

Discovery of C-3 Tethered 2-oxo-benzo[1,4]oxazines as Potent Antioxidants: Bio-Inspired Based Design, Synthesis, Biological Evaluation, Cytotoxic, and *in Silico* Molecular Docking Studies

OPEN ACCESS

Edited by:

Rajeev K. Singla, Netaji Subhas Institute of Technology, India

Reviewed by:

Abdul Sadiq, University of Malakand, Pakistan Lhassane Ismaili, Université Bourgogne Franche-Comté, France Rohit Gundamaraju, University of Tasmania, Australia

*Correspondence:

Dharmendra Kumar Yadav dharmendra30oct@gmail.com Sandeep Chaudhary schaudhary.chy@mnit.ac.in

[†]These authors have contributed equally to this work.

Specialty section:

This article was submitted to Medicinal and Pharmaceutical Chemistry, a section of the journal Frontiers in Chemistry

Received: 25 November 2017 Accepted: 23 February 2018 Published: 23 March 2018

Citation:

Sharma V, Jaiswal PK, Saran M, Yadav DK, Saloni, Mathur M, Swami AK, Misra S, Kim M and Chaudhary S (2018) Discovery of C-3 Tethered 2-oxo-benzo[1,4]oxazines as Potent Antioxidants: Bio-Inspired Based Design, Synthesis, Biological Evaluation, Cytotoxic, and in Silico Molecular Docking Studies. Front. Chem. 6:56. doi: 10.3389/fchem.2018.00056 Vashundhra Sharma^{1†}, Pradeep K. Jaiswal^{1†}, Mukesh Saran², Dharmendra Kumar Yadav^{3*}, Saloni³, Manas Mathur², Ajit K. Swami², Sanjeev Misra⁴, Mi-hyun Kim³ and Sandeep Chaudhary^{1*}

¹ Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India, ² Department of Advance Molecular Microbiology, Seminal Applied Sciences Pvt. Ltd., Jaipur, India, ³ College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea, ⁴ Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India

The discovery of C-3 tethered 2-oxo-benzo[1,4]oxazines as potent antioxidants is disclosed. All the analogs 20a-20ab have been synthesized via "on water" ultrasound-assisted irradiation conditions in excellent yields (upto 98%). All the compounds have been evaluated for their in vitro antioxidant activities using DPPH free radical scavenging assay as well as FRAP assay. The result showed promising antioxidant activities having IC₅₀ values in the range of 4.74 \pm 0.08 to 92.20 \pm 1.54 μ g/mL taking ascorbic acid (IC₅₀ = $4.57 \,\mu$ g/mL) as standard reference. In this study, compounds 20b and 20t, the most active compound of the series, showed IC₅₀ values of 6.89 \pm 0.07 µg/mL and 4.74 \pm 0.08 µg/mL, respectively in comparison with ascorbic acid. In addition, the detailed SAR study shows that electron-withdrawing group increases antioxidant activity and vice versa. Furthermore, in the FRAP assay, eight compounds (20c, 20j, 20m, 20n, 20r, 20u, 20z, and 20aa) were found more potent than standard reference BHT (C_{0.5FBAP} = 546.0 \pm 13.6 μ M). The preliminary cytotoxic study reveals the non-toxic nature of active compounds 20b and 20t in non-cancerous 3T3 fibroblast cell lines in MTT assay up to 250 µg/mL concentration. The results were validated via carrying out in silico molecular docking studies of promising compounds 20a, 20b, and 20t in comparison with standard reference. To the best of our knowledge, this is the first detailed study of C-3 tethered 2-oxo-benzo[1,4]oxazines as potential antioxidant agents.

Keywords: 2-oxo-benzo[1, 4]oxazines, antioxidant, DPPH, FRAP, ascorbic acid, BHT

INTRODUCTION

"Antioxidant" are primarily reducing agents/compounds which refer to the activity of numerous vitamins, minerals and phytochemicals (such as vitamin E, vitamin C and glutathione etc.) by providing protection against the damage caused by reactive oxygen species (ROS) (Park and Pezzutto, 2002; Trombino et al., 2004; Govindarajan et al., 2005; Zhang et al., 2006). Antioxidants

1

(either natural or synthetic) are molecules, which are capable of neutralizing free radicals as well as ROS by acting at several levels such as: prevention, interception, and repair (Lehtinen and Bonni, 2006; Khan et al., 2011; Bayoumi and Elsayed, 2012). Thus, the search for antioxidants has been stimulated due to their significant importance in human health (Balakin et al., 2004; Mitra et al., 2009). Moreover, it is known that ROS like superoxides (O_2^{2-}) , peroxyls (ROO⁻), hydroxyls (HO⁻), alkoxyls (RO⁻), nitric oxides (NO⁻), play a important role in disturbing metabolic pathways associated with several pathological conditions, such as cardiovascular diseases, metabolic disorders, and even carcinogenesis (Lai et al., 2001; Cheng et al., 2011). Therefore, the human body is capable to neutralize ROS by antioxidant defense mechanisms by eradicating an excess of ROS from the cell (Apel and Hirt, 2004; Zhang et al., 2010; Mittal et al., 2014). An imbalances between the detoxification of ROS with respect to their production leads to a phenomena known as "oxidative stress (OS)" which is correlated to several diseases such as stroke (Simao et al., 2015), myocardial infarction (Hassan et al., 2015), cancer (Aldawsari et al., 2016), Parkinson's disease (Wood-Kaczmar et al., 2006) and Alzheimer's disease (Nunomura et al., 2006). Therefore, the development of natural as well as synthetic antioxidants, which are able to scavenge ROS and keep cell integrity via prevention or reduction of the impact of OS on cells, is now currently an recognized area of research interest.

During the last decade, benzoxazines, benzodioxine ,and its derivatives have emerged as a possible antioxidants (Largeron et al., 1999, 2001; Czompa et al., 2000; Sadiq et al., 2015). Several naturally occurring antioxidants (Abdel-lateif et al., 2016; Aziz and Karboune, 2016) such as dimboa 1 (Niemeyer, 2009; Adhikari et al., 2013; Glenska et al., 2015) and sylbin 2 (Kosina et al., 2002; Varga et al., 2006; Surai, 2015; Vavríkova et al., 2017) have been identified as promising antioxidant agents. Likewise, several synthetic molecules bearing benzoxazines as whole or as part in their structure, have also been identified as potential antioxidant agents such as exifone 3 (Largeron et al., 1995; Largeron and Fleury, 1998), isatoic anhydrides i.e., benzoxazine2,4-diones 4 (Sáncheza et al., 2014), 2-hydroxy-1,4-benzoxazin-3(4H)-one 5 (Harput et al., 2011), and some analogs **6a-b** (Largeron et al., 1999) etc. as shown in **Figure 1**. This encourages us to synthesize non-naturally occurring benzo [1,4] oxazines analogs.

Moreover, several natural products like Curcumine 7 (Barclay and Vingvist, 2000), Quinolines 8 (Detsi et al., 2007; Savegnago et al., 2013; Oliveri et al., 2015), Chalcones 9 (Qian et al., 2011; Shakil et al., 2013; El Sayed Aly et al., 2014), Resveratrol 10 (Scartezzini and Speroni, 2000), Rosmarinic acid 11 (Fadel et al., 2011; Zhu et al., 2014), Trolox 12 (Hall et al., 2010a), Coumarins-chalcone hybrid 13 (PérezCruz et al., 2013; Mazzone et al., 2016), and Quercetin 14 (Kumar et al., 2007) etc. were also reported as antioxidants. However, due to several drawbacks such as poor solubility, less abundance and severe toxicity; their antioxidant properties were found to be relatively lower. Thus, there is still an urgent need to develop a potent antioxidant by designing a new scaffold via structural modification and incorporation of functional group present in these antioxidants. Hence, based on above fact, we have designed prototype 15 i.e., C-3 tethered 2-oxo-benzo[1,4]oxazine, incorporating similar sub-structural units assuming that the resulting structure will be a new class of potent antioxidant agent (Figure 2).

In the continuation toward the search of new class of antioxidants; we were interested to explore the designed prototype **15**. Therefore herein, we report the synthesis *via* our methodology (Jaiswal et al., 2017), antioxidant activity, and SAR of a series of C-3 tethered 2-oxo-benzo[1,4]oxazine analogs **20a-20ab**. Although compounds **20a-i**, **201**, **20t-w**, **20y**, and **20aa-ab** have been earlier reported in the literature but were prepared by other routes (Iwanami et al., 1971; Mashevskaya et al., 2002; Gein et al., 2008; Xia, 2008; Xia et al., 2008; Stepanova et al., 2011, 2013; Maslivets and Maslivets, 2012). Moreover, their antioxidant activities are also not reported so far in the literature. To the best of our knowledge, the antioxidant activities of all the synthesized compounds **20a-20ab**, were evaluated for the first time using DPPH radical scavenging assay taking ascorbic acid as standard

reference and FRAP assay using BHT as standard reference. In addition, the cytotoxic studies of active compounds were also performed. Moreover, we also report the validation of our results *via in silico* molecular docking studies of compounds **20a**, **20b** and **20t** in comparison with standard reference ascorbic acid.

MATERIALS AND METHODS

General Experimental

All glass apparatus were oven dried prior to use. Melting points were taken in open capillaries on complab melting point apparatus and are presented uncorrected. Ultrasonic irradiation was performed in a Elmasonic S 30 (H) ultrasonic water bath cleaner and the reaction vessel was positioned in the maximum energy area in the cleaner and the removal or addition of water was used to control the temperature of the water bath. Infrared spectra were recorded on a Perkin-Elmer FT-IR Spectrum 2 spectrophotometer ¹H NMR and ¹³C NMR spectra were recorded on ECS 400 MHz (JEOL) NMR spectrometer using CDCl₃, CD₃ODandCD₃SOCD₃ as solvent and tetramethylsilane as internal reference. Electrospray ionization mass spectrometry (ESI-MS) and HRMS were recorded on Xevo G2-S Q Tof (Waters, USA) Spectrometer. Column chromatography was performed over Merck silica gel (particle size: 60-120 Mesh) procured from Qualigens? (India), flash silica gel (particle size: 230-400 Mesh). All chemicals and reagents were obtained from Sigma Aldrich (USA), Merck (India) or Spectrochem (India) and were used without further purification.

General Procedure for the Synthesis of Functionalized Diketo-Acid 18a-h

Substituted acetophenone 16a-h (2.00 mmol, 1eg.) were taken in toluene (50 ml) and NaH (2.20 mmol, 1.1 eq.) was added carefully. After stirring this reaction mixture at 0°C for 30 min dimethyl oxalate (2.20 mmol, 1.1 eq.) were added and reflux for 6 h. The progresses of the reaction were monitored by TLC using 9:1 Hexane/ethyl acetate as an eluent. After completion of reaction, the reaction mixture was quenched with distilled water and extracted with ethyl acetate $(3 \times 50 \text{ ml})$; then with distilled water $(2 \times 10 \text{ mL})$ followed by brine solution $(2 \times 20 \text{ mL})$. The organic layer was combined and dried over anhydrous Na₂SO₄ and the organic solvent was removed under reduced pressure to give the crude product. The crude products were purified by recrystalization using EtOAc/Hexane (v/v = 20.80), which afforded the pure desired diketo-ester 17a-h in 78-92% yields. Compounds 17a-h was used for next step without any further purification.

To a solution of **17a-h** (1.00 mmol, 1eq.) in MeOH:THF: H_2O (10 ml, 7:2:1), added LiOH. H_2O (1.20 mmol, 1.2eq) into the reaction mixture and stirred it for 4 h at room temperature. The progress of the reaction was monitored by TLC. After completion of the reaction, it was quenched with 3N HCl solution and extracted with ethyl acetate (3 × 30 mL); then with distilled water (2 × 10 mL) followed by brine solution (2 × 20 mL). The combined organic layer was dried over anhydrous Na₂SO₄

and evaporated under vacuum to afford the corresponding crude product. These crude products were further purified by recrystalization with EtOAc/Hexane, which afforded diketo-acids **18a-h** in excellent yields (up to 97%). Compounds **18a-h** were used for next step without any further purification.

