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Zr2WP2O12/ZrO2 composites were fabricated by solid state reaction with the goal

of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used

to investigate the composition, microstructure, and thermal expansion behavior of

Zr2WP2O12/ZrO2 composites with different mass ratio. Relative densities of all the

resulting Zr2WP2O12/ZrO2 samples were also tested by Archimedes’ methods. The

obtained Zr2WP2O12/ZrO2 composites were comprised of orthorhombic Zr2WP2O12

and monoclinic ZrO2. As the increase of the Zr2WP2O12, the relative densities of

Zr2WP2O12/ZrO2 ceramic composites increased gradually. The coefficient of thermal

expansion of the Zr2WP2O12/ZrO2 composites can be tailored from 4.1 × 10−6 K−1

to −3.3 × 10−6 K−1 by changing the content of Zr2WP2O12. The 2:1 Zr2WP2O12/ZrO2

specimen shows close to zero thermal expansion from 25 to 700◦C with an average

linear thermal expansion coefficient of −0.09 × 10−6 K−1. These adjustable and near

zero expansion ceramic composites will have great potential application in many fields.
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INTRODUCTION

Lots of materials known to show positive thermal expansion as temperature increase. In contrast,
some materials show completely different thermal expansion properties and contract upon
heating. This negative thermal expansion (NTE) phenomena has been found in some A2(MO4)3
compounds, where the A cation can be a trivalent main group metal, transition metal, or rare earth
element ranging from Lu to Ho, while M corresponds to W or Mo (Sumithra and Umarji, 2004,
2006; Liu H. F. et al., 2012; Liu Q. Q. et al., 2012; Liu et al., 2015). In addition, compounds with
aliovalent cations on the A and M site have been reported. For example, Zr2WP2O12 has been
reported to exhibit strong and stable NTE over a wide temperature range. Zr2WP2O12 adopts the
orthorhombic Sc2W3O12 structure, which consists of ZrO6 octahedra that share corners with two
WO4 tetrahedra and four PO4 tetrahedra. Zr-O-W (P) linkages in this structure will lead to the
volume contraction due to transverse vibration of bridging oxygen atoms as temperature increase
(Isobe et al., 2008, 2009; Cetinkol and Wilkinson, 2009; Tani et al., 2010).

Thermal expansion is an important property of materials, and mismatch in thermal expansion
often induces unstable performance or failure of devices in the field of microelectronics, optics
and micromachines. To avoid the above problems, control of thermal expansion of materials can
be necessary. An easy approach is to mix the NTE material with the positive thermal expansion
material in the right proportion.
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Most studies describing attempts to synthesize controllable
thermal expansion composites mainly focus on ZrW2O8 based
composites, such as ZrW2O8/ZrO2 (De Buysser et al., 2004;
Lommens et al., 2005; Yang et al., 2007; Khazeni et al.,
2011; Romao et al., 2015), ZrW2O8/Cu and ZrW2O8/polyimide
(Yilmaz, 2002; Sullivan and Lukehart, 2005; Yang et al., 2010;
Hu et al., 2014). The coefficient of thermal expansion (CTE)
of the composites drops with the increase of the ZrW2O8

filler. However, the cubic NTE phase of ZrW2O8 is metastable
at room temperature, and has to be prepared by rapid
quenching after sintering at 1,200◦C. Cubic ZrW2O8 show a
isotropic NTE over a wide temperature range, but a phase
transition from α -ZrW2O8 to β -ZrW2O8 occurs around
160◦C, which leads to the decrease of CTE. This change
in thermal expansion may be disadvantageous for composite
design. Moreover, when heated to 740◦C, ZrW2O8 decomposes
into ZrO2 and WO3 (Mary et al., 1996; Banek et al., 2010;
Gao et al., 2016). In addition, cubic ZrW2O8 undergoes
a pressure induced phase transition to an orthorhombic
phase with a positive CTE. This transformation has been
observed in composites during thermal cycling, and leads
to irreproducible thermal expansion behavior (Perottoni and
Jornada, 1998; Miao et al., 2004; Varga et al., 2007; Liu et al.,
2014).

Zr2WP2O12 is a new NTE material for use as a filler to
adjust the CTE of ceramics, glasses, metals, and polymers. It
exhibits a strong NTE over the broadest temperature range
(room temperature to its sublimation point of about 1,600◦C).
Moreover, it does not suffer from the same limitations as
ZrW2O8, as it is thermodynamically stable and does not undergo
any phase transformations.

