
diseases (ADs) and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT) has been
proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic
recovery and the complete restoration of T cell functions. IBM-BMT not only replaces
hematopoietic stem cells (HSCs) but also mesenchymal stromal cells (MSCs). MSCs
are multi-potent stem cells that can be isolated from bone marrow (BM), umbilical
cord blood (UCB), and adipose tissue. MSCs play an important role in the support of
hematopoiesis, and modify and influence the innate and adaptive immune systems. MSCs
also differentiate into mesodermal, endodermal and ectodermal lineage cells to repair
tissues. This review aims to summarize the functions of BM-derived-MSCs, and the
treatment of intractable diseases such as rheumatoid arthritis (RA) and malignant tumors
with IBM-BMT.
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INTRODUCTION
Mesenchymal stromal cells (MSCs) are multi-potent progeni-
tor cells mainly isolated from bone marrow (BM) (Campagnoli
et al., 2001), adipose tissue (Zuk et al., 2001), and the umbil-
ical cord (UC) (Erices et al., 2000). MSCs have been shown to
differentiate into osteoblasts, adipocytes (Dominici et al., 2006),
cardiomyocytes (Makino et al., 1999), and pancreatic islets (Tang
et al., 2004). Furthermore, MSCs have the ability to migrate to
injured tissue of liver (van Poll et al., 2008) and heart (Yokokawa
et al., 2008). Adipose tissue and BM are the most readily avail-
able sources of MSCs because they are easy to harvest, and
there are no ethical concerns. BM-derived MSCs (BMMSCs) have
a higher degree of commitment to differentiate into chondro-
genic and osteogenic lineages than adipose tissue-derived MSCs
(Gimble et al., 2007), although there appears to be no difference
between adipose tissue-derived MSCs and BM MSCs in terms
of immunoregulatory functions and support of hematopoiesis
(Poloni et al., 2012). On the other hand, BM MSCs modulate
the immune response, suppress allogeneic T cell responses, and
prevent the development of graft-versus-host disease (GVHD)
(English, 2013).

BM transplantation (BMT) is useful for treating hematopoi-
etic disorders, allogeneic BMT also being used to treat autoim-
mune diseases (ADs) (Nishimura et al., 1994). Intra-bone
marrow-bone marrow transplantation (IBM-BMT) has been
proven to be the most effective approach to treating allogeneic
BMT, since IBM-BMT can replace not only hematopoietic stem
cells (HSCs) but also BMMSCs Thus hematopoietic recovery is
rapid, and no GVHD develops even if whole BM cells are injected
(Kushida et al., 2001; Ikehara, 2003). In this review, we focus

on rheumatoid arthritis (RA) and malignant tumors treated with
IBM-BMT.

IMMUNOREGULATORY FUNCTIONS OF BMMSCs
BMMSCs have been reported to have the ability to modify and
influence almost all the cells of the innate and adaptive immune
systems mediated by BMMSC soluble factors, including IL-6,
M-CSF, IL-10, TGFβ, HGF, and PGE2 (Aggarwal and Pittenger,
2005; Beyth et al., 2005; Ramasamy et al., 2007). The adaptive
immune system, which is composed of T and B lymphocytes,
generates specific immune responses to pathogens with the pro-
duction of memory cells. BMMSCs modulate the function of
dendritic cells (DCs), indirectly regulate T and B cell activity, and
delay or prevent the development of acute GVHD (Zhang et al.,
2009). BMMSCs have also been shown to suppress the differen-
tiation of DCs and their function during allogeneic islet trans-
plantation (Urban et al., 2008; Aldinucci et al., 2010). BMMSCs
strongly inhibited the maturation and functioning of monocyte-
derived DCs by interfering selectively with the generation of
immature cells via inhibitory mediator of MSC-derived PGE2
(Lee et al., 2006). PGE2 has been identified as one of the candi-
dates responsible for T cell inhibition by BMMSCs, and may have
an immunostimulatory role by facilitating Th1 differentiation
and expanding the Th17 T cell population (English et al., 2009;
Yao et al., 2009). The expression of PGE2 was shown to be upregu-
lated by IFNγ and TNFα in the BMMSCs for immunomodulatory
function (English et al., 2007). BMMSCs can inhibit the cytotoxic
effects of antigen-primed cytotoxic T cells by suppressing the pro-
liferation and activity (Zhao et al., 2005) via the inhibition of the
nuclear translocation of nuclear factor-kappa B (Matsuda-Hashii
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et al., 2004). BMMSCs have been shown to alter the NK cell
phenotype and suppress proliferation of NK cells via the secre-
tion of TGFβ1 and PGE2, and via cytotoxicity against HLA class
I-expressing targets (Aggarwal and Pittenger, 2005; Sotiropoulou
et al., 2006; Ryan et al., 2007; Uccelli et al., 2008). BMMSCs
have also been shown to inhibit the proliferation of B cells when
stimulated with anti-CD40L and IL-4 (Glennie et al., 2005). One
report has suggested that allogeneic BMMSCs inhibit the activa-
tion, proliferation and IgG secretion of B cells in a BXSB mouse
model of human systemic lupus erythematosus (Deng et al.,
2005).