General Procedure for the Synthesis of Functionalized (Z)-3-(2-Oxo-2-Phenylethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20a-ab)

To a solution of the compound 18a-h (0.20 mmol; 1eq.) in water (2.0 mL) was added compound 19a-f (0.20 mmol; 1eq.) and the reaction mixture was irradiated under ultrasonic sonicator at 80°C temperature for about 75-90 min (depending upon the substrate employed). The progress of the reaction was checked by TLC using 9:1 Hexane/ethyl acetate as an eluent. After completion of reaction, the reaction mixture was extracted with ethyl acetate $(3 \times 50 \text{ ml})$; then with distilled water $(2 \times 10 \text{ mL})$ followed by brine solution $(2 \times 20 \text{ mL})$. The organic layers were combined and dried over anhydrous Na₂SO₄ and the organic solvent was removed under reduced pressure to give the crude product. The crude products were purified either by recrystalization using Hexane/EtOAc (v/v = 90:10) or by flash column chromatography method over silica gel using 7.5:2.5 to 9:1 Hexane/ethyl acetate as an eluent which afforded the pure desired (Z)-3-(2-oxo-2-phenylethylidene)-3,4-dihydro-2H-benzo[b][1,4]-oxazin-2-one 20a-ab having good yields (80-98%).

Characterization Data of 2-oxo-benzo[1,4]oxazin-2-one (20a-ab) (Z)-3-(2-oxo-2-phenylethylidene)-3,4-dihydro-2Hbenzo[b][1,4]oxazin-2-one (20a)

Yellow solid; yield: 51.97 mg (98%), R_f (EtOAc/Hexane; 20:80) = 0.85; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (9:1) as an eluent; m.p. 185–186°C; FT-IR (KBr, vmax/cm⁻¹) 3434, 1754, 1614, 1594, 1270, 1113; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.4 Hz, 2H, Ar-H), 7.55–7.46 (m, 3H, Ar-H), 7.21–7.05 (m, 5H, C=CH, Ar-H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6 (C=O), 156.3 (O=C-O), 141.3 (<u>C</u>=CH), 139.1 (Ar-C), 138.3 (Ar-C), 132.8 (NH-C), 128.8 (Ar-C-NH), 127.7 (Ar-C), 126.0 (Ar-C), 124.0 (Ar-C), 123.8 (Ar-C), 117.2 (Ar-C), 116.0 (Ar-C), 94.7 (C=<u>C</u>H); HRMS (ESI) calcd. for C₁₆H₁₁NO₃ [M+H]⁺: 266.0739; found 266.0734.

(Z)-3-[2-(4-Methoxy-phenyl)-2-oxo-ethylidene]-3,4-dihydro-benzo [1, 4] oxazin-2-one (20b)

Yellowish solid; yield: 51.2 mg (88%), R_f (EtOAc/Hexane; 20:80) = 0.80; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (8:2) as an eluent; m.p. 200–203°C; FT-IR (KBr, vmax/cm-1) 3435, 1756, 1602, 1112; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.8 Hz, 2H, Ar-H), 7.17 (t,

J = 7.1 Hz, 2H, Ar-H), 7.09–7.05 (m, 2H, C=CH, Ar-H), 7.02– 6.95 (m, 3H, Ar-H), 3.87 (s, 3H, O-CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (C=O), 163.5 (Ar-<u>C</u>-OCH₃), 156.6 (O=C-O), 141.2 (Ar-C-N), 138.6 (Ar-C-O), 131.2 (<u>C</u>=CH), 130.0 (Ar-C), 125.9 (Ar-C), 124.0 (Ar-C), 123.7 (Ar-C), 117.2 (Ar-C), 115.8 (Ar-C), 114.0 (Ar-C), 94.7 (C=<u>C</u>H), 55.6 (O-CH₃); HRMS (ESI) calcd. for C₁₇H₁₃NO₄ [M+H]⁺: 296.0845; found 296.0849.

(Z)-6-chloro-3-(2-oxo-2-phenylethylidene)-3,4-dihydro-2h-benzo[b][1,4]oxazin-2-one (20c)

Yellowish solid; yield: 56.93 mg (95%), R_f (EtOAc/Hexane; 20:80) = 0.80; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (8.5:1.5) as an eluent; m.p. 185–187°C; FT-IR (KBr, vmax/cm⁻¹) 3434, 1761, 1555, 1622, 1174; ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.98 (m, 2H, Ar-H), 7.58–7.55 (m, 1H, Ar-H), 7.50-7.47 (m, 2H, Ar-H), 7.13–7.03 (m, 4H, Ar-H, C=CH); ¹³C NMR (100 MHz, CDCl₃) δ 191.8 (C=O), 155.8 (O=C-O), 139.8 (Ar-C-N), 138.4 (Ar-C-O), 138.1 (C=CH), 133.0 (Ar-C), 131.1 (Ar-C-Cl), 128.9 (Ar-C), 127.8 (Ar-C), 124.8 (Ar-C), 123.8 (Ar-C), 118.3 (Ar-C), 115.8 (Ar-C), 95.7 (C=CH); HRMS (ESI) calcd. for C₁₆H₁₀ClNO₃ [M+2]⁺: 301.7085; found 301.7089.

(Z)-6-chloro-3-(2-(4-fluorophenyl)-2-oxoethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20d)

Yellowish solid; yield: 59.08 mg (93%); R_f (EtOAc/Hexane; 20:80) = 0.80; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (8.5:1.5) as an eluent; m.p. 155–157°C; FT-IR (KBr, vmax/cm⁻¹) 3434,1754,1634,1601,1495, 1226,1160; ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.02 (m, 2H, Ar-H), 7.20-7.13 (m, 4H, Ar-H), 7.08-7.04 (m, 2H, C=CH, Ar-H);¹³C NMR (100 MHz, CDCl₃) δ 190.4 (C=O), 167.2 (Ar-C-F), 155.8 (O=C-O), 139.8 (Ar-C-N), 138.6 (Ar-C), 123.9 (Ar-C), 118.4 (Ar-C), 116.2 (Ar-C), 115.9 (Ar-C), 115.8 (Ar-C), 95.4 (C=CH); HRMS (ESI) calcd. for C₁₆H₉CIFNO₃ [M+H]⁺: 318.0255; found 318.0259.

(Z)-6-chloro-3-(2-(4-chlorophenyl)-2-oxoethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20e)

Yellowish solid; yield: 63.9 mg (96%); R_f (EtOAc/Hexane; 20:80) = 0.90; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (9:1) as an eluent; m.p. 182–185°C; FT-IR (KBr, vmax/cm⁻¹) 3434, 1761, 1631, 1586, 1088; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 2H, Ar-H), 7.45 (d, J = 8.1 Hz, 2H, Ar-H), 7.13–7.00 (m, 4H, C=CH, Ar-H); ¹³C NMR (100 MHz, CDCl₃) δ 190.4 (C=O), 155.7 (O=C-O), 139.8 (Ar-C-Cl), 139.4 (Ar-C-N), 138.7 (Ar-C-O), 136.3 (C=CH), 131.2 (Ar-C), 129.2 (Ar-C), 129.1 (Ar-C), 124.6 (Ar-C), 124.0 (Ar-C), 118.3 (Ar-C), 115.9 (Ar-C), 95.3 (C=CH); HRMS (ESI) calcd. for C₁₆H₉Cl₂NO₃ [M+2]⁺: 334.9959; found 334.9956.

(Z)-6-chloro-3-(2-(2,4-dichlorophenyl)-2-

oxoethylidene)- 3,4-dihydro-2H-benzo[b][1,4]oxazine-2-One (20f)

Yellowish solid; yield: 65.9 mg (89%); R_f (EtOAc/Hexane; 20:80) = 0.85; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (9:1) as an eluent; m.p. 135–137°C; FT-IR (KBr, vmax/cm-1) 3432, 3075, 2923, 1626, 1583, 1105; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.4 Hz, 1H, Ar-H), 7.47 (d, J = 1.6 Hz, 1-H, Ar-H), 7.34 (dd, J = 1.6 Hz, 8.4 Hz, 1H, Ar-H), 7.17-7.09 (m, 3H, Ar-H), 6.82 (s, 1H, C=C<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ 192.1 (C=O), 155.4 (O=C-O), 139.9 (Ar-C-Cl), 138.4 (Ar-C-Cl), 137.7 (Ar-C-N), 137.2 (Ar-C-O), 132.7 (<u>C</u>=CH), 131.3 (Ar-C), 130.8 (Ar-C), 130.7 (Ar-C), 127.6 (Ar-C), 124.4 (Ar-C), 118.4 (Ar-C), 116.1 (Ar-C), 99.3 (C=<u>C</u>H); HRMS (ESI) calcd. for C₁₆H₈Cl₃NO₃ [M+2]⁺: 368.9570; found 368.9577.

(Z)-3-(2-(4-bromophenyl)-2-oxoethylidene)-6-chloro-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20g)

Yellowish solid; yield: 70.7 mg (93%); R_f (EtOAc/Hexane; 20:80) = 0.80; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (9:1) as an eluent; m.p. 175–177°C; FT-IR (KBr, vmax/cm⁻¹) 3436, 2924, 1755, 1632, 1583, 1007; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 2H, Ar-H), 7.62 (d, *J* = 7.9 Hz, 2H, Ar-H), 7.13 – 7.00 (m, 4H, Ar-H, C=C<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (C=O), 155.6 (O=C-O), 139.8 (Ar-C-N), 138.8 (Ar-C-O), 136.8 (<u>C</u>=CH), 132.1 (Ar-C-Cl), 131.2 (Ar-C), 129.3 (Ar-C-Br), 128.1 (Ar-C), 124.6 (Ar-C), 124.0 (Ar-C), 118.3 (Ar-C), 115.9 (Ar-C), 95.2 (C=<u>C</u>H); HRMS (ESI) calcd. for C₁₆H₉BrClNO₃ [M+2]⁺: 377.9454; found 377.9458.

(Z)-6-chloro-3-(2-oxo-2-(p-tolyl)ethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20h)

Yellowish solid; yield: 56.5 mg (90%); R_f (EtOAc/Hexane; 20:80) = 0.90; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (9.5:0.5) as an eluent; m.p. 160–162°C; FT-IR (KBr, vmax/cm-1) 3434, 2925, 1624, 1766, 1494, 1178; ¹H NMR (400 MHz, CDCl₃) δ 7.94–7.92 (m, 2H, Ar-H), 7.30 (d, J = 8.0 Hz, 2H, Ar-H), 7.14-7.04 (m, 4H, C=CH, Ar-H), 2.44 (s, 3H, Ar-CH₃);¹³C NMR (100 MHz, CDCl₃) δ 191.6 (C=O), 156.0 (O=C-O), 144.0 (Ar-C-CH₃), 139.8 (Ar-C-N), 138.2 (Ar-C-O), 135.6 (C=CH), 131.2 (Ar-C), 129.7 (Ar-C), 128.0 (Ar-C), 125.0 (Ar-C), 123.7 (Ar-C), 118.3 (Ar-C), 115.8 (Ar-C), 95.9 (C=CH), 21.8 (-CH₃); HRMS (ESI) calcd. for C₁₇H₁₂ClNO₃ [M+H]⁺: 314.0506; found 314.0509.

(Z)-6-chloro-3-(2-(4-methoxyphenyl)-2-oxoethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20i)

Yellowish solid; yield: 56.6 mg (86%); R_f (EtOAc/Hexane; 20:80) = 0.80; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (9:1) as an eluent; m.p. 178-180°C; FT-IR (KBr, $\nu max/cm^{-1}$) 3434, 1764, 1628, 1594, 1018; 1H NMR (400

MHz, CDCl₃) δ 7.99-7.97 (m, 2H, Ar-H), 7.10-7.06 (m, 2H, Ar-H), 7.02–6.99 (m, 2H, Ar-H), 6.97-6.94 (m, 2H, Ar-H, C=C<u>H</u>), 3.87 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (C=O), 163.7 (Ar-<u>C</u>-OCH₃), 156.1 (O=C-O), 139.6 (Ar-C-N), 137.8 (Ar-C-O), 131.1 (<u>C</u>=CH), 130.9 (Ar-C), 130.1 (Ar-C), 125.0 (Ar-C), 123.4 (Ar-C), 118.2 (Ar-C), 115.6 (Ar-C), 114.1 (Ar-C), 95.7 (C=<u>C</u>H), 55.6 (-OCH₃); HRMS (ESI) calcd. for C₁₇H₁₂ClNO₄ [M+2]⁺: 331.7345; found 331.7349.

