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GeP5 is a recently reported new anode material for lithium ion batteries (LIBs), it holds

a large theoretical capacity about 2300 mAh g−1, and a high rate capability due to its

bi-active components and superior conductivity. However, it undergoes a large volume

change during its electrochemical alloying and de-alloying with Li, a suitable binder is

necessary to stable the electrode integrity for improving cycle performance. In this work,

we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the

difference in electrochemical performance between them and traditional binder PVDF.

As can be seen from the test result, GeP5 can keep stable in both common organic

solvents and proton solvents such as water and alcohol solvents, it meets the application

requirements of aqueous binders. The electrochemistry results show that the use of

LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity,

and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and

PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA

binder can be ascribed to the unique high strength long chain polymer structure of

LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong

ester groups with active materials and copper current collector. Benefit from that, the

GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low

temperature, it still shows attractive electrochemical performance.

Keywords: aqueous binder, alloy-type anode, GeP5, LiPAA, NaCMC, PVDF

INTRODUCTION

Lithium-ion batteries (LIBs) is an important energy storage device, and anode material is one
of the key factors to determine its comprehensive performance (Armand and Tarascon, 2008;
Goodenough and Park, 2013). For the moment, graphite is the most widely used anode material in
commercial LIBs due to its high reversibility and low potential. But the theoretical specific capacity
of graphite is limited to 372 mAh g–1, which is too low to meet the increasing actual demand
(Tarascon and Armand, 2001; Bruce et al., 2008). With the rapid development of electric vehicles,
it is necessary to develop new high capacity anode materials to replace graphite (Guo et al., 2017).
Alloy-type anode materials seem to be good choices as they can produce multiple electron reactions
with lithium, as a result, they can provide much higher theoretical capacities than graphite (Xie
et al., 2015b,c; Jiang et al., 2017). For example, the Si anode can exhibit an ultrahigh theoretical
capacity of 4200 mAh g–1 by the formation of Li4.4Si alloy (Ma et al., 2016). However, the high
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capacity is always accompanied by huge volume changes, which
would lead to a poor reversibility and cycle stability (Zhou et al.,
2016). For example, the actual obtained reversible capacity of
micro-Si (10µm particles) is only about 1170 mAh g–1 with
a low initial Coulombic efficiency of 35%, which is far below
the theoretical value, and more seriously, 70% of its capacity
drops only after five cycles (McDowell et al., 2012; Wu and
Cui, 2012). Such a rapid capacity decay is due to the peeling-
off and conductivity loss of active materials during pulverization
by repeated large volume changes. In order to solve this
problem, extensive methods have been introduced to promote
the performance, such as reducing the particle size, designing
nanostructured electrodes, or compositing active materials with
carbon, to buffer the volume expansion/contraction upon
lithiation/de-lithiation (Bruce et al., 2008; Jiang et al., 2012,
2016; He et al., 2014; Xie et al., 2015a; Yuan et al., 2016; Qin
et al., 2017; Wang et al., 2017; Wei et al., 2017). Moreover, it
is found that binder would play an important role especially
for alloy-type anodes in maintaining the integrity of electrode,
alleviating the stress caused by volume expansion, and keeping
good contact between active substance and collector, therefore,
the electrochemical performance can be greatly improved by
using the proper binders (Chou et al., 2014; Yuca et al., 2014;
Yue et al., 2014; Zhang et al., 2014; Liu et al., 2015). For example,
Kovalenko et al. used an aqueous binder alginate for Si anode,
and the cycle stability is much enhanced when compared to the
PVDF system (Kovalenko et al., 2011).