Allogeneic BMMSCs are effective in the treatment of murine
models of human disease (Zappia et al., 2005; Ding et al.,
2009; Fiorina et al., 2009). BMMSCs were shown to be able
to secrete regulatory cytokines that affect regulatory T cells,
and to modulate the immunological dysregulation observed
in antibody producing B cells and cytotoxic NK cells in the
NOD mouse (Anderson and Bluestone, 2005). BMMSCs pro-
mote the endogenous repair of pancreatic islets and renal
glomeruli in a streptozotocin-induced diabetic mouse model
(Lee et al., 2006). Co-infusion of BMMSCs and BM cells
was shown to inhibit the beta cell-specific T cell proliferation
and to restore insulin and glucose levels (Urban et al., 2008).
BMMSCs secrete many cytokines and growth factors such as
HGF, which shows anti-apoptotic activity in hepatocytes and
plays an essential part in the regeneration of the liver (Trim
et al., 2000; Matsuda-Hashii et al., 2004). BMMSCs have also
been shown to protect against experimental liver fibrosis in
CCl4-induced rats (Zhao et al., 2005), and to suppress CD3
T-cell proliferation in collagen-induced arthritis (Schurgers et al.,
2010).

In mammals, there are seven sirtuin family members, named
Sirt1-7. Sirtuins plays a critical role in the regulation of fun-
damental biological responses to nutritional and environmental
stimuli in each subcellular compartment (Blander and Guarente,
2004; Imai and Guarente, 2010). Sirt1 is a class III protein
deacetylase, and Sirt1 activity can be regulated through NAD+.
Sirt1 binds to and deacetylates a number of important transcrip-
tion factors—such as peroxisome proliferator-activated receptor
gamma (PPARγ), PPARα, PPAR gamma coactivator 1 alpha
(PGC-1α), and the forkhead box, subgroup O (FOXO) fam-
ily of transcription factors—to drive metabolic responses such
as insulin secretion, gluconeogenesis, and fatty acid oxidation
(Haigis and Sinclair, 2010). Some reports indicate that Sirt1
promotes osteogenesis and decreases adipogenesis of BMMSCs
in vitro (Tseng et al., 2011; Peltz et al., 2012; Puri et al.,
2012).

Sirt1 deacetylates β-catenin to regulate differentiation of MSCs
in MSCs specific Sirt1 knock-out mice (MSC KO) (Simic et al.,
2013). Moreover, Sirt1 has been shown to directly downregulate
Sost gene expression, and promote bone formation in the treat-
ment of osteoporosis (Cohen-Kfir et al., 2011). One report has
shown that CD8 T cell differentiation is regulated by basic leucine
zipper transcription factor, ATF-like (BATF), which is a member
of the AP-1 family, via Sirt1 expression, BATF deficiency inducing
high levels of Sirt1 expression in memory CD8 T cells but not in
naive CD8 T cells (Kuroda et al., 2011).

IBM-BMT
We reported that MRL/lpr mice possess abnormal radioresistant
stem cells and have provided impressive evidence regarding the
origin of ADs in this strain (Ikehara et al., 1989). BMT plus bone
graft, which can recruit donor stroma cells, can prevent the recur-
rence of ADs (Ishida et al., 1994). However, allogeneic BMT +
bone grafts failed to treat ADs in MRL/lpr mice, because these
mice become more radiosensitive after the onset of lupus nephri-
tis. Moreover, our previous reports showed that stroma cells can
be trapped in the liver when BM cells are injected via the por-
tal vein. Thus, directly injecting whole BM cells into the BM,
as in IBM-BMT, has been shown to be a powerful strategy for
the treatment of ADs in MRL/lpr mice. IBM-BMT, which not
only replaces HSCs but also MSCs, has been proven to be the
best method for allogeneic BMT: (1) hematopoietic recovery is
rapid because the MSCs directly home to the bone cavity, (2) the
restoration of T cell functions is complete even in donor-recipient
combinations across the MHC barriers, and (3) no graft failure
occurs even if the radiation dose is reduced (Kushida et al., 2001).
Moreover, IBM-BMT of young marrow cells reversed the reduc-
tion of pro-B cells and pre-B cells. The frequency of follicular-B
cells in the IBM-BMT group was significantly increased compared
to the old group (Hida et al., 2010). We have already used IBM-
BMT to successfully treat ADs, osteoporosis, diabetes, Alzheimer’s
disease, and for the induction of tolerance for organ transplanta-
tion (Takada et al., 2006; Guo et al., 2008; Kushida et al., 2009; Li
et al., 2009, 2010) (Table 1).