(Z)-3-(2-(4-fluorophenyl)-2-oxoethylidene)-6methyl-3,4-dihydro-2H-benzo[1,4]oxazin-2-one (20j)

Yellowish solid; yield: 53.7 mg (90%); R_f (EtOAc/Hexane; 20:80) = 0.85; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (9.5:0.5) as an eluent; m.p. 145–147°C; FT-IR (KBr, vmax/cm⁻¹) 3433, 2930, 1770, 1624, 1596, 1128; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 5.6, 8.8 Hz, 2H, Ar-H), 7.17–7.07 (m, 3H, Ar-H), 6.98–6.90 (m, 3H, C=CH, Ar-H), 2.36 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 190.0 (C=O), 166.9 (Ar-C-F), 156.4 (O=C-O), 139.3 (Ar-C-CH₃), 136.1 (Ar-C-N), 134.7 (Ar-C-O), 130.3 (C=CH), 130.2 (Ar-C), 124.9 (Ar-C), 123.3 (Ar-C), 116.9 (Ar-C), 116.2 (Ar-C), 115.9 (Ar-C), 115.8 (Ar-C), 94.1 (C=CH), 21.1 (CH₃); HRMS (ESI) calcd. for C₁₇H₁₂FNO₃ [M+H]⁺: 298.0801; found 298.0807.

(Z)-3-[2-(2,4-Dichloro-phenyl)-2-oxo-ethylidene]-6-methyl-3,4-dihydro-benzo[1,4]oxazin-2-one (20k)

Yellowish solid; yield: 65.4 mg (94%), R_f (EtOAc/Hexane; 20:80) = 0.80; Purification of crude product was done by recrystalization using Hexane/ethyl acetate; m.p. 142–145°C; FT-IR (KBr, vmax/cm⁻¹) 3436, 2913, 1755, 1618, 1570, 1083; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.3 Hz, 1H, Ar-H), 7.45 (d, J = 2.0 Hz, 1H, Ar-H), 7.33–7.30 (m, 1H, Ar-H), 7.10–7.08 (m, 1H, Ar-H), 6.94–6.92 (m, 2H, Ar-H), 6.73 (s, 1H, C=CH), 2.36 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 191.6 (C=O), 155.9 (O=C-O), 139.5 (Ar-C-CH₃), 139.2 (Ar-C-Cl), 137.5 (Ar-C-Cl), 137.2 (Ar-C-N), 136.2 (Ar-C), 132.5 (C=CH), 130.7 (Ar-C), 130.6 (Ar-C), 127.4 (Ar-C), 125.4 (Ar-C), 123.0 (Ar-C), 117.0 (Ar-C), 116.4 (Ar-C), 98.0 (C=CH), 21.1 (CH₃); HRMS (ESI) calcd. for C₁₇H₁₁Cl₂NO₃ [M+2]⁺: 349.0116; found 349.0112.

(Z)-3-[2-(4-Methoxy-phenyl)-2-oxo-ethylidene]-6-methyl-3,4-dihydro-benzo[1,4]oxazin-2-one (20l)

Yellowish solid; yield: 57.7 mg (93%), R_f (EtOAc/Hexane; 20:80) = 0.75; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (8:2) as an eluent; m.p. 180–182°C; FT-IR (KBr, vmax/cm⁻¹) 3452, 1755, 1625, 1581; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.8 Hz, 2H, Ar-H), 7.06 (d, J = 8.0 Hz, 1H, Ar-H), 7.00 (s, 1H, Ar-H), 6.96 (d, J = 9.4 Hz, 2H, Ar-H), 6.88 – 6.86 (m, 2H, Ar-H, C=C<u>H</u>), 3.88 (s, 3H, OCH₃), 2.34 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 190.4 (C=O), 163.4 (Ar-<u>C</u>-OCH₃), 156.8 (O=C-O), 139.3 (Ar-<u>C</u>-CH₃), 138.7 (Ar-C-N), 136.0 (Ar-C-O), 131.3 (<u>C</u>=CH), 129.9 (Ar-C), 124.4 (Ar-C), 123.6 (Ar-C), 116.8 (Ar-C), 116.0 (Ar-C), 114.0 (Ar-C), 94.5 (C=<u>C</u>H), 55.6 (OCH₃), 21.1 (CH₃); HRMS (ESI) calcd. for C₁₈H₁₅NO₄ [M+H]⁺: 310.1001; found 310.1009.

(Z)-8-bromo-6-methyl-3-(2-oxo-2-phenylethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20m)

Yellowish solid; Yield: 65.7 mg (92%); Rf (EtOAc/Hexane; 20:80) = 0.80; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (8.5:1.5) as an eluent; m.p. 190–192°C; FT-IR (KBr, vmax/cm⁻¹) 3417, 1767, 1626, 1583, 1282, 1177; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.2 Hz, 2H, Ar-H), 7.58-7.47 (m, 3H, Ar-H), 7.13 (s, 1H, Ar-H), 7.07 (s, 1H, C=CH), 6.85 (s, 1H, Ar-H), 2.34 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 191.7 (C=O), 155.7 (O=C-O), 138.6 (Ar-C-N), 138.1 (Ar-C-O), 136.9 (C=CH), 136.6 (Ar-C), 124.7 (Ar-C), 115.5 (Ar-C), 110.2 (Ar-C-Br), 95.2 (C=CH), 20.9 (CH₃); HRMS (ESI) calcd. for C₁₇H₁₂BrNO₃ [M+2]⁺: 359.0001; found 359.0008.

(Z)-8-bromo-3-(2-(4-fluorophenyl)-2-oxoethylidene)-6-methyl-3,4-dihydro-2H-benzo[b][1,4] oxazin-2-one (20n)

Yellowish solid; Yield: 67.6 mg (90 %); R_f (EtOAc/Hexane; 20:80) = 0.80; Purification of crude product was done by recrystalization using EtOAc/Hexane; m.p. 230–232°C; FT-IR (KBr, vmax/cm⁻¹) 3417, 1771, 1631, 1285, 1159; ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.99 (m, 2H, Ar-H), 7.17-7.13 (m, 3H, Ar-H), 6.99 (s, 1H, Ar-H), 6.84 (brs, 1H, C=C<u>H</u>), 2.34 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 190.1 (C=O), 167.0 (Ar-C-F), 164.5 (Ar-C-F), 155.6 (O=C-O), 138.7 (Ar-C-N), 136.9 (Ar-CC), 136.6 (<u>C</u>=CH), 134.5 (Ar-<u>C</u>-CH₃), 134.4 (Ar-C), 130.4 (Ar-C), 130.3 (Ar-C), 128.3 (Ar-C), 124.6 (Ar-C-Br), 116.1 (Ar-C), 115.9 (Ar-C), 115.5 (Ar-C), 110.2 (Ar-C), 94.8 (C=<u>C</u>H), 20.9 (CH₃); HRMS (ESI) calcd. for C₁₇H₁₁BrFNO₃ [M+2]⁺: 376.9906; found 376.9909.

(Z)-8-bromo-3-(2-(2,4-dichlorophenyl)-2-oxoethylidene)-6-methyl-3,4-dihydro-2H-benzo [b][1,4]oxazin-2-one (200)

Yellowish solid; Yield: 79.7 mg (94%); R_f (EtOAc/Hexane; 20:80) = 0.85; Purification of crude product was done by recrystalization using Hexane/ethyl acetate; m.p. 224–226°C; FT-IR (KBr, vmax/cm⁻¹) 3417, 1763, 1626, 1561, 1294, 1127; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.47 (s, 1H, Ar-H), 7.33 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.18 (s, 1H, Ar-H), 7.47 (s, 1H, Ar-H), 7.33 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.18 (s, 1H, Ar-H), 6.88 (s, 1H, C=C<u>H</u>), 6.79 (s, 1H, Ar-H), 2.35 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 191.9 (C=O), 155.2 (O=C-O), 138.7 (Ar-C-Cl), 137.5 (Ar-C-N), 137.3 (Ar-C-O), 137.0 (C=CH), 136.8 (Ar-C), 127.5 (Ar-C), 124.3 (Ar-C), 115.7 (Ar-C), 110.3 (Ar-C), 98.8 (C=CH), 20.9 (CH₃); HRMS (ESI) calcd. for C₁₇H₁₀BrCl₂NO₃ [M+2]⁺: 426.9221; found 426.9227.

(Z)-8-bromo-3-(2-(4-bromophenyl)-

2-oxoethylidene)-6-methyl-3,4-dihydro-2H-benzo[b] [1,4]oxazin-2-one (20p)

Yellowish solid; Yield: 77.6 mg (89%); R_f (EtOAc/Hexane; 20:80) = 0.90; Purification of crude product was done by flash column chromatography method over silica gel using

Hexane/ethyl acetate (9.5:0.5) as an eluent; m.p. 259–260°C; FT-IR (KBr, vmax/cm⁻¹) 3417, 1768, 1629, 1562, 1283, 1138; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.8 Hz, 2H, Ar-H), 7.62 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.16 (s, 1H, Ar-H), 7.00 (s, 1H, Ar-H), 6.86 (s, 1H, C=C<u>H</u>), 2.35 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 190.4 (C=O), 155.6 (O=C-O), 139.0 (Ar-C-N), 137.0 (Ar-C-O), 136.9 (<u>C</u>=CH), 136.7 (Ar-<u>C</u>-CH₃), 132.2 (Ar-C), 129.3 (Ar-C), 128.5 (Ar-C), 128.1 (Ar-C), 124.5 (Ar-C), 115.6 (Ar-C), 110.3 (Ar-C), 94.8 (C=<u>C</u>H), 20.9 (CH₃); HRMS (ESI) calcd. for C₁₇H₁₁Br₂NO₃ [M+2]⁺: 436.9106; found 436.9100.

(Z)-8-bromo-6-methyl-3-(2-oxo-2-(p-tolyl)ethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20q)

Yellowish solid; Yield: 70.7 mg (95%); R_f (EtOAc/Hexane; 20:80) = 0.90; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (8.5:1.5) as an eluent; m.p. 219–220°C; FT-IR (KBr, vmax/cm⁻¹) 3417, 1764, 1630, 1602, 1281, 1182; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.26–7.24 (m, 2H, Ar-H), 7.08 (s, 1H, Ar-H), 7.00 (s, 1H, Ar-H), 6.80 (s, 1H, C=C<u>H</u>), 2.39 (s, 3H, CH₃), 2.30 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 191.4 (C=O), 155.8 (O=C-O), 143.9 (Ar-C₂-CH₃), 138.3 (Ar-C-N), 136.8 (Ar-C-O), 136.5 (<u>C</u>=CH), 135.6 (Ar-<u>C</u>-CH₃), 129.6 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 124.8 (Ar-C), 115.4 (Ar-C), 110.1 (Ar-C), 95.3 (C=<u>C</u>H), 21.8 (CH₃), 20.9 (CH₃); HRMS (ESI) calcd. for C₁₈H₁₄BrNO₃ [M+2]⁺: 373.0157; found 373.0152.

(Z)-6-methyl-3-(2-(4-nitrophenyl)-2-oxoethylidene)-3,4-dihydro-2H-benzo[1,4]oxazin-2-one (20r)

Yellowish solid; yield: 57.2 mg (82%), R_f (EtOAc/Hexane; 20:80) = 0.75; Purification of crude product was done by recrystalization using Hexane/ethyl acetate; m.p. $211-213^{\circ}$ C; FT-IR (KBr, vmax/cm⁻¹) 3446, 3072, 1758, 1621, 1515, 1183; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.4 Hz, 2H, Ar-H), 8.13 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.12 (d, *J* = 7.6 Hz, 1H, Ar-H), 7.01-6.96 (m, 3H, Ar-H, C=C<u>H</u>), 2.37 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 188.8 (C=O), 155.9 (O=C-O), 149.9 (Ar-C-NO₂), 143.3 (<u>C</u>=CH), 140.5 (Ar-C-N), 139.7 (Ar-C-O), 136.4 (Ar-C), 128.6 (Ar-C), 125.8 (Ar-C), 124.0 (Ar-C), 123.9 (Ar-C), 117.2 (Ar-C), 116.7 (Ar-C), 94.1 (C=<u>C</u>H), 21.1 (CH₃); HRMS (ESI) calcd. for C₁₇H₁₂N₂O₅ [M+H]⁺: 325.0746; found 325.0748.

