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The prevalence of fluoroquinolone (FQ)-resistant Campylobacter has become a concern
for public health. To facilitate the control of FQ-resistant (FQR) Campylobacter, it is nec-
essary to understand the impact of FQR on the fitness of Campylobacter in its natural
hosts as understanding fitness will help to determine and predict the persistence of FQR

Campylobacter. Previously it was shown that acquisition of resistance to FQ antimicrobials
enhanced the in vivo fitness of FQR Campylobacter. In this study, we confirmed the role
of the Thr-86-Ile mutation in GyrA in modulating Campylobacter fitness by reverting the
mutation to the wild-type (WT) allele, which resulted in the loss of the fitness advantage.
Additionally, we determined if the resistance-conferring GyrA mutations alter the enzymatic
function of the DNA gyrase. Recombinant WT gyrase and mutant gyrases with three differ-
ent types of mutations (Thr-86-Ile, Thr-86-Lys, and Asp-90-Asn), which are associated with
FQR in Campylobacter, were generated in E. coli and compared for their supercoiling activ-
ities using an in vitro assay.The mutant gyrase with theThr-86-Ile change showed a greatly
reduced supercoiling activity compared with the WT gyrase, while other mutant gyrases
did not show an altered supercoiling. Furthermore, we measured DNA supercoiling within
Campylobacter cells using a reporter plasmid. Consistent with the results from the in vitro
supercoiling assay, the FQR mutant carrying the Thr-86-Ile change in GyrA showed much
less DNA supercoiling than the WT strain and the mutant strains carrying other mutations.
Together, these results indicate that theThr-86-Ile mutation, which is predominant in clinical
FQR Campylobacter, modulates DNA supercoiling homeostasis in FQR Campylobacter.
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INTRODUCTION
Campylobacter jejuni, a Gram-negative microaerophilic bac-
terium, has emerged as a leading bacterial cause of foodborne
gastroenteritis in the United States and other developed coun-
tries (Slutsker et al., 1998). Antibiotic treatment using fluoro-
quinolone (FQ) or erythromycin is recommended when the infec-
tion by Campylobacter is severe or occurs in immunocompromised
patients (Engberg et al., 2001; Oldfield Iii and Wallace, 2001). How-
ever, Campylobacter is increasingly resistant to FQ antimicrobials,
which has become a major concern for public health (Engberg
et al., 2001; White et al., 2002; Gupta et al., 2004). As a zoonotic
pathogen, C. jejuni is highly prevalent in food producing animals
and poultry, and is exposed to antibiotics used in agricultural set-
tings. There has been a concern on the use of FQ antimicrobials in
poultry production since the use selectively enriches FQ-resistant
(FQR) Campylobacter that can be transmitted to humans via the
food chain (Luangtongkum et al., 2009). This concern led to the
withdrawal of FQ antimicrobials from poultry production in the
U.S. in 2005. Despite the ban, FQR Campylobacter continues to
persist on poultry farms (Price et al., 2005, 2007; Luangtongkum
et al., 2009), suggesting that FQR Campylobacter does not show a
fitness cost in the absence of antibiotic selection pressure.

In Gram-negative bacteria, DNA gyrase, a type II topoiso-
merase, is the primary target of FQ antibiotics (Hooper, 2001).
Once inside bacterial cells, FQ antimicrobials form stable complex
with the target enzymes and trap the enzymes on DNA, resulting
in double-stranded breaks in DNA, and bacterial death (Willmott
et al., 1994; Shea and Hiasa, 1999; Drlica and Malik, 2003). Bac-
terial DNA gyrase is essential for bacterial viability. It catalyzes
ATP-dependent negative supercoiling of DNA and is involved in
DNA replication, recombination, and transcription (Champoux,
2001). The enzyme consists of two subunits (subunits A and B)
that combine into an A2B2 complex to form a functional enzyme.
The two subunits are encoded by gyrA and gyrB, respectively. In
Campylobacter, the resistance to FQ antimicrobials is mediated by
point mutations in the quinolone resistance-determining region
(QRDR) of gyrA in conjunction with the function of the mul-
tidrug efflux pump CmeABC (Bachoual et al., 2001; Engberg et al.,
2001; Luo et al., 2003; Ge et al., 2005). No mutations in gyrB have
been implicated in FQR in Campylobacter (Bachoual et al., 2001;
Payot et al., 2002; Piddock et al., 2003). Specific mutations at posi-
tions Thr-86, Asp-90, and Ala-70 in GyrA have been linked to FQR