BM cells mainly include HSCs and MSCs. MSCs are essential
for supporting hematopoiesis in the BM. HSCs can normally pro-
liferate in major histocompatibility complex (MHC)-compatible
MSCs even in allogeneic microenvironments. Because the BMCs
are directly injected into bone, IBM-BMT circumvents the risk
of MSCs being trapped in the lung and liver. And because both
MSCs and HSCs are transplanted, hematopoiesis can be rapidly
restored. Moreover, IBM-BMT can prevent the risk of graft rejec-
tion, even with the use of a mild conditioning regimen (Kushida
et al., 2001).

IBM-BMT FOR TREATMENT OF RA
RA is an AD that results in a chronic, systemic inflammatory
disorder that may affect many tissues and organs. RA primar-
ily affects joints, but it also affects other organs such heart,
kidney, and blood vessels (Turesson et al., 2003). Its pathophys-
iology indicates that TNFα drives synovial inflammation and
joint destruction. The synovial cells include both fibroblast-like
and macrophage-like synoviocytes. Fibroblast-like synoviocytes
show abnormal behavior in RA (Scott et al., 2010). About 50%
of RA is caused by genetic abnormalities (van der Woude et al.,
2009). The classification criteria for RA by the American College
of Rheumatology (2010), and the treatment options, are sum-
marized in the work by Scott et al (Scott et al., 2010). Here we
talk about stem cell therapy for the treatment of RA in basic
experiments and clinical applications.

SKG/Jcl mice are a murine model for RA. BM cells of C57BL/6J
mice were transplanted into SKG/Jcl mice using IBM-BMT, and
the hematolymphoid cells in the recipient mice were reconsti-
tuted by donor-derived cells. There was no evidence of arthritis
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Table 1 | IBM-BMT treatment of various diseases and induction of

tolerance for organ transplantation.

Authors Animal model Effect of IBM-BMT

Li et al., 2012 Mouse Improve renal function

Zhang et al., 2012 Mouse Prevention of leukemia

Shi et al., 2011 Mouse Diminish risk of GVHD

Feng et al., 2010 Mouse Prevention of premature
ovarian failure

Li et al., 2009 Mouse Amelioration of cognitive
ability

Kushida et al., 2009 Mouse Prevention of rheumatoid
arthritis

Okazaki et al., 2008 Mouse Liver transplantation

Miyake et al., 2008 Mouse Prevention of GVHD

Abraham et al., 2008 Mouse Prevention of type 2 diabetes

Guo et al., 2008 Rat Long-term donor specific
tolerance in cardiac allograft

Feng et al., 2007 Mouse Prevention of osteoporosis
and hypogonadism

Koike et al., 2007 Mouse Suppression of growth of
colon cancer cells

Ikebukuro et al.,
2006

Mouse Tolerance induction in
allogeneic pancreatic islets

Kaneda et al., 2005 Rat Induction of tolerance for
lung transplantation

Takada et al., 2006 Mouse Prevention of senile
osteoporosis

Taira et al., 2005 Rat Prevention of type 1 diabetes

Nakamura et al.,
2004

Mouse Prevention of GVHD

Esumi et al., 2003 Rat Induction of tolerance for
allogeneic leg transplantation

Ichioka et al., 2002 Mouse Prevention of senile
osteoporosis

in the SKG/Jcl mice at 12 months after transplantation. Moreover,
IBM-BMT has been shown to normalize the percentages of Treg
(Foxp3+/CD4+) cells, the percentages of receptor activator of
NF-kB ligand+ cells on the CD4+ T cells and the serum lev-
els of TNFα, IL-1, and IL-6. One report demonstrated that
IBM-BMT is a viable method of immunological manipulation
that suppresses the severe joint destruction and bone absorp-
tion in SKG/Jcl mice and lends further credence to the use
of this methodology in humans with intractable RA (Kushida
et al., 2009). Human UC-derived MSCs have been discussed as
a possible treatment for RA in the clinical setting. TNFα and
IL-6 decreased and CD4+ CD25+ Foxp3+ T cells increased, in
active RA patients after UC-derived MSCs were infused, and the
UC-derived MSCs survived for 3–6 months, suggesting that treat-
ment with MSCs would benefit RA patients (Wang et al., 2013).
Expression of IL-17, IL-6, and TNFα were inhibited when allo-
geneic UC-derived MSCs were cultured with peripheral blood
mononuclear cells (PBMCs) from RA patients, suggesting that
MSCs can prevent the expression of these cytokines and that they
have therapeutic potential in the treatment of RA (Wang et al.,
2012).