GeP5 is a recently reported new alloy-type anode material for
LIBs, it can deliver a large specific capacity of 2266 mAh g–1,
which is much higher than graphite. And in comparison with
Si, GeP5 shows a much higher reversibility upon lithiation/de-
lithiation. Its obtained actual capacity is very close to the
theoretical value (2289 mAh g–1). Besides, GeP5 holds a
competitive conductivity to graphite, which is much higher than
that of Si, thus it is expected to have high rate capability (Li et al.,
2015, 2017). These promising properties suggest that GeP5 can
be an excellent anode candidate for LIBs. However, similar to Si,
GeP5 electrode also experiences volume expansion/contraction
during discharge/charge processes upon alloying/de-alloying
with lithium. Considering the importance of binder for Si anode,
it is very possibly that a proper binder is highly needed for GeP5
to relief this problem. Compositing GeP5 with conductive carbon
in nanoscale has been proved an effect way to relief this problem.
However, as a new proposed anode material, the physical and
chemical properties of GeP5 are not yet clear and there is
no research on the influence of binder on its electrochemical
performance.

Nowadays, poly (vinylidene fluoride) (PVDF) is the most
commonly used binder in lithium-ion batteries because of its
excellent electrochemical stability, good bonding capability, high
adhesion, and universality. However, PVDF is very sensitive to
the moisture. It is easy to deliquescence in moist air and lose
the bonding ability. Besides, PVDF is usually used by employing
N-Methyl pyrrolidone (NMP) as the solvent and dispersant,
which is volatile, flammable, explosive, and high-toxic, leading
to serious environment pollution. What’s more, both PVDF and
NMP are expensive, which lead to higher production costs of

lithium-ion batteries. Based on these, the aqueous binders have
drawn more and more attention in recent years because of the
advantages of low cost and environmental friendly (Zhang et al.,
2004). It has been reported that some aqueous binders can bring
better electrochemical performance than PVDF to some anode
and cathode materials (Cai et al., 2009; Courtel et al., 2011;
Kovalenko et al., 2011; Chai et al., 2013; Gong et al., 2013; Kuruba
et al., 2015; Liu et al., 2017), especially for Si and Sn anode
(Hochgatterer et al., 2008; Bridel et al., 2010; Koo et al., 2012;
Erk et al., 2013; Yim et al., 2013; Chou et al., 2014; Pieczonka
et al., 2015). These binders may be also good choices for alloy-
type GeP5 anode. So, in this manuscript, we systematically
study the electrochemical properties of GeP5 electrode in both
aqueous and non-aqueous binder systems. Two most used
aqueous binders, lithium-polyacrylic acid (LiPAA), and sodium-
carboxymethylcellulose (NaCMC), are chosen to investigate the
effects of binder on the performances of GeP5 in comparison
with the traditional non-aqueous PVDF binder. Through the
result of the stability test, it found that GeP5 can keep stable in
the protonic solvent, therefore, it indicates that aqueous binders
can be used for GeP5 anode. The electrochemistry results show
that the use of LiPAA binder can significantly improve the initial
Coulombic efficiency, reversible capacity, and cyclability of GeP5
anode. Even at a low temperature of −20◦C, GeP5 can remain a
large capacity of 1154 mAh g–1, further showing that GeP5 is a
very promising candidate for high energy LIBs.

EXPERIMENTAL

Materials Preparation and Characterization
The pure phase GeP5 was synthesized via a high energy
mechanical milling (HEMM, Fritsch Pulverisette-6) method (Li
et al., 2015). Twenty millimoles Ge and One hundred millimoles
red P powders were added into a stainless steel tank with a
rotation speed of 400 rpm for 6 h under Ar atmosphere. GeP5/C
nanocomposite was also synthesized by HEMM pure GeP5 and
super P (in a mass ratio of 7:2) with a rotation speed of 400
rpm for 10 h under Ar atmosphere. The obtained products were
characterized by X-ray diffraction (XRD, PANalyticalX’pert PRO-
DY2198), confocal Raman spectrometer (Raman, jobinYvon
HR800), scanning electron microscope (SEM, FEI Quanta650
FEG) and Fourier transform infrared spectroscopy (FT-IR,
Bruker VERTEX 70).