in C. jejuni (Wang et al., 1993; Engberg et al., 2001; Luo et al.,
2003). The Thr-86-Ile change (mediated by the C257T mutation
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in the gyrA gene) is the most commonly observed mutation in
FQR Campylobacter isolates and confers high-level (ciprofloxacin
minimum inhibitory concentration (MIC) ≥ 16 μg/ml) resistance
to FQ, whereas the Thr-86-Lys and Asp-90-Asn mutations are less
common and are associated with intermediate-level FQR (Gootz
and Martin, 1991; Wang et al., 1993; Ruiz et al., 1998; Luo et al.,
2003).

Resistance-conferring mutations in target genes are often asso-
ciated with changes in physiological processes, which may result in
reduced growth rate and fitness in the absence of antibiotic selec-
tion (Andersson and Levin, 1999; Levin et al., 2000; Andersson,
2003; Kugelberg et al., 2005). However, bacteria can develop com-
pensatory mutations to ameliorate the fitness cost associated with
antimicrobial resistance (Bjorkman et al., 1998; Bjorkholm et al.,
2001; Nagaev et al., 2001; Normark and Normark, 2002; Anders-
son, 2003). In some cases, antibiotic-resistant mutants show little
or no fitness cost even without compensatory mutations (Sander
et al., 2002). Previously Luo et al. (2005) showed that FQR Campy-
lobacter carrying the Thr-86-Ile substitution in GyrA subunit was
able to outcompete the FQ-susceptible (FQS) strains in the absence
of antibiotic usage, suggesting that acquisition of FQR enhances
the in vivo fitness of FQR Campylobacter.

DNA supercoiling modulates gene expression and affects bac-
terial adaptive responses to environmental challenges (Tse-Dinh
et al., 1997; Lopez-Garcia, 1999; Prakash et al., 2009). Alteration
in DNA supercoiling status may conceivably affect the physi-
ology and fitness of bacterial organisms. Previous work con-
ducted in Escherichia coli and Pseudomonas revealed that antibiotic
resistance-conferring mutations in GyrA reduced the supercoiling
activity of the enzyme in these organisms (Barnard and Maxwell,
2001; Kugelberg et al., 2005). However, it is unknown if the GyrA
mutations conferring FQR in Campylobacter influences the func-
tion of GyrA and modulate the DNA supercoiling status within
the bacterial cells. In this study, we confirmed the specific role
of the Thr-86-Ile mutation in GyrA in influencing Campylobacter
fitness in chickens by reverting the mutation to a wild-type (WT)
allele. We then evaluated the effects of three different types of GyrA
mutations [C257T (Thr-86-Ile), C257A (Thr-86-Lys), and G268A
(Asp-90-Asn)] on DNA supercoiling using in vitro and in vivo
(within Campylobacter cells) assays. Our results showed that the

Thr-86-Ile change in GyrA was directly linked to the fitness change
in Campylobacter and greatly reduced the supercoiling activity of
GyrA, while other mutations, although reduced the susceptibility
of Campylobacter to ciprofloxacin, did not affect the supercoil-
ing activity of DNA gyrase. Together, these results provide new
insights into the molecular mechanisms underlying the fitness of
the FQR Campylobacter.

MATERIALS AND METHODS
BACTERIAL STRAINS AND GROWTH CONDITIONS
The FQS strains and FQR mutant strains (carrying different point
mutations in gyrA) used in this study are listed in Table 1. The
strains were routinely grown in Mueller–Hinton (MH) broth
(Difco) or agar at 42˚C under microaerobic conditions (10% CO2,
5% O2, and 85% N2). Campylobacter-specific growth supplements
and selective agents (Oxoid) were added to media when needed
to recover Campylobacter from chicken feces. MH media were
supplemented with kananmycin (50 μg/ml) or chloramphenicol
(4 μg/ml) as needed. E. coli cells were grown at 37˚C with shak-
ing at 200 r.p.m. in LB medium which was supplemented with
ampicillin (100 μg/ml) or kanamycin (30 μg/ml).