MALIGNANT TUMORS TREATED WITH IBM-BMT +
THYMUS TRANSPLANTATION (TT)
Donor lymphocyte infusion (DLI) is a useful method for the
treatment of malignant tumors, but it also induces GVHD.
However, IBM-BMT has been shown to prevent not only graft
failure but also GVHD in animals, even when the radiation dose
is reduced (Nakamura et al., 2004). Thus, IBM-BMT plus DLI
were used to treat malignant tumors (fibrosarcomas) induced by
a tumor cell line (methA). DLI (CD4− spleen cells) can prevent
GVHD, but the tumor growth was not suppressed, indicating that
CD4+ cells play important roles in graft-versus-tumor (GVT)
and GVHD. Our previous results showed that IBM-BMT plus
DLI (CD4−lymphocytes) suppressed not only GVHD but also
tumor growth (Suzuki et al., 2005). Moreover, the combination of
DC, IBM-BMT and DLI showed even better results than the com-
bination of IBM-BMT and DLI in the treatment of solid tumors
(Mukaide et al., 2007).

The thymus regulates the production, proliferation and func-
tions of T cells. BMT + TT has been shown to be useful in the
treatment of ADs in the MRL/Lpr mouse, because the allogeneic
T cells newly-developed by TT are naïve T cells, which show less
Fas expression and more resistance to apoptosis than the acti-
vated memory T cells with their high Fas expression. We found
that the combination of allogeneic IBM-BMT + adult TT from
the same donor is effective in mice with solid tumors, as it can
induce high thymopoiesis, preserving strong GVT effects with-
out inducing a severe graft-versus-host reaction (GVHR). Meth
A sarcoma cells were subcutaneously inoculated into mice, and
IBM-BMT + adult TT was then used to treat these mice when the
tumor had grown to 5 mm. In tumor-bearing mice, tumor growth
was more strongly inhibited by IBM-BMT + adult TT than by
IBM-BMT alone. The numbers of CD8+ T cells that infiltrated
the tumors, and the number of apoptotic tumor cells, both sig-
nificantly increased in the mice treated with IBM-BMT + adult
TT. IBM-BMT + adult TT prevented tumor development with
mild GVHR resulting from the induction of high thymopoiesis
and a strong GVT effect in the tumor-bearing mice. The num-
ber of CD4+ FoxP3+ cells was lower in the mice treated with
IBM-BMT + adult TT than in those treated with IBM-BMT
alone. Furthermore, the numbers of CD8+ cells infiltrating the
tumor and the levels of IFN-γ were higher in the mice treated
with IBM-BMT + adult TT than in those treated with IBM-BMT
alone (Miyake et al., 2009). Although T regs have been reported
to suppress the GVHR induced by CD4+T cells, they did not
reduce the GVT induced by CD8+ T cells (Edinger et al., 2003).
Tumors were suppressed to a greater extent as a result of the
increased CD4+ and CD8+ T cells and decreased number of Gr-
1+/CD11b+ myeloid suppressor cells and Foxp3+/CD4+ T regs,
Moreover, the production of CD62L−CD44+ effector memory T
cells and IFN-γ were also higher (Zhang et al., 2011).

IBM-BMT seems to be better than co-transplantation of HSCs
and cultured MSCs, mainly because the number of functional
MSCs may drop after being cultured in vitro, and cultured MSCs
also are trapped by the liver and lung in the case of IV-BMT.
Umbilical cord blood (UCB) can also be used a source of stem
cells for transplantation, although the numbers are generally
insufficient to allow this to be used as a general source. IBM
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thus appears to be the best choice for allogeneic transplanta-
tion, despite the limited number of stem cells that can be directly
transplanted into the bone cavity. In conclusion, IBM-BMT can
efficiently transplant both HSCs and MSCs, is useful to treat
intractable diseases such as RA and malignant tumors, and in the
future may be useful for treating various intractable diseases.
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