Electrochemical Performance
For the electrochemical evaluation, the homogeneous slurry
which was obtained by mixed GeP5/C powder with binder
(LiPAA in deionized water, NaCMC in deionized water, and
PVDF in NMP, respectively) in a weight ratio of 90:10 was
coated on a copper foil substrate. As-coated electrodes were
dried at 80◦C on a vacuum oven for 12 h. The mass loading
of the electrodes is ca. 1–1.5mg cm−2. Two thousand thirty-
two coin-type electrochemical cells were assembled as lithium
metal as the counter and reference electrodes in an Ar-
filled glove box with water-oxygen content below 1 ppm.
1.0mol L−1 LiPF6 dissolved in ethylene carbonate (EC), dimethyl
carbonate (DMC) and ethyl methyl carbonate (EMC) (EC: DMC:
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EMC= 1:1:1vol. %) solution was the electrolyte. All the cells were
tested galvanostatically between 0.005V and 3.0V (vs. Li/Li+)
at different current densities (100–2000mA g−1) using LAND
(Wuhan Kingnuo Electronic Co, China) tester. The capacity was
calculated based on the active mass of the electrodes. DQ/dV
was performed at a voltage range of 0.005–3.0V by using the
automatic battery testing system (Hokuto Denko, HJ1001SD8).

RESULTS AND DISCUSSION

The GeP5 synthesized via HEMMare stacked by irregular micron
particles, and the mapping images show that element Ge and P
are uniformly distributed in the GeP5 particle (Figures 1A–D).
As a newly reported anode material, the physical, and chemical
properties of GeP5 are not yet very clear. Before introducing

different binder, the chemical and physical stability of GeP5 in
different solvents should be verified. For aqueous binder, protic
solvent is usually used, while for non-aqueous binder, NMP is
mostly used. Besides, the organic carbonate solvents in electrolyte
are also directly contact with electrode materials. So we first
test that whether GeP5 can stay stable and won’t dissolve or
undergo chemical reactions in the different kinds of binder
dispersants and electrolyte solvents. In the test, deionized water
(DI), propylene carbonate (PC), dimethyl carbonate (DMC) and
ethanol are selected as the solvents, and 500mg GeP5 powder
was immersed in the above solvent for 96 h at room temperature,
respectively. In addition, in order to further accelerate the
reaction, the same test is carried out at 50◦C. Figures 1E,F
show the XRD patterns of the GeP5 powder after soaking
treatment. It can be found that the diffraction peaks of all the
samples are complete coincide with GeP5 (JCPDS Card No.

FIGURE 1 | (A,B) The SEM images and (C,D) the mapping images of GeP5. The XRD and Raman patterns of GeP5 after 96 h in different kinds of solvent at (E,G)

room temperature, (F,H) 50◦C.
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04-2455). And the Raman patterns of the samples are showed in
Figures 1G,H, there is also no difference between the treated and
untreated GeP5 powder. The results indicate that GeP5 does not
undergo chemical reactions with the above solvents no matter at
room temperature or at 50◦C, showing good chemical stability
of GeP5 in both aprotic and protic solvents. It promises the
utilization possibility of aqueous binders in GeP5 anode.

To test the adhesion capability of LiPAA, NaCMC, and
PVDF, the different binder-based electrodes were successively
folded for different times as Figure 2A shown. The microscope
photos are shown in Figures 2B–J. Compared with the unfolded
electrodes, it can be found that after been folded for five times,
the structural integrity of LiPAA-based binder electrode and
PVDF-based binder electrode were kept well, however, there
were cracks appeared at the NaCMC-based electrode, and some
active material exfoliated from the copper current collector. And
when the fold times increased to 10, the surface morphology
of NaCMC-based electrode getting worse, the cracks became

more apparent, and more active material was peeling off. In
comparison, the PVDF-based electrode is much better than the
NaCMC-based one. There was only a small amount of active
material exfoliated. The best adhesion capability can be seen
from the LiPAA-based electrode, after ten-time-folded, there was
no active material exfoliate from the copper current collector.
According to the test, it is clearly that LiPAA have the best
adhesion capability among the three kinds of binders.