REVERSION OF THE gyr A MUTATION (Thr-86-Ile)
To formally define the role of the C257T mutation in influencing
Campylobacter fitness, the specific mutation (C257T) in gyrA of
isolates 62301R33 was reverted to WT sequence by using a method
reported by Ge et al. (2005). Cj1028c and gyrA are tandemly
positioned on the chromosome of C. jejuni. An 850-bp fragment
containing the 3′ region of Cj1028c, the intergenic region, and the
gyrA sequence up to the mutation site was amplified by PCR using
C. jejuni 62301R33 as a template and gyrA1028F and gyrA257WR
(corresponding to the WT gyrA sequence) as primers (Table 2) and
then cloned into a pGEMT-Easy (Promega). The construct was
linearized using EcoRV, which cuts once within the cloned cj1028c
sequence, ligated with a blunt-ended Cmr cassette, and electropo-
rated into E. coli JM109. Recombinant plasmids were purified from
E. coli JM109 and used to transform the parent strains C. jejuni
62301R33 by electroporation. Transformants were selected on MH
agar containing chloramphenicol 10 mg/l and analyzed by PCR
and DNA sequencing, confirming the insertion of the cat cassette

Table 1 | Bacterial strains used in this study.

Strains aa mutation in GyrA nt mutation in gyrA Description Source or reference

FQS strains 62301S2 None None Wild-type; isolated from chicken Luo et al. (2005)

62301R33S None None 62301R33 derivative; 257T in gyrA was

reverted to wild-type 257C; Cj1028c: Cmr

This study

NCTC 11168 None None Wild-type; isolated from human Parkhill et al. (2000a)

11168 (S) None None NCTC 11168 derivative; Cj1028c: Cmr This study

FQR strains 62301R33 Thr-86-Ile C257T Isolated from chicken Luo et al. (2005)

52901-II 1 Thr-86-Lys C257A Isolated from chicken Luo et al. (2005)

62301R37 Asp-90-Asn G268A Isolated from chicken Luo et al. (2005)

62301R33R Thr-86-Ile C257T 62301R33 derivative; Cj1028c: Cmr This study

11168CT Thr-86-Ile C257T NCTC 11168 derivative; C257T mutation in gyrA Yan et al. (2006)

11168 (R) Thr-86-Ile C257T NCTC 11168 derivative; Cj1028c: Cmr and

C257T mutation in gyrA

This study
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Table 2 | Key PCR primers used in this study.

Primer name Sequence (5′–3′) Target gene

/cluster

gyrA1028F TGCTCTGCTTTTGTGAATTA Cj1028c and

gyrA (ACA,

Thr-86)

gyrA257WR AAACTGCTGTATCTCCATGT

gyrA1028F TGCTCTGCTTTTGTGAATTA Cj1028c and

gyrA (ATA,

Ile-86)

gyrA257m (T) AAACTGCTATATCTCCATGT

gyrA-F-2 ACATGCATGCGAGAATATTTTTAGCAA Whole ORF

of gyrA

gyrA-R ACGCGTCGACTTATTGCAAATCTAAACC

gyrB-F-J2 ACATGCATGCCAAGAAAATTACGGTGCG Whole ORF

of gyrB

gyrB-R-J ACGCGTCGACTTACACATCCAAATGCTT

topA-F GCTGCTTTAAATCCGGACTT Whole ORF

of topA

topA-R CAGCTTCGCAAACATACTCA

cj1686c-F1 AAGCCAAAGATGCCAAAGAA topA

cj1686c-R1 TGCGTGGTAAGGTGTTTTCA

into Cj1028c and the simultaneous replacement of the mutant
gyrA with the WT allele. This revertant was named 62301R33S. To
make an isogenic pair for the revertant for in vivo competition, the
cat gene was also inserted into Cj1028c of isolate 62301R33 with-
out changing the C257T mutation in gyrA. Primers gyrA1028F and
gyrA257m(T) were used for this purpose (Table 2). The obtained
construct was named 62301R33R. The ciprofloxacin MIC in the
revertant 62301R33S was restored to the WT level (0.125 μg/ml),
while 62301R33R with the cat gene inserted into Cj1028c retained
the ciprofloxacin MIC at 32 μg/ml. Using the same strategy, a point
mutation (C257T) in gyrA was introduced into FQS NCTC 11168.
The generated FQR mutant strain and its isogenic FQS strain, both
of which contained a Cmr insertion in cj1028c, were named 11168
(R) and 11168 (S), respectively (Table 1).