(Z)-3-(2-(4-nitrophenyl)-2-oxoethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20s)

Yellowish solid; yield: 52.2 mg (84%); R_f (EtOAc/Hexane; 20:80) = 0.75; Purification of crude product was done by recrystalization using Hexane/ethyl acetate; m.p. 207–209°C; FT-IR (KBr, vmax/cm⁻¹) 3448, 3069, 1758, 1621, 1515; 1453; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 8.8 Hz, 2H, Ar-H), 8.15 (d, J = 7.2 Hz, 2H, Ar-H), 7.26 – 7.17 (m, 4H, Ar-H), 7.04 (s, 1H, C=C<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ 188.9 (C=O), 155.8 (O=C-O), 150.1 (Ar-C-NO₂), 143.3 (Ar-C-N), 141.7 (<u>C</u>=CH), 140.5 (Ar-C-O), 128.7 (Ar-C), 126.2 (Ar-C), 125.1 (Ar-C), 124.1 (Ar-C), 123.4 (Ar-C), 117.5 (Ar-C), 116.6 (Ar-C), 94.3 (C=<u>C</u>H); HRMS (ESI) calcd. for C₁₆H₁₀N₂O₅ [M+H]⁺: 311.0590; found 311.0596.

(Z)-6-nitro-3-(2-oxo-2-phenylethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20t)

Yellowish solid; yield: 55.21 mg (89%); R_f (EtOAc/Hexane; 20:80) = 0.75; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (7.5:2.5) as an eluent; m.p. 198–200°C; FT-IR (KBr, vmax/cm⁻¹) 3436, 2928, 1762, 1625, 1581, 1142; ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.96 (m, 4H, Ar-H), 7.61-7.49 (m, 3H, Ar-H), 7.31 (d, *J* = 8.8 Hz, 1H, Ar-H), 7.15 (s, 1H, C=C<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ 192.1 (C=O), 155.1 (O=C-O), 145.2 (Ar-C-NO₂), 144.9 (C=CH), 137.7 (Ar-C-N), 137.6 (Ar-C-O), 133.4 (Ar-C), 128.9 (Ar-C), 127.9 (Ar-C), 124.7 (Ar-C), 118.9 (Ar-C), 111.5 (Ar-C), 96.9 (C=CH); HRMS (ESI) calcd. for C₁₆H₁₀N₂O₅ [M+H]⁺: 311.0590; found 311.0593.

(Z)-3-(2-(4-fluorophenyl)-2-oxoethylidene)-6-nitro-3,4dihydro-2H-benzo[b][1,4]oxazin-2-one (20u)

Yellowish solid; yield: 61.71 mg (94%); R_f (EtOAc/Hexane; 20:80) = 0.75; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (8:2) as an eluent; m.p. > 250°C; FT-IR (KBr, vmax/cm⁻¹) 3435, 3107, 1759,1622, 1594, 1156; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.73 (s, 1H, Ar-H), 8.11 (d, J = 5.2 Hz, 2H, Ar-H), 7.92 (d, J = 6.4 Hz, 1H, Ar-H), 7.44 – 7.36 (m, 3H, Ar-H), 6.92 (s, 1H, C=CH); ¹³C NMR (100 MHz) δ 188.7 (C=O), 166.6, (Ar-C-F), 156.0 (O=C-O), 145.9 (Ar-C-NO₂), 144.6 (C=CH), 139.5 (Ar-C-N), 135.1 (Ar-C-O), 130.9 (Ar-C), 125.8 (Ar-C), 118.9 (Ar-C), 117.7 (Ar-C), 116.6 (Ar-C), 116.4 (Ar-C), 113.0 (Ar-C), 94.5 (C=CH); HRMS (ESI) calcd. for C₁₆H₉FN₂O₅ [M+H]⁺: 329.0495; found 329.0490.

(Z)-3-(2-(4-methoxyphenyl)-2-oxoethylidene)-6-nitro-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20v)

Yellowish solid; yield: 58.51 mg (86%); R_f (EtOAc/Hexane; 20:80) = 0.75; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (7:3) as an eluent; m.p. 195–197°C; FT-IR (KBr, vmax/cm⁻¹) 3435, 2926, 1599, 1758, 1633, 1594; ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.93 (m, 4H, Ar-H), 7.29 (d, *J* = 8.9 Hz, 1H, Ar-H), 7.10 (s, 1H, C=<u>C</u>H), 6.98 (d, *J* = 8.7 Hz, 2H, Ar-H), 3.89 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 190.7 (C=O), 164.0 (Ar-<u>C</u>-OCH₃), 155.3 (O=C-O), 145.2 (Ar-<u>C</u>-NO₂), 144.9 (Ar-C-N), 137.0 (Ar-C-O), 130.7 (<u>C</u>=CH), 130.3 (Ar-C), 124.9 (Ar-C), 118.6 (Ar-C), 117.8 (Ar-C), 114.2 (Ar-C), 111.2 (Ar-C), 97.0 (C=<u>C</u>H), 55.7 (OCH₃); HRMS (ESI) calcd. for C₁₇H₁₂N₂O₆ [M+H]⁺: 341.0695; found 341.0692.

(Z)-7-nitro-3-(2-oxo-2-phenylethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20w)

Yellowish solid; yield: 55.22 mg (89%); R_f (EtOAc/Hexane; 20:80) = 0.70; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (7.5:2.5) as an eluent; m.p. 240–242°C; FT-IR (KBr, vmax/cm-1) 3436, 1763, 1622, 1596, 1268; ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.00 (m, 4H, Ar-H), 7.83–7.81 (m, 1H,

Ar-H), 7.62 (t, J = 7.3 Hz, 1H, Ar-H), 7.54 (t, J = 7.5 Hz, 2H, Ar-H), 6.99 (s, 1H, C=C<u>H</u>); ¹³C NMR (100 MHz, CDCl₃) δ 190.7 (C=O), 156.1 (O=C-O), 142.2 (Ar-C-N), 141.1 (Ar-C-O), 139.2 (Ar-C_-NO₂), 138.3 (C=CH), 133.6 (Ar-C), 131.3 (Ar-C), 129.6 (Ar-C), 128.0 (Ar-C), 121.4 (Ar-C), 117.4 (Ar-C), 112.6 (Ar-C), 96.0 (C=<u>C</u>H); HRMS (ESI) calcd. for C₁₆H₁₀N₂O₅ [M+H]⁺: 311.0590; found 311.0595.

(Z)-3-(2-(4-fluorophenyl)-2-oxoethylidene)-7-nitro-3,4dihydro-2H-benzo[b][1,4]oxazin-2-one (20x)

Yellowish solid; yield: 52.7 mg (80%); R_f (EtOAc/Hexane; 20:80) = 0.70; Purification of crude product was done by recrystalization using Hexane/ethyl acetate; m.p. 235–237°C; FT-IR (KBr, vmax/cm-1) 3411, 3090, 1773, 1626, 1516, 1473; ¹H NMR (400 MHz, DMSO- d_6) δ 8.18 - 8.08 (m, 4H, Ar-H), 7.88 - 7.86 (m, 1H, Ar-H), 7.42–7.38 (m, 2H, Ar-H), 7.02 (s, 1H, C=C<u>H</u>); ¹³C NMR (100 MHz, DMSO- d_6) 188.7 (C=O), 163.7 (Ar-C-F), 155.5 (O=C-O), 141.8 (Ar-C-N), 140.6 (Ar-C-O), 138.7 (Ar-C), 120.9 (Ar-C), 116.9 (Ar-C), 116.2 (Ar-C), 115.9 (Ar-C), 112.0 (Ar-C), 95.3 (C=<u>C</u>H); HRMS (ESI) calcd. for C₁₆H₉FN₂O₅ [M+H]⁺: 329.0495; found 329.0499.

(Z)-3-(2-(4-chlorophenyl)-2-oxoethylidene)-7-nitro-3,4dihydro-2H-benzo[b][1,4]oxazin-2-one (20y)

Yellowish solid; yield: 59.7 mg (87%); R_f (EtOAc/Hexane; 20:80) = 0.70; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (7.5:2.5) as an eluent; m.p. 205–207°C; FT-IR (KBr, vmax/cm-1) 3432, 2925, 2860, 1633, 1525, 1776, 1075; ¹H NMR (400 MHz, DMSO- d_6) δ 8.08 (d, J = 8.4 Hz, 4H, Ar-H), 7.89-7.87 (m, 1H, Ar-H), 7.63 (d, J = 8.4 Hz, 2H, Ar-H), 7.01 (s, 1H, C=C<u>H</u>); ¹³C NMR (100 MHz, DMSO- d_6) δ 188.9 (C=O), 155.4 (O=C-O), 141.9 (Ar-C-N), 140.7 (Ar-C-Cl), 138.9 (Ar-C-O), 136.5 (Ar-C-NO₂), 130.7 (<u>C</u>=CH), 129.8 (Ar-C), 129.5 (Ar-C), 129.2 (Ar-C), 120.9 (Ar-C), 117.0 (Ar-C), 112.1 (Ar-C), 95.2 (C=<u>C</u>H); HRMS (ESI) calcd. for C₁₆H₉ClN₂O₅ [M+H]⁺: 345.0200; found 345.0207.

(Z)-3-(2-(2,4-dichlorophenyl)-2-oxoethylidene)-7-nitro-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20z)

Yellowish solid; yield: 64.6 mg (85%); R_f (EtOAc/Hexane; 20:80) = 0.70; Purification of crude product was done by recrystalization using Hexane/ethyl acetate; m.p. 208–210°C; FT-IR (KBr, vmax/cm⁻¹) 3433, 3088, 1770, 1620, 1522, 1470, 1072; ¹H NMR (400 MHz, DMSO- d_6) δ 12.39 (s, 1H, NH), 8.09–8.08 (m, 2H, Ar-H), 7.95–7.93 (s, 1H, Ar-H), 7.78–7.58 (m, 3H, Ar-H), 6.62 (s, 1H, C=C<u>H</u>); ¹³C NMR (100 MHz, DMSO- d_6) δ 190.3 (C=O), 155.3 (O=C-O), 142.2 (Ar-C-N), 140.8 (Ar-C-Cl), 138.5 (Ar-C-O), 137.7 (Ar-C-NO₂), 136.2 (C=CH), 131.2 (Ar-C-Cl), 131.0 (Ar-C), 130.5 (Ar-C), 130.1 (Ar-C), 127.9 (Ar-C), 120.8 (Ar-C), 117.3 (Ar-C), 112.1 (Ar-C), 98.8 (C=CH); HRMS (ESI) calcd. for C₁₆H₈Cl₂N₂O₅ [M+H]⁺: 378.9810; found 378.9818.

(Z)-3-(2-(4-bromophenyl)-2-oxoethylidene)-7-nitro-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one(20aa)

Yellowish solid; yield: 67.7 mg (87%); R_f (EtOAc/Hexane; 20:80) = 0.70; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (7.5:2.5) as an eluent; m.p. 230–232°C; FT-IR (KBr, vmax/cm⁻¹) 3435, 3093, 1769, 1619, 1521; ¹H NMR (400 MHz, DMSO- d_6) δ 8.09-7.96 (m, 4H, Ar-H), 7.83-7.44 (m, 3H, Ar-H), 7.01(d, J = 4.8 Hz, 1H, C=C<u>H</u>); ¹³C NMR (100 MHz, DMSO- d_6) δ 188.9 (C=O), 154.7 (O=C-O), 141.8 (Ar-C-N), 140.1 (Ar-C-O), 137.9 (C=CH), 136.6 (Ar-C-NO₂), 131.5 (Ar-C), 130.0 (Ar-C), 129.1 (Ar-C-Br), 126.6 (Ar-C), 120.7 (Ar-C), 116.5 (Ar-C), 111.4 (Ar-C), 95.7 (C=CH); HRMS (ESI) calcd. for C₁₆H₉BrN₂O₅ [M+2]⁺: 389.9695; found 389.9691.