The discharge/charge profiles of GeP5 electrode with LiPAA,
PVDF, and NaCMC binder are presented in Figures 3A–C,
respectively. The LiPAA system shows the best cycle
performance, at a current density of 100mA g–1, it delivers
discharge and charge capacities of 2294 and 2193 mAh g–1 at the
first cycle. After 3 cycles, there was only a slight drop in capacity.
In contrast, the NaCMC system exhibits a first discharge/charge
capacity of 2406/818 mAh g–1, and after 3 cycles, the reversible
capacity was decayed to less than 400 mAh g–1. As for PVDF
system, a discharge capacity of 2122 mAh g–1 and a charge

FIGURE 2 | (A) The schematic diagram of folding electrodes; The microscope photos of GeP5 electrodes with (B) LiPAA before being folded, (C) LiPAA after being

folded five times, (D) LiPAA after being folded 10 times; (E) PVDF before being folded, (F) PVDF after being folded five times, (G) PVDF after being folded 10 times; (H)

NaCMC before being folded, (I) NaCMC after being folded five times, (J) NaCMC after being folded 10 times.
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FIGURE 3 | The cycle curves in the first three cycles of GeP5 electrodes with (A) LiPAA, (B) NaCMC, (C) PVDF. The dQ/dV curves of GeP5 electrodes (D) in first

discharge, (E) in first charge. (F) Cell impedance of GeP5 electrodes after thirty cycles. (G) The electrochemical performance comparison of CeP5 electrodes with

different binders.

capacity of 1108 mAh g–1 were obtained at the first cycle, and
they decreased to 700 and 594 mAh g–1 at the third cycle,
respectively. It is a little better than the NaCMC one, but still far
worse than the LiPAA system.

In order to understand the details of charge discharge data
more clearly, dQ/dV profiles of the GeP5 electrodes in the first
cycle with LiPAA binder, NaCMC binder, and PVDF binder are
shown in Figures 3D,E. At the first discharge (Figure 3D), all
of the three systems exhibit two distinct peaks around 0.5 and
0.8V, respectively, which are related to the forming of conversion
reaction product LixP, and a small peak around 0.18V which is
attributed to the forming of alloying product LixGe. According
to that, GeP5 electrodes with all the three binders can be fully
lithiated at the first discharge process. As for the first charge, the
peak around 0.5V, which assigned to the extraction of lithium
from LixGe, can be found clearly in all the three binder systems, it
means that de-alloying process can be fully completed. However,
the peaks around 1.0V that correspond to the extraction of
lithium from LixP are much difference among them. The LiPAA
system shows the much more obvious redox peak than the
other two binder systems. It indicates the highest reversibility
of lithiation/de-lithiation of GeP5 in LiPAA system, which is
consistent well with the discharge/charge curves. As a summary,
the initial Coulombic efficiency and capacity retention of the
three binder systems are listed in Figure 3G, it can be clearly
observed that LiPAA system has much higher initial Coulombic
efficiency of 95.63% than the NaCMC system of 34.03% and
the PVDF system of 52.21%. And it also shows the highest
capacity retention than the other two binder systems. There

are 97.62, 13.63, and 28.02% of the capacity retained after 3
cycles for the LiPAA system, NaCMC system, and PVDF system,
respectively. And when the cycle number increased to 20, the
capacity retention values are reduced to 89.79, 2.02, and 11.33%
for the three systems, respectively.

The electrochemical impedance spectroscopy (EIS)
measurements of GeP5 electrodes with different binders
were also conducted. The Nyquist plots of GeP5 electrodes with
different binders after 30 cycles were shown in Figure 3F. It’s
obvious that the impedance spectrum consist of a depressed
semicircle in the high frequency region and a straight line in the
low frequency region. The former is related to the charge transfer
resistance, while the latter is attributed to the diffusion of Li+

within the bulk of active materials, which called the Warburg
resistance. According to the impedance spectra data, it can be
found that after 30 cycles, the GeP5 electrode with LiPAA binder
shows smaller charge transfer resistance in the high frequency
region than those of PVDF and NaCMC binder systems. And
the result indicates that the LiPAA system shows the favorable
kinetics of electrode reactions.