The synthesis and NTE behavior of Zr2WP2O12 ceramics
have been reported previously (Isobe et al., 2008, 2009; Cetinkol
and Wilkinson, 2009; Tani et al., 2010). Zr2WP2O12 ceramics
show stable NTE with an average linear CET of about −5
× 10−6 K−1. In addition, the Zr2WP2O12 ceramics display
excellent mechanical properties (Isobe et al., 2008, 2009; Cetinkol
and Wilkinson, 2009). ZrO2 ceramics and fibers has been
widely used in optics, electronics and high temperature fields
(Lommens et al., 2005; Yang et al., 2007). In some special
occasions, ZrO2 need to keep precision dimensional stability
with the change in temperature, because a mismatch in size
among different precision devices can cause some problems.
The average linear CTE of ZrO2 is about 10 × 10−6 K−1 from
room temperature to 1,000◦C. The absolute values of the CTE
of ZrO2 and Zr2WP2O12 are thus similar but have opposite
signs, suggesting that these materials are good candidates for
the preparation of ceramic composites with tunable CTEs. It
is beneficial that ZrO2 does not react with Zr2WP2O12 at high
temperatures, as it is a startingmaterial in the solid state synthesis
of Zr2WP2O12.

A new series of Zr2WP2O12/ZrO2 ceramic composites that
are expected to show an adjustable CTE were synthesized by a
solid state reaction method. This work is devoted to exploring
the effects of mass ratio of Zr2WP2O12 and ZrO2 on the
microstructure, density, and CTE values of the Zr2WP2O12/ZrO2

ceramic composites.

TABLE 1 | Synthesis conditions for ZrO2/Zr2WP2O12 ceramics.

Mass ratio of Zr2
WP2O12:ZrO2

m(ZrO2)/g m(WO3)/g m(NH4H2PO4)/g

0:1 10 0 0

1:1 6.99 1.87 1.86

2:1 7.18 2.99 2.97

3:1 6.58 3.36 3.34

4:1 5.18 2.99 2.97

1:0 3.97 3.74 3.71

FIGURE 1 | XRD patterns of ZrO2, Zr2WP2O12, and Zr2WP2O12-ZrO2

composites with different mass ratios sintered at 1,200◦C for 6 h. (A) ZrO2,

(B) 1:1 Zr2WP2O12:ZrO2, (C) 2:1 Zr2WP2O12:ZrO2, (D) 3:1

Zr2WP2O12:ZrO2, (E) 4:1 Zr2WP2O12-ZrO2, (F) Zr2WP2O12.

EXPERIMENTAL DETAILS

All Zr2WP2O12, ZrO2, and Zr2WP2O12/ZrO2 ceramics (mass
ratios: 1:1, 2:1, 3:1, 4:1) were synthesized through a conventional
solid state route. The raw materials were ZrO2 (Aladdin, purity
≥99.95%), WO3 (Aladdin, purity ≥99.95%), and NH4H2PO4

powders (Aladdin, purity ≥99.5%). A summary of samples
prepared can be found in Table 1. Reactant mixtures were milled
for 6 h to form a homogeneous powder and dried at 80◦C,
followed by heating at 500◦C for 3 h. After this pre-sintering step,
the mixtures were uni-axially cold pressed into pellets of 7mm in
diameter and about 2mm in thickness. Pellets were calcined at
1,200◦C in air for 6 h and cooled down in the furnace.

Powder X-ray diffraction experiments were performed on a
Shimadzu XRD 7000 using CuKα radiation. Data were collected
at 40 kV and 30mA over the 10◦ to 60◦ 2θ range with a
scanning speed of 5◦/min. The fractured surface morphologies
of the samples were observed using a TESCAN VEGA3 scanning
electronmicroscope (SEM). The relative densities of the resulting
samples were measured using Archimedes’ method. The CTEs of
the samples were measured with a Seiko 6300 TMA/SS thermal
mechanical analyzer at a heating rate of 5◦C/min in air between
25 and 700◦C.
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FIGURE 2 | SEM images of ZrO2, Zr2WP2O12, and Zr2WP2O12-ZrO2 composites with different mass ratios sintered at 1,200◦C for 6 h, (a) ZrO2, (b) 1:1

Zr2WP2O12:ZrO2, (c) 2:1 Zr2WP2O12:ZrO2, (d) 3:1 Zr2WP2O12:ZrO2, (e) 4:1 Zr2WP2O12-ZrO2, (f) Zr2WP2O12.