(Z)-3-(2-(4-methoxyphenyl)-2-oxoethylidene)-7-nitro-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-one (20ab)

Yellowish solid; yield: 55.4 mg (81%); R_f (EtOAc/Hexane; 20:80) = 0.70; Purification of crude product was done by flash column chromatography method over silica gel using Hexane/ethyl acetate (7:3) as an eluent; m.p. 218–220°C; FT-IR (KBr, vmax/cm⁻¹) 3437, 2927, 2854, 1632, 1517; ¹H NMR (400 MHz, DMSO- d_6) δ 8.07-8.02 (m, 4H, Ar-H), 7.73 (d, J = 10.8 Hz, 1H, Ar-H), 7.09 (d, J = 8.8 Hz, 2H, Ar-H), 7.02 (s, 1H, C=C<u>H</u>), 3.89 (s, 3H, OCH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ 189.1 (C=O), 163.4 (Ar-<u>C</u>-OCH₃), 155.8 (O=C-O), 141.7 (Ar-C-N), 140.6 (Ar-C-O), 138.1 (<u>C</u>=CH), 131.1 (Ar-C-NO₂), 130.7 (Ar-C), 130.1 (Ar-C), 121.2 (Ar-C), 116.8 (Ar-C), 114.5 (Ar-C), 112.2 (Ar-C), 95.9 (C=<u>C</u>H), 55.8 (OCH₃); HRMS (ESI) calcd. for C₁₇H₁₂N₂O₆ [M+H]⁺: 341.0695; found 341.0699.

Pharmacological Assay Descriptions DPPH Radical Scavenging Antioxidant Assay

In DPPH radical scavenging method the plant extract (0.75 mL) at different concentrations ranging from 10 to 100 μ g mL⁻¹ was mixed with 1.5 mL of a DPPH methanolic solution (20 mg L⁻¹). Pure methanol was taken as control and ascorbic acid (vitamin C), vitamins A and E were used as a reference compounds. The absorbance was measured at 517 nm after 20 min of reaction. The % of DPPH decolouration of the sample was calculated according to the formula (Sharma and Bhat, 2009).

Decolouration $\% = [1 - (Abs SAMPLE/Abs CONTROL)] \times 100$

The decolouration was plotted against the sample extract concentration and a logarithmic regression curve was established in order to calculate the IC_{50} . The results are expressed as antiradical efficiency (AE), which is 1000-fold inverse of the IC_{50} value AE=1000/ IC₅₀.

Ferric Reducing Antioxidant Power (FRAP) Assay

The FRAP reagent was prepared by the addition of freshly prepared 20.0 mM FeCl₃.6H₂O solution, 10.0 mM of ferric-tripyridyltriazine (TPTZ) solution and 300 mM sodium acetate buffer (pH 3.6) in a ratio of 1:1:10 (v/v/v). After

that, Sample (our synthesized 2-oxo-2-phenylethylideneslinked 2-oxo-benzo[1,4]oxazines **20a-ab**) was added to 3 ml of freshly prepared FRAP reagent and this reaction mixture was incubated at 37° C temperature for 30 min. and the absorbance was measured at 593 nm. It is also noted that, a freshly prepared solution of FeSO₄ was used for calibration of standard curve. The FRAP antioxidant capability were evaluated in terms of C_{0.5}FRAP (the antioxidant capability of samples related to their concentration, which is equivalent to that of FeSO₄ at 0.5 mmol/L) (Benzie and Strain, 1996).

Cell Toxicity Assay

Cell toxicity of active C-3 tethered 2-oxo-benzo[1,4]oxazine analogs were accessed using $3T_3$ fibroblast cell lines in MTT assay *via* the reported protocol of Danihelová et al. (2013) [For details, see supporting information].

In Silico Molecular Docking Studies

Molecular modeling studies of C-3 tethered 2-oxo-benzo [1, 4] oxazine derivatives **20a-ab** were carried out using molecular modeling software Sybyl-X 2.0, (Tripos International, St. Louis, Missouri, 63144, USA). Drawing of structures and simple geometry optimization were performed with Chem Bio-Office suite Ultra v12.0 (2012) (Cambridge Soft Corp., UK). Docking of all compounds was carried out on the human antioxidant enzyme in complex (PDB ID: 3MNG) (Hall et al., 2010b; Bayoumi et al., 2012; Yapati et al., 2016). The Surflexdoc module in Sybyl was used to construct a 3D model of the structures.

To find the possible bioactive conformations of C-3 tethered 2-oxo-benzo[1,4]oxazine derivatives, molecular modeling studies were performed using the Sybyl X 2.0 interfaced for the synthesized compounds, which exhibited promising and lower antioxidant activity in vitro to find the preferred binding conformations in the receptor. The starting coordinates of the human antioxidant enzyme in complex with the competitive inhibitor DTT (PDB: 3MNG) were taken from the Protein Data Bank (http://www.rcsb.org/pdb). Program automatically docks ligand into binding pocket of a target protein by using protomol-based algorithm and empirically produced scoring function. The protomol is very important and necessary factor for docking algorithm and works as a computational representation of proposed ligand that interacts into binding site. Surflex-Dock's scoring function have several factors that play an important role in the ligand-receptor interaction, in terms of hydrophobic, polar, repulsive, entropic and solvation, and it is a worldwide well-established and recognized method. The most standard docking protocols have ligand flexibility into the docking process, while counts the protein as a rigid structure. Present molecular docking study involves the several steps viz., import of protein structure into Surflex and addition of hydrogen atoms; generation of protomol using a ligandbased strategy. During second step, two parameters first called protomol-bloat, which determines how far the site should extend from a potential ligand; and another called protomol-threshold, which determines deepness of the atomic probes, used to define the protomol penetration into the protein) were specified to

form the appropriate binding pocket. Therefore, protomol-bloat and protomol-threshold was set to 0 and 0.50, respectively. In reasonable binding pocket, all the compounds were docked into the binding pocket and 20 possible active docking conformations with different scores were obtained for each compound. During the docking process, all of the other parameters were assigned their default values.

RESULTS AND DISCUSSION

Chemistry

The synthetic scheme for the synthesis of desired C-3 tethered 2-oxo-benzo[1,4]oxazine analogs **20a-20ab** using our reported procedure (Jaiswal et al., 2017) is depicted in **Schemes 1**, **2**.

The base-mediated reaction of acetophenone **16a-h** with dimethyl oxalate in toluene for 6h furnished the diketo-ester **17a-h** in 70-80% yields. Conversion of these diketoesters **17a-h** to 2, 4-dioxo-4-phenylbutanoic acid **18a-h** were achieved by hydrolysis with LiOH.H₂O in MeOH:THF:H₂O (4:3:1) solvent. The reaction of nitro/alkyl/halide-substituted 2, 4-dioxo-4-phenylbutanoic acid **18a-h** with nitro/alkyl/halide-substituted 2-aminophenol **19a-f** in water furnished C-3 tethered 2-oxo-benzo[1,4]oxazines **20a-20ab** in 74-98% yields after purification either by flash column chromatography or by recrystallization method (**Scheme 2, Figure 3**; see Supplementary Figures 1–28 for

details). All the synthesized compounds were well characterized by $^1\mathrm{H}\text{-}\mathrm{NMR}$ and $^{13}\mathrm{C}\text{-}\mathrm{NMR}$ spectroscopy, FTIR and HRMS analysis.

Biological Evaluation

DPPH Radical Scavenging Antioxidant Activity and SAR Studies

All the synthesized C-3 tethered 2-oxo-benzo[1,4]oxazine analogs 20a-20ab were evaluated for in vitro antioxidant activities using DPPH radical scavenging assay compared with standard reference ascorbic acid (Table 1). The choice of the reference compounds is based on hydrophilic nature of ascorbic acid and the maximum inhibition of the DPPH radical in IC₅₀ value (µg/mL) by all the compounds 20a-20ab. The DPPH radical scavenging assay is generally utilized as a quick and reliable parameter to investigate the antioxidant activities of diverse heterocycles (Baydar et al., 2007). DPPH is a stable free radical, that can easily accept a hydrogen radical or an electron to become a stable molecule (Blois, 1958). In the methanolic medium, DPPH has odd electron configuration having a strong absorption band at 515 nm, whereas this absorption decreases slightly in the presence of free radical scavengers, and it results color change to yellow from deep purple (Eklund et al., 2005; Sharma and Bhat, 2009). The radical trapping ability strongly depends on the structural availability of the radical trapping site.

The steric hindrance as well as electron density plays a dynamic role in the antioxidant activity since they may prevent the test molecule from reaching the radical site of DPPH and thus results in low activity (Faria et al., 2006).

Kareem et al. proposed two mechanisms involved in DPPH assay; first one is the hydrogen atom transfer (HAT) mechanism and the second one is the single electron transfer (SET) mechanism (Kareem et al., 2015). Similar to their interpretation, it can be speculated that, for DPPH assay, a dominant HAT mechanism is assumed and the favored hydrogen abstraction sites are enamine –NH group, preferably with conjugation to the side chain of phenacyl group (-COPh), as the latter could

stabilize by the resulting radical from additional resonance structures.

The generic scaffold of the newly synthesized C-3 tethered 2-oxo-benzo[1,4]oxazines, as illustrated in **Figure 4**, consists of a two fused cyclic ring A and B linked with ring C *via* α , β -unsaturated ketone having electron-withdrawing group (EWG) and/or electron-donating group (EDG) either at ring A or at C. The active group -CO-C=C-NH- enables resonance between the ring B and C, leading to multiple resonance structure, which may be further initiated by the attached substituents of ring A and C and in situ enhances the radical scavenging activity through the removal of hydrogen atom from NH of

TABLE 1 | Antioxidant activity of synthesized compounds 20a-ab by DPPH radical scavenging assay and FRAP assay.

S. No.	Compound No.	R ¹	R ²	R ³	R ⁴	R ⁵	Antioxidant activity ^a	
							FRAP assay ^b (C _{0.5FRAP} μM)	DPPH assay ^c IC ₅₀ (μg/mL)
1	20a	Н	Н	Н	Н	Н	611.5 ± 23.2	10.20 ± 0.08
2	20b	OCH ₃	Н	Н	Н	Н	686.4 ± 30.8	6.89 ± 0.07
3	20c	Н	Н	CI	Н	Н	467.8 ± 22.4	28.80 ± 0.60
4	20d	F	Н	CI	Н	Н	732.7 ± 41.6	45.21 ± 0.92
5	20e	CI	Н	CI	Н	Н	>1000	92.20 ± 1.54
6	20f	CI	CI	CI	Н	Н	>1000	56.60 ± 1.12
7	20g	Br	Н	CI	Н	Н	798.6 ± 32.5	61.23 ± 1.23
8	20h	CH ₃	Н	CI	Н	Н	821.9 ± 38.7	44.83 ± 0.81
9	20i	OCH ₃	Н	CI	Н	Н	648.2 ± 29.5	34.94 ± 0.73
10	20j	F	Н	CH ₃	Н	Н	502.6 ± 18.2	34.41 ± 0.70
11	20k	CI	CI	CH ₃	Н	Н	652.5 ± 30.6	43.58 ± 0.92
12	201	OCH ₃	Н	CH ₃	Н	Н	916.8 ± 21.4	43.80 ± 0.85
13	20m	Н	Н	CH ₃	Н	Br	536.7 ± 21.4	24.38 ± 0.46
14	20n	F	Н	CH ₃	Н	Br	482.5 ± 35.5	16.86 ± 0.72
15	200	CI	Cl	CH ₃	Н	Br	641.6 ± 28.7	22.48 ± 0.64
16	20p	Br	Н	CH ₃	Н	Br	>1000	44.32 ± 0.45
17	20q	CH ₃	Н	CH ₃	Н	Br	>1000	36.24 ± 0.27
18	20r	NO ₂	Н	CH ₃	Н	Н	328.6 ± 25.8	12.23 ± 0.05
19	20s	NO ₂	Н	Н	Н	Н	618.4 ± 23.9	21.27 ± 0.28
20	20t	Н	Н	NO ₂	Н	Н	638.2 ± 32.6	4.74 ± 0.08
21	20u	F	Н	NO ₂	Н	Н	424.5 ± 19.7	32.11 ± 0.52
22	20v	OCH ₃	Н	NO ₂	Н	Н	>1000	43.58 ± 0.92
23	20w	Н	Н	Н	NO ₂	Н	597.4 ± 26.4	12.53 ± 0.09
24	20x	F	Н	Н	NO ₂	Н	628.6 ± 32.4	10.18 ± 0.10
25	20y	CI	Н	Н	NO ₂	Н	708.2 ± 27.1	19.76 ± 0.35
26	20z	CI	Cl	Н	NO ₂	Н	437.6 ± 39.4	28.81 ± 0.67
27	20aa	Br	Н	Н	NO ₂	Н	518.6 ± 17.6	28.37 ± 0.16
28	20ab	OCH ₃	Н	Н	NO ₂	Н	>1000	43.60 ± 0.74
29	Ascorbic acid	_	_	_	_	_	_	4.57
30	BHT	-	-	_	_	-	546.0 ± 13.6	-