To measure the motility of these constructs, they were grown
overnight on fresh MH plates and then were collected from MH
plates using MH broth. The optical density at 600 nm (OD600)
was adjusted to 0.3. Approximately 1 μl of this suspension was
then stabbed into a MH motility plate (MH broth + 0.4% Bacto
Agar). Following microaerobic growth at 42˚C for approximately
30 h, the radius of growth halo was measured for each strain. The
results showed that these FQS and FQR strains were equally motile
as determined by the motility assay (data not shown).

IN VIVO COLONIZATION AND PAIRWISE COMPETITION
The chicken experiments were performed using pairwise competi-
tion as described previously (Luo et al.,2005). Three groups (10–11
birds/group) of Campylobacter-free chickens were inoculated with
approximately 107 CFU (per bird) of 62301R33S, 62301R33R, or
a mixture (approximately 1:1) of the two strains via oral gav-
age. During the entire experiment, antibiotic-free feed and water
were given to the chickens. Thus, antibiotic selection pressure was

not involved in the competition. After inoculation, cloacal swabs
were collected from the chickens at days 3, 6, and 9 for cultur-
ing Campylobacter. Each fecal suspension was serially diluted in
MH broth and plated simultaneously onto two different types
of culture media: conventional Campylobacter selective plates for
recovering the total Campylobacter colonies and the selective MH
plates supplemented with 4 μg/ml ciprofloxacin for recovering
FQR Campylobacter colonies. To confirm the results from the
differential plating, 10–15 Campylobacter colonies were selected
randomly for each group from the conventional selective plates (no
ciprofloxacin) at each sampling time and tested for ciprofloxacin
MICs with E-test strips (AB Biodisk, Solna, Sweden). In the second
chicken experiment, the same pairwise experiment was performed
using the isogenic pair of 11168(S) and 11168(R). In both experi-
ments, the detection limit of the plating methods was 100 CFU/g
of feces. The statistic analyses that were used to determined the
significance of differences in the level of colonization between the
two groups were performed as described in a previous publication
(Han et al., 2008).

All animals were handled in strict accordance with the rec-
ommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. The animal use pro-
tocol was approved by the Institutional Animal Care and Use
Committee of Iowa State University (A3236-01). All efforts were
made to minimize suffering of animals.

PRODUCTION AND PURIFICATION OF GyrA AND GyrB
Full-length histidine (His)-tagged recombinant gyrases includ-
ing WT GyrA, three mutant GyrAs, and GyrB were produced
in E. coli by using the pQE-30 vector of the QIAexpress expres-
sion system (Qiagen), which allows the tagging of a recombinant
protein with 6× His at the N-terminus. The complete coding
sequences of gyrA in strains 62301S2 (no mutation in GyrA),
62301R33 (with the Thr-86-Ile change in GyrA), 52901-II2 (with
the Thr-86-Lys change in GyrA), and 62301R37 (with the Asp-90-
Asn change in GyrA) were amplified using primers gyrA-F-2 and
gyrA-R. The complete coding sequence of gyrB in strain 62301S2
was amplified using primers gyrB-F-J2 and gyrB-R-J. A restric-
tion site (underlined in the primer sequences) was attached to
the 5′ end of each primer to facilitate the directional cloning of
the amplified PCR product into the pQE-30 vector. The ampli-
fied PCR product was digested with SphI and SalI, and then
ligated into the pQE-30 vector, which was previously digested
with the same enzymes. Each plasmid in the E. coli clone express-
ing a recombinant peptide was sequenced, revealing no undesired
mutations in the coding sequence. These N-terminal His-tagged
recombinant GyrA and GyrB proteins were expressed and puri-
fied to near-homogeneity under native conditions by following
the procedure supplied with the pQE-30 vector. Then these pro-
teins were analyzed by SDS-polyacrylamide gel electrophoresis
(SDS-PAGE). To remove imidazole, the purified proteins were
washed extensively with 10 mM Tris–HCl using Centricon YM-50
(Millipore).

IN VITRO SUPERCOILING ASSAY
DNA supercoiling activity was assayed by monitoring the conver-
sion of relaxed pBR322 to its supercoiled form. WT or mutant
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GyrA was mixed with WT GyrB in a ratio of 1:1. Each supercoiling
reaction contained 500 ng of relaxed pBR322 DNA (TopoGEN,
Inc.) and 300 μM gyrases in 1× assay buffer (TopoGEN, Inc.).
The reaction mixtures were incubated at 37˚C for 1 h. Assays
were terminated by the addition of 0.2 volume of the stop buffer
(TopoGEN) and 1 volume of chloroform–isoamyl alcohol (24:1).
The reactions were analyzed on 1.0% agarose gels. The gels were
stained with ethidium bromide for 30 min and then destained in
1× TAE buffer for 1 h.