RESULTS AND DISCUSSION

XRD Analysis
Figure 1 shows typical room temperature XRD patterns
of Zr2WP2O12/ZrO2 composites with different mass ratios
synthesized at 1,200◦C for 6 h. The XRD patterns of pure
ZrO2 and pure Zr2WP2O12 ceramics are also displayed for
reference. For pure ZrO2 ceramics (Figure 1A), all observed
reflections could be well indexed and attributed to monoclinic
ZrO2 in agreement with JCPDS card number 65–1,023. For
pure Zr2WP2O12 ceramics (Figure 1F), all diffraction peaks
matched those expected for orthorhombic Zr2WP2O12 (JCPDS
43-0258). No impurity phases were detected. XRD patterns of

Zr2WP2O12/ZrO2 composites with mass ratios of 1:1, 2:1, 3:1,
and 4:1 (Figures 1B–E) displayed diffraction peaks belonging
to both monoclinic ZrO2 and orthorhombic Zr2WP2O12. As
no intermediate phase exists between ZrO2 and Zr2WP2O12,

no reaction can occur between excess ZrO2 and Zr2WP2O12.
As expected, the diffraction peaks of Zr2WP2O12 became more
intense with increasing mass ratio of Zr2WP2O12.

SEM and Density Analysis
SEM micrographs of different weight ratio Zr2WP2O12/ZrO2

ceramic composites, ZrO2 and Zr2WP2O12 ceramics after
sintering at 1,200◦C for 6 h are shown in Figure 2. The SEM
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FIGURE 3 | EDX composition maps (a) Zr, P, W and O, (b) Zr, (c) P, (d) O, and (e) W analysis for 2:1 Zr2WP2O12:ZrO2 composite.

image of the ZrO2 ceramics (Figure 2a revealed significant
porosity, which is likely due to insufficient sintering. It is known
that the sintering temperature required to fabricate dense and
tough ZrO2 ceramics is higher than 1,400◦C (Varga et al., 2007).
Figures 2b–e show SEM images of sintered Zr2WP2O12/ZrO2

ceramic composites as a function of different mass ratios. With

increasing amount of Zr2WP2O12, Zr2WP2O12/ZrO2 ceramic
composites sintered for the same time at the same temperature
became denser and displayed larger grain sizes and less porosity.
The average grain size of 1:1 Zr2WP2O12/ZrO2 composites was
about 2–3µm, but increased to about 6–8µm when the mass
ratio of Zr2WP2O12/ZrO2 was increased to 4:1. Pure Zr2WP2O12
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TABLE 2 | Relative densities of ZrO2, Zr2WP2O12, and Zr2WP2O12-ZrO2

composites with different mass ratios.

Sample Relative density (%)

ZrO2 74.5

1:1 Zr2WP2O12-ZrO2 84.1

2:1 Zr2WP2O12-ZrO2 85.5

3:1 Zr2WP2O12-ZrO2 89.8

4:1 Zr2WP2O12-ZrO2 91.5

Zr2WP2O12 79.7

FIGURE 4 | Thermal expansion curves of ZrO2, Zr2WP2O12, and

Zr2WP2O12-ZrO2 composites. (A) ZrO2, (B) 1:1 Zr2WP2O12:ZrO2, (C) 2:1

Zr2WP2O12:ZrO2, (D) 3:1 Zr2WP2O12:ZrO2, (E) 4:1 Zr2WP2O12-ZrO2,

(F) Zr2WP2O12.

TABLE 3 | Average linear thermal expansion coefficients of ZrO2, Zr2WP2O12,

and Zr2WP2O12-ZrO2 composites in corresponding testing temperature range

from 25 to 700◦C.

Samples Coefficient of thermal expansion

ZrO2 4.10 × 10−6 K−1

1:1 Zr2WP2O12-ZrO2 1.32 × 10−6 K−1

2:1 Zr2WP2O12-ZrO2 −0.09 × 10−6 K−1

3:1 Zr2WP2O12-ZrO2 −0.88 × 10−6 K−1

4:1 Zr2WP2O12-ZrO2 −1.50 × 10−6 K−1

Zr2WP2O12 −3.30 × 10−6 K−1

(Figure 2f) showed a wide size distribution of spherical grains
with some residual porosity, which is in agreement with
results reported earlier (Isobe et al., 2008, 2009; Cetinkol and
Wilkinson, 2009). Figure 3 shows the composition maps analysis
of the 2:1 Zr2WP2O12:ZrO2 composite. Homogeneous spatial
distributions of Zr, P, W, and O elements were observed. These
results indicates that Zr2WP2O12 and ZrO2 phase uniformly
distributed as expected.