^a Results are expressed as a mean \pm standard deviation (n = 3). ^bDPPH radical scavenging activities are expressed as IC₅₀ concentrations of the compounds (µg/mL) required to inhibit 50% of the radicals and the maximum inhibition values and Positive control for DPPH assay = Ascorbic acid; ^cPositive control for FRAP assay = BHT. The bold value indicates promising antioxidant compounds.

ring B via HAT mechanism. It has been found that electron withdrawing substituent NO_2 at ring A or C increase the antioxidant activity which may be due to resonance based stabilizing effects. Therefore, based on the structures and their antioxidant activities, it was found that the compounds have either no substitution at ring A and C or have EWG/EDG

at ring A and C plays a very important role in deciding their DPPH radical scavenging activities. Hence, based on the substituent's (either EWG or EDG) at ring A and C of 2-oxobenzo[1,4]oxazines **20a-20ab**, and their antioxidant activities, their structure-activity relationship can be explained by grouping all compounds into two groups:

(i) No substitution or EDG at ring A or ring C: In the first group of compounds having no substitution at ring A and C i.e., the model compound 20a, exhibited promising antioxidant activity (IC₅₀ = $10.20 \pm 0.08 \,\mu$ g/mL) in comparison with standard reference Ascorbic acid $(IC_{50} = 4.57 \,\mu g/mL)$ [entry 1]. Then, by putting EDG (OMe group) at ring C, as in compound 20b, further increases activity (IC₅₀ = $6.89 \pm 0.07 \,\mu$ g/mL) [entry 2]. Reversing the order i.e., halogen substitution at ring A and no substitution at ring C do not cause any further increase in antioxidant activity as shown by compound 20c (entry 3). Furthermore, when we incorporated halogen substituents (Cl, F, Br, 2,4dichloro) or CH₃ substituent either at A or C as in the case of compounds 20c-l; a decrease in the antioxidant activity was observed due to high electron density in compounds 20d-g, 20j and 20k (entry 4-12). Furthermore, It was observed that two EDG at ring A (20m-q; entry 13-17) exhibited moderate antioxidant activity having IC₅₀ value in the range of 18.86 \pm 0.72 to 44.32 \pm 0.45 µg/mL. In this series (20m-q; entry 13-17), ring C having Fluorine substituent i.e. compound **20n** exhibited good antioxidant activity (IC₅₀ = 16.86 \pm $0.72 \,\mu g/mL$) in comparison with other compounds (20m and 20o-q).

To our surprise; when we incorporated EWG group i.e., NO₂ group at ring C and EDG group i.e., CH₃ group at ring A (compound **20r**); the antioxidant activity was regained and shows IC₅₀ value of $12.23 \pm 0.05 \,\mu$ g/mL nearly equivalent to **20a** (entry 18).

It is to be noted that EDG at ring A decreases antioxidant activity as shown in entries 3-17; so, we synthesized compound **20s** (having no any substitution at ring A and EWG i.e., NO₂ group at ring C), which, contrary to our expectations, displayed further decrease in antioxidant activity (IC₅₀ = $21.27 \pm 0.28 \,\mu$ g/mL) (entry 19).

(ii) EWG (-NO₂ Group) at ring A: Since 20r having EWG (NO₂) at ring C showed promising antioxidant activity; inspired by this observation, we prepared 20t-v having NO₂ group at C-4 position of ring A. 2-oxo-benzo[1,4]oxazine 20t having no substitution at ring C, showed excellent

antioxidant activity having IC₅₀ value of $4.74 \pm 0.08 \,\mu$ g/mL (entry 20). Since 20b having OMe substituent at ring C, was also found to show excellent antioxidant activity; thus, we synthesized 20u and 20v having Fluoro as well as OMe substituent, respectively at ring C. Unfortunately, antioxidant activity diminishes (entry 21 and 22). In addition, we also prepared 2-oxo-benzo[1,4]oxazines 20w-20ab having EWG group (NO₂) at C-5 position of ring A further to investigate SAR study. Compound 20w having no substitution at ring C showed promising antioxidant activity having IC₅₀ value of $12.53 \pm 0.09 \,\mu$ g/mL (entry 23). On incorporating Fluoro group at ring C; activity of 20x increases (IC₅₀ = $10.18 \pm 0.10 \,\mu$ g/mL, entry 24). Furthermore, when we incorporated halogen substituents (Cl, Br, 2,4-dichloro and OMe) at ring C as in the case of compounds 20y-20ab; a decrease in the antioxidant activity was observed (entry 19-23).

Overall, we can interpret that no substitution or EWG at ring A or ring C enhances antioxidant activity of all the synthesized 2-oxo-benzo[1,4]oxazines **20a-20ab**. Whereas EDG either at ring A or C diminishes antioxidant activity. Our SAR results depict that **20b** and **20t**, the best compounds of the series, showed antioxidant activity comparable to standard reference Ascorbic acid.

Ferric Reducing Antioxidant Power (FRAP) Activity and SAR Studies

The FRAP assay was deliberated using the method as illustrated by Benzie and Strain (Benzie and Strain, 1996). It reveals that the reducing potential of an antioxidant molecule, which reacts with a complex of ferric tripyridyltriazine [Fe³⁺⁻TPTZ] and develops a colored ferrous tripyridyltriazine [Fe²⁺-TPTZ]. The reducing nature of an antioxidant depends on their property to donate a hydrogen atom for the breaking of the free radical chain, which is responsible for oxidative stress etc.

All the synthesized C-3 tethered 2-oxo-benzo[1,4]oxazine analogs **20a-20ab** were assessed for FRAP assay taking BHT as standard reference; as depicted in **Table 1**. In this study, the trend with respect to ferric ion reducing activities of all the screened compounds i.e., **20a-20ab** showed that eight compounds (**20c**, **20j**, **20m**, **20n**, **20r**, **20u**, **20z**, and **20aa**) were found more potent than BHT ($C_{0.5FRAP} = 546.0 \pm 13.6 \,\mu$ M).

In summary, all the compounds (**20a-20ab**) displayed good to moderate activity in comparison with BHT in the range of $C_{0.5FRAP} = 328.6 \pm 25.8 \,\mu\text{M}$ to 916.8 $\pm 21.4 \,\mu\text{M}$ in *in-vitro* antioxidant FRAP assay except compounds **20e**, **20f**, **20l**, **20q**, **20v**, and **20ab** which showed $C_{0.5FRAP}$ greater than 1000 μ M. Compounds having EWG i.e. NO₂ substituent at ring C (**20r** and **20s**) showed different potency than standard reference BHT. While **20r** having CH₃ at C-4 position of ring A displayed potent activity than BHT; **20s** was found to be less active. Anomaly was observed in the case of compounds having no substitution at ring C. While **20c** and **20m** showed greater potency; compounds **20a**, **20t** and **20w** were found less active than BHT.

Cell Toxicity Study

Out of 28 compounds, three most active compounds i.e., **20b**, **20t**, and **20x** were then selected for their cytotoxic studies. As depicted in **Figure 5**, compounds **20b**, **20t**, and **20x** were accessed for their cytotoxic study using $3T_3$ fibroblast cell lines in MTT assay (Danihelová et al., 2013). The result showed that these compounds were non-toxic in nature (>65% cell viability) even at 250 µg/mL concentration and therefore, displays permissible values of cell viability.

In Silico Molecular Docking Simulation Studies

Finally, the biological results were validated *via in silico* molecular docking studies of two most active compounds (**20b** and **20t**). Since **20b** has OMe group at ring C and **20t** has NO₂ group at ring A; it is worthwhile to compare the docking studies of active compounds with molecules having no substitution either at ring A or C. Therefore, we have also selected compound **20a** for our *in silico* molecular docking simulation studies. For that purpose, Peroxiredoxins (Prdxs), a family of small human antioxidant enzyme, was selected as our target protein. Peroxiredoxins contain essential cysteine residues as catalyst and thioredoxin as an electron donor, which help in scavenging peroxide and are involved in the metabolic cellular response to ROS (Neumann et al., 2003; Monteiro et al., 2007).

The binding affinities and interactions of C-3 tethered 2-oxo-benzo [1, 4] oxazine derivatives with the human antioxidant enzyme were investigated through molecular docking simulations. Binding affinities were predicted by the Sybyl docking total score upon docking with the Surflex-Dock program (Sybyl X 2.0).Compounds were docked into the active site of the known the human antioxidant enzyme target peroxiredoxins (Prxs) DTT complex (PDB ID: 3MNG) were taken from the Protein Data Bank (http://www.rcsb.org/pdb) (Hall et al., 2010b; Bayoumi et al., 2012; Yadav et al., 2014a,b; Yapati et al., 2016).

Docking studies were carried out to evaluate the binding affinity and interactions with their target proteins. Hydrogen bonds (H-bonds, with a donor-receptor distance of 3Å) between the ligand and amino acids in the binding site of the protein were used for the ranking of compounds. The mode of interaction of the co-crystallized ligand dithiothreitol (DTT) within the crystal structure of enzyme in complex was used as a reference binding model. The root mean-square deviation (RMSD) of each docking pose was compared to the co-crystallized ligand and used for ranking and for RMSD calculation. The cocrystallized DTT molecule was re-docked onto the same binding site and the most probable binding mode was selected as that with the highest docking total score of 4.8921. An RMSD value 0.6772Å between the predicted and crystal binding mode indicates the high reliability of Surflex-Dock for this protein target.

On the other hand, docking results for 20a, 20b, and 20t against the antioxidant target protein Prxs showed a high binding affinity docking score indicated by a total score of 3.8470 (Figure 6A), 3.6567 (Figure 6B) and 4.2709 (Figure 6C) forms a H-bond (NH2...O) of length 1.8Å to the backbone of hydrophobic aliphatic residue that is, Glycine-46. In the docking pose of the 20a, 20b, and 120t and Prxs complex, the chemical nature of binding site residues within a radius of 3Å with diverse properties was aromatic (hydrophobic), for example, Phe-120, (Phenylalanine); hydrophobic, for example, Leu-116, Ile-119, Leu-149, Leu-112(Leucine), Gly-46, Gly-148(Glycine); (polar, hydrophobic, positive charged) residues, for example, Arg-127 (Arginine); nucleophilic (polar, hydrophobic), for example, Thr-147 and Thr-44 (Threonine), nucleophilic (polar uncharged), for example Cys-47 (Cysteine); and hydrophobic (polar, uncharged) residues, for example, Pro-40 and Pro-45 (Proline) as a result, the bound compound showed a strong hydrophobic interaction with Prxs, thus leading to more stability and activity in this compound.

The docking results for the ascorbic acid (standard compound) with the antioxidant target protein Prxs showed

a low binding affinity docking score, indicated by a low total score of 3.4829 with three H-bond (hydrogen bond) formation of length 2.2, 1.8 and 2.1Å to the Thr-147, Gly-46 and Thr44 (**Figure 6D**). The ascorbic acid-Prxc-docked complex also showed a similar type of binding site residues within a radius of 3Å of bound ligand such as Thr-147, Leu-116, Pro-40, Phe-120, Leu-112, Thr-44, Gly-46, Pro-45, Cys-47, Arg-127, Leu-149 shown in **Figure 6D**. Thus, the docking procedure of Surflex-dock software (Sybyl-X 1.3) in reproducing the experimental binding affinity seems reliable, and therefore predicted as true positive.