To further verify the difference in cycle stability, the electrodes
were extracted from the coin cells after 30 cycles, and compared
with the fresh one. The morphologies of the GeP5 electrodes
with three binders were observed by SEM, and the surface
conditions of them are shown in Figure 4. The electrode
conditions of the three systems are almost same before cycle
test (Figures 4A–C), however, there are much difference between
them in the morphology after cycle life. The morphology of the
LiPAA-based electrode was kept well after one cycle (Figure 4D).
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FIGURE 4 | SEM images of GeP5 electrodes with (A) LiPAA before cycling, (D) LiPAA after one cycle and photo of GeP5 electrode with LiPAA after thirty cycles

(inset); (B) NaCMC before cycling, (E) NaCMC after one cycle and photo of GeP5 electrode with NaCMC after thirty cycles (inset); (C) PVDF before cycling, (F) PVDF

after one cycle and photo of GeP5 electrode with PVDF after thirty cycles (inset).

It still exhibited a smooth surface, and the active material firmly
adhered to the copper substrate even after 30 cycles (inset photo).
As for the other two systems, both of the two electrodes showed
rough surfaces after one cycle life (Figures 4E,F), and what’s
more, the active material was severely pulverized and peeled off
from the copper substrate after 30 cycles (inset photo), as a result,
the reversible capacity faded rapidly. What’s more, the change of
electrode surface morphology is regarded as the main reason for
the high contact resistance between active materials and copper
collector.

According to the above description, LiPAA binder system
shows much better electrochemical performance than NaCMC
and PVDF systems, and it mainly owning to the difference
between their molecular structures. As shown in Figure 5A,
both LiPAA and PVDF exhibit long-chain macromolecule
structures, however, NaCMC displays a ring polymer structure.
By comparison, the long-chain structure seems has a better

adhesive property than the ring structure. PAA shows a breaking
stress value (σb) about 90 MPa, which is much higher than CMC
(30 MPa), and PVDF (37 MPa) (Magasinski et al., 2010). Besides,
PAA also shows much stronger resistance to deformations than
PVDF, which makes it can effectively resist stress changes caused
by volume expansion and keep active materials contacting well
with copper collector (Fan et al., 2001; Antonova, 2009). In
contrast, the weak resistance of PVDF to deformations results
in poor cycle stability in alloy-type anodes which with huge
volume change upon the discharge/charge process. In addition,
there are large numbers of carboxyl groups that uniformly
distributed in the molecular chain of LiPAA. And as the diagram
indicating (Figure 5D), these carboxyl groups can bonding with
hydroxyl groups that exist on the surface of active materials,
conductive agents and copper substrate, as a result, it greatly
strengthens the adhesive capacity of LiPAA binder. Benefit from
that, LiPAA can better resist the stress change caused by huge
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FIGURE 5 | (A) The molecular structural formulas of LiPAA, PVDF, NaCMC. The FT-IR spectrum of (B) LiPAA, NaCMC, PVDF, and GeP5 (inset), (C) LiPAA/GeP5,

NaCMC/GeP5, PVDF/GeP5. (D) The adhesive mechanism schematic illustration of LiPAA binder in GeP5 electrode.

volume expansion/contraction during discharge/charge process.
The active materials can maintain good contact with each other
and keep good adhesion to the current collector during the cycle
life. As a result, the integrity of the electrode structure can be well
maintained, which ensures enhanced cycle stability. For PVDF,
there is no carboxyl groups or hydroxyl groups exist, and its
adhesion effect is only depends on intermolecular forces (Van der
Waals’ force). As Figure 5B shows, the FT-IR spectrum further
verify the existence of hydroxyl groups and carboxyl groups in
LiPAA and NaCMC, which are correspond to the peaks that
located around 2500–3500 cm–1 and 1700 cm–1, respectively, it

also indicates that there are oxygen-containing functional groups
(3200–3700 cm–1) in GeP5, which can bonding with LiPAA and
NaCMC. However, there is no peak at these positions can be
found for the PVDF binder. After mixed with GeP5, the FT-IR
spectrum clearly display a peak located around 1630 cm-1 in both
curves of GeP5 with LiPAA and NaCMC, which is characteristic
for the ester R1-COO–R2 bond. As compared, there are not any
peaks here on the curve of GeP5 with PVDF binder (Figure 5C).