In this work, the densities of the resulting Zr2WP2O12, ZrO2,
and Zr2WP2O12/ZrO2 (mass ratio: 1:1, 2:1, 3:1, 4:1) ceramics
were also measured using Archimedes’ technique. The relative
densities were calculated from theoretical values for Zr2WP2O12

(3.63 g/cm3) and ZrO2 (5.817 g/cm3). As shown in Table 2, the
results are consistent with the SEM analysis above. The relative
densities of pure Zr2WP2O12 and ZrO2 were low, however, the
densities of Zr2WP2O12/ZrO2 (mass ratio: 1:1, 2:1, 3:1, 4:1)
ceramics increased with increasing content of Zr2WP2O12. For a
4:1 mass ratio Zr2WP2O12/ZrO2 composite, the relative density
of the sample reached 91.5% of the theoretical density values.
The sintering temperature of Zr2WP2O12 is lower than that
of ZrO2, which results in a decreased sintering temperature
and better densification of Zr2WP2O12/ZrO2 ceramics with
increasing content of Zr2WP2O12.

Thermal Expansion Analysis
Figure 4 gives the information about the thermal expansion
of all the Zr2WP2O12/ZrO2 ceramic composites synthesized
at 1,200◦C for 6 h. For purposes of comparison, the thermal
expansion curves of pure ZrO2 and pure Zr2WP2O12 ceramics
are also given in Figure 4. Average linear CTEs of the
obtained ZrO2, Zr2WP2O12, and Zr2WP2O12/ZrO2 ceramics
with different mass ratios are summarized in Table 3. Pure
ZrO2 ceramics (Figure 4A) showed positive thermal expansion
between 25 and 700◦C, and the average linear CTE was measured
to be 4.1 × 10−6 K−1, which is lower than the value reported
in the literature (Lommens et al., 2005; Yang et al., 2007). This
is likely due to insufficient sintering of the ZrO2 ceramics, as
some of the expansion can be absorbed by the empty pore
space. Pure Zr2WP2O12 ceramics (Figure 4F) showed NTE in
the testing temperature range. The average linear CTE of the
Zr2WP2O12 ceramics was measured to be −3.3 × 10−6 K−1 in
the temperature range of 25–700◦C, which is consistent with
literature reports (Cetinkol and Wilkinson, 2009; Isobe et al.,
2009). As can be expected, the CTEs of the Zr2WP2O12/ZrO2

composites decreased from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1

as the weight fraction of Zr2WP2O12 was increased. As shown in
Figure 4C, the 2:1 Zr2WP2O12/ZrO2 specimen showed close to
zero thermal expansion with an average linear CTE of −0.09 ×

10−6 K−1 in the temperature range of 25–700◦C. This near zero
expansion ceramic composite will have a number of potential
applications in many fields. These results suggest that the CTE of
the Zr2WP2O12-ZrO2 composites can be modified in the range
from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1, and that it is even
possible to achieve zero thermal expansion by adjusting the mass
ratios of Zr2WP2O12 and ZrO2.

CONCLUSIONS

Zr2WP2O12/ZrO2 ceramic composites with adjustable thermal
expansion coefficients were successfully fabricated by a solid state
reaction method. The composites consisted of orthorhombic
Zr2WP2O12 and monoclinic ZrO2 with no intermediate phases
observed. With increasing amount of Zr2WP2O12, the relative
densities of the Zr2WP2O12/ZrO2 ceramic composites increased
gradually. The CTE of the Zr2WP2O12/ZrO2 composites can
be tailored from 4.1 × 10−6 K−1 to −3.3 × 10−6 K−1 by
changing the weight fraction of Zr2WP2O12. For a mass ratio
of Zr2WP2O12/ZrO2 of 2:1, the Zr2WP2O12/ZrO2 ceramic
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composite showed close to zero thermal expansion with an
average linear CTE of−0.09× 10−6 K−1 between 25 and 700◦C.
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