Thus, it can be inferred based on docking simulation studies that the most active compounds i.e., **20b** and **20t** having IC_{50} value of $6.89 \pm 0.07 \,\mu$ g/mL and $4.74 \pm 0.08 \,\mu$ g/mL, showed the binding affinity docking score of 3.6567 and 4.2709, respectively (**Figures 6B,C**), which were found to be comparable to the binding affinity docking score of standard reference ascorbic acid (**Figure 6D**). While comparing the binding energy docking score of **20a** (unsubstituted both at ring A and C) i.e., 3.8470 (**Figure 6A**) with ascorbic acid and the two most active compounds; the results were also found to be comparable. Thus, the *in silico* docking results of **20b** and **20t** successfully validated the *in vitro* experimental studies.

CONCLUSION

In summary, we disclose C-3 tethered 2-oxo-benzo [1, 4]oxazine analogs 20a-20ab as a of potent antioxidant agents. Compound 20b and 20t, the most active compounds of the series, showed promising antioxidant activity having IC50 value of $6.89 \pm 0.07 \,\mu$ g/mL and $4.74 \pm 0.08 \,\mu$ g/mL, respectively, in DPPH radical scavenging assay in comparison with ascorbic acid (IC₅₀ = $4.57 \,\mu$ g/mL). Whereas in FRAP assay, eight compounds (20c, 20j, 20m, 20n, 20r, 20u, 20z, and 20aa) were found more potent than BHT ($C_{0.5FRAP} = 546.0 \pm$ 13.6 µM). The active compounds were also found non-toxic in 3T₃ fibroblast cell lines in MTT assay. Our in silico molecular docking results reveal that 20b and 20t showed excellent docking total scores against human antioxidant enzyme target as compared to ascorbic acid. Thus, the in silico docking simulation studies effectively validated the in vitro experimental results.

AUTHOR CONTRIBUTIONS

SC was responsible for the study of concept and design of the project. VS and PKJ were responsible for the performing synthetic reactions, acquisition and analysis of data. MS, MM, and AKS were responsible for the pharmacological *in vitro* activity evaluation of synthesized compounds. DKY and Saloni performed docking studies. SM and MHK provided molecular modeling facility. SC and PKJ drafted the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

SC acknowledges SERB, New Delhi for fast track scheme for young scientist (CS-037/2013); DST, New Delhi for DST-RFBR Indo-Russian Joint Research Project (INT/RUS/RFBR/P-169) and CSIR, New Delhi for CSIR-EMR Grant [02 (0189)/14/EMR-II]. PKJ and VS thanks CSIR, New Delhi and MNIT, Jaipur for providing financial assistance in the form of RA fellowship and institute fellowship, respectively. DKY

REFERENCES

- Abdel-lateif, K. S., Eldeab, H. A., and Maghrabi, I. A. (2016). The plant natural products: their antioxidants, free radical scavengers, DNA protection and antimicrobial activities. *J. Bioprocess. Biotech.* 6:293. doi: 10.4172/2155-9821.1000293
- Adhikari, K. B., Laursen, B. B., Gregersen, P. L., Schnoor, H. J., Witten, M., Poulsen, L. K., et al. (2013). Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans. *Mol. Nutr. Food Res.* 57, 1847–1858. doi: 10.1002/mnfr.201300107
- Aldawsari, F. S., Aguiar, R. P., Wiirzler, L. A., Aguayo-Ortiz, R. N., Aljuhani, R. K., Cuman, J. L., et al. (2016). Anti-inflammatory and antioxidant properties of a novel resveratrol-salicylate hybrid analog. *Bioorg. Med. Chem. Lett.* 26, 1411–1415. doi: 10.1016/j.bmcl.2016.01.069
- Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373. doi: 10.1146/annurev.arplant.55.031903.141701
- Aziz, M., and Karboune, S. (2016). Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: a review. *Crit. Rev. Food Sci. Nutr.* 58, 486–511. doi: 10.1080/10408398.2016.1194256.
- Balakin, K. V., Ivanenkov, Y. A., Skorenko, A. V., Nikolsky, Y. V., Savchuk, N. P., and Ivashchenko, A. A. (2004). *In silico* estimation of DMSO solubility of organic compounds for bioscreening. *J. Biomol. Screening* 9, 22–31. doi: 10.1177/1087057103260006
- Barclay, L. R. C., and Vinqvist, M. R. (2000). On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity. Org. Lett. 2, 2841–2843. doi: 10.1021/ol000173t
- Baydar, N. G., Ozkan, G., and Yasar, S. (2007). Evaluation of the antiradical and antioxidant potential of grape extracts. *Food Control*. 18, 1131–1136.
- Bayoumi, W. A., and Elsayed, M. A. (2012). Synthesis of new phenylcarbamoylbenzoic acid derivatives and evaluation of their *in vitro* antioxidant activity. *Med. Chem. Res.* 21, 1633–1640.
- Bayoumi, W. A., Elsayed, M. A., Baraka, H. N., and Abou-zeid, L. (2012). Computational modelling, synthesis, and antioxidant potential of novel phenylcarbamoylbenzoic acid analogs in combating oxidative stress. Arch. Pharm. Chem. Life Sci. 345, 902–910. doi: 10.1002/ardp.201200183
- Benzie, I. F., and Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. *Anal. Biochem.* 239, 70–76. doi: 10.1006/abio.1996.0292
- Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. *Nature* 181, 1199–1200.
- Cheng, J. H., Huang, A. M., Hour, T. C., Yang, S. C., Pu, Y. S., and Lin, C. N. (2011). Antioxidant xanthone derivatives induce cell cycle arrest and apoptosis and enhance cell death induced by cisplatin in NTUB1 cells associated with ROS. *Eur. J. Med. Chem.* 46, 1222–1231. doi: 10.1016/j.ejmech.2011.01.043
- Czompa, A., Dinya, Z., Antus, S., and Varga, Z. (2000). Synthesis and antioxidant activity of flavanoid derivatives containing a

acknowledges SERB, New Delhi for financial support through the Young Scientist Project SB/YS/LS-130/2014 at the All India Institute of Medical Sciences (AIIMS), Jodhpur, India. DKY acknowledges the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science, and Technology (No: 2017R1C1B2003380) at the Gachon University, Incheon city, Korea. Materials Research Centre, MNIT, Jaipur is gratefully acknowledged for providing analytical facilities.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem. 2018.00056/full#supplementary-material

1,4-benzodioxane moiety. *Arch. Pharm.* 333, 175–180. doi: 10.1002/1521-4184 (20006)333:6<175::AID-ARDP175>3.0.CO;2-C

- Danihelová, M., Veverka, M., Šturdík, E., and Jantová, S. (2013). Antioxidant action and cytotoxicity on HeLa and NIH-3T3 cells of new quercetin derivatives. *Interdiscip. Toxicol.* 6, 209–216. doi: 10.2478/intox-2013-0031
- Detsi, A., Bouloumbasi, D., Prousis, K. C., Koufaki, M., Athanasellis, G., Melagraki, G., Afantitis, A., et al. (2007). Design and synthesis of novel quinolinone-3-aminoamides and their α -lipoic acid adducts as antioxidant and antiinflammatory agents. *J. Med. Chem.* 50:2450. doi: 10.1021/jm061173n
- Eklund, P. C., Långvik, O. K., Warnå, J. P., Salmi, T. O., Willfor, S. M., and Sjoholm, R. E. (2005). Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. *Org. Biomol. Chem.* 3:3336
- El Sayed Aly, M. R., Abd El Razek Fodah, H. H., and Saleh, S. Y. (2014). Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. *Eur. J. Med. Chem.* 76:517. doi: 10.1016/j.ejmech.2014.02.021
- Fadel, O., El Kirat, K., and Morandat, S. (2011). The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation *in situ*. *Biochim. Biophys. Acta* 1808, 2973–2980. doi: 10.1016/j.bbamem.2011.08.011
- Faria, A., Calhau, C., de Freitas, V., and Mateus, N. (2006). Procyanidins as antioxidants and tumor cell growth modulators. J. Agric. Food. Chem. 54, 2392–2397. doi: 10.1021/jf0526487
- Gein, V. L., Rassudikhina, N. A., Shepelina, N. V., Vakhrin, M. I., Babushkina, E. B., and Voronina, E. V. (2008). Reaction of substituted *o*-aminophenols with acylpyruvic acid esters and α-ketoglutaric acid antibacterial activity of the products. *Pharm. Chem. J.* 42, 529–532. doi: 10.1007/s11094-009-0175-5
- Glenska, M., Gajdaa, B., Franiczekb, R., Krzyzanowskab, B., Biskupa, I., and Włodarczyka, M. (2015). *In vitro* evaluation of the antioxidant and antimicrobial activity of DIMBOA [2,4-dihydroxy-7-methoxy-2H-1,4benzoxazin-3(4H)-one]. *Nat. Prod. Res.* 30, 1305–1308. doi: 10.1080/14786419. 2015.1054284
- Govindarajan, R., Vijayakumar, M., and Pushpangadan, P. (2005). Antioxidant approach to disease management and the role of 'Rasayana herbs of Ayurveda. *J. Ethnopharmacol.* 99, 165–178. doi: 10.1016/j.jep.2005.02.035
- Hall, A., Parsonage, D., Poole, L. B., and Karplus, P. A. (2010a). Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. *J. Mol. Biol.* 10, 194–209. doi: 10.1016/j.jmb.2010.07.022
- Hall, N. K., Chapman, T. M., Kim, H. J., and Min, D. B. (2010b). Antioxidant mechanisms of Trolox and ascorbic acid on the oxidation of riboflavin in milk under light. *Food Chem.* 118, 534–539. doi: 10.1016/j.foodchem.2009.05.017
- Harput, U. S., Arihan, O., Iskit, A. B., Nagatsu, A., and Saracoglu, I. (2011). Antinociceptive, free radical-scavenging, and cytotoxic activities of Acanthus hirsutus Boiss. J. Med. Food 14, 767–774. doi: 10.1089/jmf.2010.0195
- Hassan, M. Q., Akhtar, M. S., Akhtar, M., Ali, J., Haque, S. E., and Najmi, A. K. (2015). Edaravone protects rats against oxidative stress and apoptosis in experimentally induced myocardial infarction: biochemical and ultrastructural evidence. *Redox Rep.* 20, 275–281. doi: 10.1179/1351000215Y.0000000011