According to the above results, the water-based LiPAA binder
can exhibit much better cycle performance than the traditional
PVDF binder and another water-based NaCMC binder in GeP5
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FIGURE 6 | (A) Cycle curves and (B) rate performance of GeP5 electrode with LiPAA binder in different current density. (C) Cycle curves in different temperature, and

(D) temperature capability of the GeP5 electrode with LiPAA binder.

electrode. Further electrochemical test is conducted to investigate
the bonding properties of LiPAA at different working conditions.
The rate capability of GeP5 electrode with LiPAA binder was
shown in Figures 6A,B. The half-cell was cycled at the current
density of 100, 200, 500, 1000, and 2000mA g–1 and back to
100mA g–1 in succession. As can be seen from the Figure 6A,
the charging and discharging platforms are well maintained with

slight change in capacity. It indicates that the discharge-charge
reactions can be relatively completed even at a high current

density. A discharge capacity of 2294, 2203, 2194, 2115, and
1988 mAh g–1 can be obtained at 100, 200, 500, 1000, and
2000mA g–1, respectively. And there are about 86.3% capacity
retained in the current of 2000mA g–1 when compared with the

current density of 100mA g–1. When the current density came

back to 100mA g–1, the capacity can back to a high level. The

attractive rate performance indicates LiPAA binder can still hold
good bonding effect even at high current density.

Binder as a polymer material, its physical properties would

change with the change of temperature. Up to now, most
of the research about alloy-type anode materials is based on

room temperature conditions, and there are little reports

on their electrochemical performance at low temperature.

As GeP5 electrode with LiPAA binder shows excellent cycle
stability and rate capability at room temperature, we change
the battery test temperature to verify whether the good
electrochemical performance can be maintained in low
temperature environment. A temperature range from 30 to
−20◦C was selected for testing of GeP5 electrode with LiPAA
binder at 200mA g−1, and the result was shown in Figures 6C,D.

It can be found that the reversible capacity decreases gradually
with the drop of temperature, and the voltage polarization is also
becoming more and more obvious. And this is attributed to the
suppressed reaction dynamic at low temperature. A discharge
capacity of 2245, 2094, 1856, 1796, and 1266 mAh g−1 can be
exhibited at 30, 20, 10, 0, and −10◦C, even at a low temperature
of −20◦C, the GeP5 electrode with LiPAA can still provide a
high discharge capacity of 1154 mAh g−1. The result shows that
LiPAA can keep good bonding property at low temperature.

CONCLUSION

As compared with traditional PVDF, aqueous-based binder
systems have many advantages, such as low cost, environment
friendly, and non-toxic, and they have attracted much attention
as replacers of PVDF. In this work, we tried to apply aqueous-
based binders (LiPAA and NaCMC) to the promising alloy
type anode material GeP5, which can provide a high theoretical
capacity near to 2300 mAh g–1, and made a comparison
with traditional PVDF binder. According to the result, the
LiPAA system shows the best physical adhesion capability and
electrochemical performance. The initial Coulombic efficiency
and cycle stability are greatly improved when compared with
NaCMC and PVDF. And the improvement is mainly ascribed
to the unique molecular structure of LiPAA. First, it shows a
high strength long chain polymer structure, which can effectively
resist the stress change caused by volume expansion/contraction.
Second, there are lots of carboxyl groups uniformly distributed
on the molecular chain, which can react with hydroxyl groups
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that exist on the surface of active materials, conductive
agents and copper substrate, and the adhesion ability can be
improved. Benefit from that, the GeP5 electrode with LiPAA
can exhibit excellent cycle stability and rate capability, and even
at low temperature, it can also show attractive electrochemical
performance. We believe that the aqueous-based binder LiPAA
has a greater application prospect in the future.
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