- Iwanami, Y., Seki, T., and Inagaki, T. (1971). Heterocycles structurally influenced by a side chain. I. 3-Phenacyl-2(1H)-quinoxalinones and 3-Phenacyl-2H-1,4benzoxazin-2-ones. Bull. Chem. Soc. Jpn. 44, 1316–1321.
- Jaiswal, P. K., Sharma, V., Prikhodko, J., Mashevskaya, I. V., and Chaudhary, S. (2017). "On water" ultrasound-assisted one pot efficient synthesis of functionalized 2-oxo-benzo[1,4]oxazines: First application to the synthesis of anticancer indole alkaloid, Cephalandole A. *Tetrahedron Lett.* 58, 2077–2083.doi: 10.1016/j.tetlet.2017.03.048
- Kareem, H. S., Ariffin, A., Nordin, N., Heidelberg, N. T., Abdul-Aziz, A., Kong, K. W., et al. (2015). Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3,4,5-trimethoxy benzyl moiety. *Eur. J. Med. Chem.* 103, 497–505.
- Khan, K. M., Ali, M., Wadood, A., Zaheer-ul-Haq, Khan M., Lodhi, M. A., et al. (2011). Molecular modeling-based antioxidant arylidene barbiturates as urease inhibitors. *J. Mol. Graphics Modell.* 30, 153–156. doi: 10.1016/j.jmgm.2011.07.001
- Kosina, P., Kren, V., Gebhardt, R., Grambal, F., Ulrichova, J., and Walterova, D. (2002). Antioxidant properties of silybin glycosides. *Phytother. Res.* 16, S33–S39. doi: 10.1002/ptr.796
- Kumar, A., Kaundal, R. K., Iyer, S., and Sharma, S. S. (2007). Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. *Life Sci.* 80, 1236–1244. doi: 10.1016/j.lfs.2006.12.036
- Lai, Z. R., Ho, Y. L., Lai, S. C., Huang, S. C., Tsai, J. C., and Huang, G. J., et.al. (2001). Antioxidant, anti-inflammatory and antiproliferative activities of *Kalanchoe gracilis* (L.) DC Stem. Am. J. Chin. Med. 39, 1275–1290. doi: 10.1142/S0192415X1100955X
- Largeron, M., Dupuy, H., and Fleury, M. B. (1995). Novel 1,4-benzoxazine derivatives of pharmacology interest electrochemical and chemical synthesis. *Tetrahedron* 51, 4953–4968. doi: 10.1016/0040-4020(95)98693-C
- Largeron, M., and Fleury, M. B. (1998). A convenient two-step onepot electrochemical synthesis of novel 8-amino-1,4-benzoxazine derivatives possessing anti-stress oxidative properties. *Tetrahedron Lett.* 39, 8999–9002. doi: 10.1016/S0040-4039(98)02037-1
- Largeron, M., Lockhart, B., Pfeiffer, B., and Fleury, M. B. (1999). Synthesis and *in vitro* evaluation of new 8-amino-1,4-benzoxazine derivatives as Neuroprotective Antioxidants. *J. Med. Chem.* 42, 5043–5052. doi: 10.1021/jm991105j
- Largeron, M., Mesples, B., Gressens, P., Cecchelli, R., Spedding, M., Le Ridant, A., et al. (2001). The neuroprotective activity of 8-alkylamino-1,4-benzoxazine antioxidants. *Eur. J. Pharmacol.* 424, 189–194. doi: 10.1016/S0014-2999(01)01152-9
- Lehtinen, M. K., and Bonni, A. (2006). Modeling oxidative stress in the central nervous system. *Curr. Mol. Med.* 6, 871–881.
- Mashevskaya, I. V., Tolmacheva, I. A., Voronova, E. V., Odegova, T. F., Aleksandrova, G. A., Goleneva, A. F., et al. (2002). A comparative study of the antimicrobial activity of some quinoxalines, 1,4-benzoxazines, and aza-analogs. *Pharm. Chem. J.* 36, 32–34. doi: 10.1023/A:1016064014955
- Maslivets, V. A., and Maslivets, A. N. (2012). Five-membered 2,3dioxo heterocycles: LXXXVIII. Reaction of 3-aroylpyrrolo[1,2d][1,4]benzoxazine-1,2,4(4H)-triones with N,N'-dicyclohexylcarbodiimide under thermolysis conditions. *Russ. J. Org. Chem.* 48, 1233–1237. doi: 10.1134/S1070428012090151
- Mazzone, G., Galano, A., AlvarezIdaboy, J. R., and Russo, N. (2016). Coumarinchalcone hybrids as peroxyl radical scavengers: Kinetics and mechanisms. J. Chem. Inf. Model. 56, 662–670. doi: 10.1021/acs.jcim.6b00006
- Mitra, I., Saha, A., and Roy, A. K. (2009). Quantitative structure–activity relationship modeling of antioxidant activities of hydroxybenzalacetones using quantum chemical, physicochemical and spatial descriptors *Chem. Biol. Drug Des.* 73, 526–536. doi: 10.1111/j.1747-0285.2009.00801.x
- Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., and Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. *Antioxid Redox Signal*. 20, 1126–1167. doi: 10.1089/ars.2012.5149
- Monteiro, G., Horta, B. B., Pimenta, D. C., Augusto, O., and Netto, L. E. S. (2007). Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiolspecific antioxidant paradigm, revealing another function of vitamin C. PNAS, 104, 4886–4891. doi: 10.1073/pnas.0700481104
- Neumann, C. A., Krause, D. S., Carman, C. V., Das, S., Dubey, D. P., Abraham, J. L., Bronson, R. T., et al. (2003). Essential role for the peroxiredoxin Prdx1 in

erythrocyte antioxidant defence and tumour suppression. *Nature* 424, 561–565. doi: 10.1038/nature01819

- Niemeyer, H. M. (2009). Hydroxamic acids derived from 2-hydroxy-2H-1, 4benzoxazin-3(4H)-one: key defense chemicals of cereals. J. Agric. Food Chem. 57, 1677–1696. doi: 10.1021/jf8034034
- Nunomura, A., Castellani, R. J., Zhu, X., Moreira, P. I., Perry, G., and Smith, M. A. (2006). Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. 65, 631–641. doi: 10.1097/01.jnen.0000228136.58062.bf
- Oliveri, V., Grasso, G. I., Bellia, F., Attanasio, F., Viale, M., and Vecchio, G. (2015). Soluble sugar-based quinoline derivatives as new antioxidant modulators of metal-induced amyloid aggregation. *Inorg. Chem.* 54, 2591–2602. doi: 10.1021/ic502713f
- Park, E. J., and Pezzutto, J. M. (2002). Botanicals in cancer chemoprevention. *Cancer Metast. Rev.* 21, 231–255. doi: 10.1023/A:1021254725842
- PérezCruz, F., Rodriguez, S. V., Matos, M. J., Morales, L. H., Villamena, F. A., Das, A., Gopalakrishnan, B., et al. (2013). Synthesis and electrochemical and biological studies of novel coumarin–chalcone hybrid compounds. *J. Med. Chem.* 56, 6136–6145. doi: 10.1021/jm400546y
- Qian, Y. P., Shang, Y. J., Teng, Q. F., Chang, J., Fan, G. J., Wei, X., Li, R. R., et al. (2011). Hydroxychalcones as potent antioxidants: structure–activity relationship analysis and mechanism considerations. *Food Chem.* 126, 241–248. doi: 10.1016/j.foodchem.2010.11.011
- Sadiq, A., Mahmood, F., Ullah, F., Ayaz, M., Ahmad, S., Haq, F. U., et al. (2015). Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: a possible role in the management of Alzheimer's. *Chem. Cent. J.* 9, 31–40. doi: 10.1186/s13065-015-0107-2.
- Sáncheza, I. S. J., Avilab, M., Teránc, A. O., Vargasb, F. D., Corrala, V. W., and Camachob, S. P., et.al. (2014). Synthesis of 1*H*-benzoxazine-2,4-diones from heterocyclic anhydrides: evaluation of antioxidant and antimicrobial activities. *Quim. Nova.* 37, 1297–1301. doi: 10.5935/0100-4042.20140201
- Savegnago, L., Vieira, A. I., Seus, N., Goldani, B. S., Castro, M. R., Lenardão, E. J., et al. (2013). Synthesis and antioxidant properties of novel quinoline-chalcogenium compounds. *Tetrahedron Lett.* 54, 40–44. doi: 10.1016/j.tetlet.2012.10.067
- Scartezzini, P., and Speroni, E. (2000). Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharm. 71, 23–43. doi: 10.1016/S0378-8741(00)00213-0
- Shakil, N. A., Singh, M. K., Sathiyendiran, M., Kumar, J., and Padaria, J. C. (2013). Microwave synthesis, characterization and bio-efficacy evaluation of novel chalcone based 6-carbethoxy-2-cyclohexen-1-one and 2H-indazol-3-ol derivatives. *Eur. J. Med. Chem.* 59, 120–131. doi: 10.1016/j.ejmech.2012.10.038
- Sharma, O. P., and Bhat, T. K. (2009). DPPH antioxidant assay revisited. *Food Chem*. 113, 1202–1205. doi: 10.1016/j.foodchem.2008.08.008
- Simao, A. N., Lehmann, M. F., Alfieri, D. F., Meloni, M. Z., Flauzino, T., Scavuzzi, B. M., et al. (2015). Metabolic syndrome increases oxidative stress but does not influence disability and short-time outcome in acute ischemic stroke patients. *Metab. Brain Dis.* 30, 1409–1416. doi: 10.1007/s11011-015-9720-y
- Stepanova, E. E., Aliev, Z. G., and Maslivets, A. N. (2013). Five-membered 2,3-dioxo heterocycles: XCVIII. [4 + 2]-cycloaddition of alkyl vinyl ethers to 3-aroyl-1*H*-pyrrolo[2,1-<u>C]</u>[1,4]benzoxazine-1,2,4-triones. A new synthetic approach to heteroanalogs of 13(14→8)-abeo steroids. *Russ. J. Org. Chem.* 49, 1762–1767. doi: 10.1134/S1070428013120105
- Stepanova, E. E., Babenysheva, A. V., and Maslivets, A. N. (2011). Five-membered 2,3-dioxo heterocycles: LXXVII. [4 + 2]-Cycloaddition of alkyl vinyl ethers to 3-aroylpyrrolo[2,1-c][1,4]benzoxazine-1,2,4(4H)-triones. *Russ. J. Org. Chem.* 47, 937–940. doi: 10.1134/S1070428011060182
- Surai, P. F. (2015). Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. *Antioxidants* 4, 204–247. doi: 10.3390/antiox4010204
- Trombino, S. F. S., Serini, D., Nicuolo, L., Celleno, S., Ando, N., Picci, G., et al. (2004). Antioxidant effect of ferulic acid in isolated membranes and intact cells: Synergistic interactions with α -tocopherol, β -carotene, and ascorbic acid. *J. Agric. Food Chem.* 52, 2411. doi: 10.1021/jf0303924
- Varga, Z., Seres, I., Nagy, E., Ujhelyi, L., Balla, G., and Balla, J., et.al. (2006). Structure prerequisite for antioxidant activity of silybin in different biochemical systems *in vitro*. *Phytomedicine* 13, 85–93. doi: 10.1016/j.phymed.2004.06.019
- Vavríkova, E., Kren, V., Jezova-Kalachova, L., Biler, M., Chantemargue, B., and Pyszkova, M., et.al. (2017). Novel flavonolignan hybrid antioxidants: from

enzymatic preparation to molecular rationalization Eur. J. Med. Chem. 127, 263–274. doi: 10.1016/j.ejmech.2016.12.051

- Wood-Kaczmar, A., Gandhi, S., and Wood, N. W. (2006). Understanding the molecular causes of Parkinson's disease. *Trends Mol. Med.* 12, 521–528. doi: 10.1016/j.molmed.2006.09.007
- Xia, M. (2008). Beta-enol Imine Structure Boron fluoride Complex and Method of Synthesizing the Same. Faming Zhuanli Shenqing Gongkai Shuomingshu.
- Xia, M., Wu, B., and Xiang, G. (2008). Synthesis, structure and spectral study of two types of novel fluorescent BF2 complexes with heterocyclic 1,3-enaminoketone ligands. J. Fluor. Chem. 129, 402–408. doi: 10.1016/j.jfluchem.2008.01.019
- Yadav, D. K., Dhawan, S., Chauhan, A., Qidwai, T., Sharma, P., Bhakuni, R. S., et al. (2014a). QSAR and docking based semi-synthesis and *in vivo* evaluation of artemisinin derivatives for antimalarial activity. *Curr. Drug Targets* 15, 753–761. doi: 10.2174/1389450115666140630102711
- Yadav, D. K., Kalani, K., Singh, A. K., Khan, F., Srivastava, S. K., and Pant, A. B. (2014b). Design, synthesis and *in vitro* evaluation of 18β-glycyrrhetinic acid derivatives for anticancer activity against human breast cancer cell line MCF-7. *Curr. Med. Chem.* 21, 1160–1170. doi: 10.2174/09298673113206 660330
- Yapati, H., Devineni, S. R., Chirumamilla, S., and Kalluru, S. (2016). Synthesis, characterization and studies on antioxidant and molecular docking of metal complexes of 1-(benzo[d]thiazol-2-yl)thiourea. J. Chem. Sci. 128, 43–45. doi: 10.1007/s12039-015-0999-3

- Zhang, H. Y., Yang, D. P., and Tang, G. Y. (2006). Multipotent antioxidants: from screening to design. *Drug Discov. Today* 11, 749–754. doi: 10.1016/j.drudis.2006.06.007
- Zhang, N., Andresen, B. T., and Zhang, C. (2010). Inflammation and reactive oxygen species in cardiovascular disease. *World J. Cardiol.* 2, 408–410. doi: 10.4330/wjc.v2.i12.408
- Zhu, F., Asada, T., Sato, A., Koi, Y., Nishiwaki, H., and Tamura, H. (2014). Rosmarinic acid extract for antioxidant, antiallergic, and α -glucosidase inhibitory activities, isolated by supramolecular technique and solvent extraction from perilla leaves. *J. Agric. Food Chem.* 62, 885–892. doi: 10.1021/jf404318j

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Sharma, Jaiswal, Saran, Yadav, Saloni, Mathur, Swami, Misra, Kim and Chaudhary. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.