MEC DETERMINATIONS
To determine the susceptibility of various gyrases to the inhibitory
effect of ciprofloxacin, the in vitro supercoiling assay using recom-
binant gyrases was also performed with added ciprofloxacin as
descried previously (Martin, 1991). Ciprofloxacin was added into
each reaction prior to the addition of DNA gyrases. The minimum
effective concentration (MEC) was defined as the lowest concen-
tration of ciprofloxacin that shows an observable inhibition on
supercoiling of the plasmid DNA.

EXAMINATION OF IN VIVO SUPERCOILING
To determine if the mutations in GyrA changed the DNA super-
coiling in Campylobacter cells, the shuttle plasmid pRY107 was
used as a reporter to monitor the relative difference in the levels
of DNA supercoiling between the FQS and FQR strains. pRY107,
which carries a kanamycin resistance marker (Yao et al., 1993),
was transferred into 62301S2, 62301R33, 52901-II2, 62301R37,
11168, and 1168CT by conjugation. Plasmid DNA was then iso-
lated using QIAGEN Plasmid Midi kit (Qiagen Inc.) and analyzed
by agarose gel electrophoresis in the absence or presence of chloro-
quine diphosphate salt, as described previously (Mizushima et al.,
1997; Kugelberg et al., 2005). Agarose gels (1%) were run for 20 h
at 2 V/cm in 1× TAE buffer containing 20 μg/ml of chloroquine
and were washed for 4 h in distilled water before staining with
ethidium bromide. The topoisomers of the plasmid DNA from
each strain were visualized using a digital imaging system (Alpha
Innotech). The relative amounts of supercoiled vs. relaxed DNA
in each sample reflecting the level of DNA supercoiling in each
strain were determined by densitometry scanning and were used
to indicate the difference in DNA supercoiling between the FQS

and FQR strains.

SEQUENCE DETERMINATION OF topA
The entire topA gene from C. jejuni 62301S2 and 62301R33 were
amplified by PCR with the forward primer topA-F and reverse
primer topA-R. The forward primer is 286 bp upstream of the
AUG start codon, and the reverse primer extends 239 bp beyond
the UAG stop codon of topA. The PCR was performed in a volume
of 50 μl containing 100 μM each deoxynucleoside triphosphate
(dNTP), 200 nM primers, 2.5 mM MgSO4, 100 ng of Campylobac-
ter genomic DNA, and 5 U of Taq DNA polymerase (Promega).
The cycling conditions consisted of an initial polymerase acti-
vation step at 94˚C for 5 min, followed by 35 cycles of 94˚C for
30 s, 55˚C for 30 s, and 72˚C for 3 min, with a final extension at
72˚C for 10 min. The amplified PCR products were purified with
the QIAquick PCR purification kit (Qiagen) and subsequently
sequenced.

REAL-TIME QUANTITATIVE RT-PCR
The transcription of topA in 62301S2 and 62301R33 was com-
pared by qRT-PCR. The primers used for qRT-PCR are listed in
Table 2 and the method was performed as described in a previous
work (Lin et al., 2005).

ANTIBIOTIC SUSCEPTIBILITY TEST
The MIC of ciprofloxacin was determined by using E-test strips
(AB Biodisk, Solna, Sweden) following the manufacturer’s instruc-
tions. The detection limit of the E-test for ciprofloxacin was
32 μg/ml.

RESULTS
DIRECT ROLE OF THE Thr-86-Ile CHANGE IN THE ENHANCED FITNESS
A previous study by Luo et al. (2005) showed that FQR Campy-
lobacter carrying the Thr-86-Ile substitution GyrA outcompeted
its isogenic FQS strains in chickens, suggesting that acquisition of
FQR enhances the in vivo fitness of FQR Campylobacter. The previ-
ous work was done using FQR mutants generated from antibiotic
selection or natural transformation. To further confirm the link
of this specific mutation with the enhanced fitness, we reverted
the mutation back to the WT allele and conducted pairwise com-
petition in chickens using 62301R33S and 62301R33R (Table 1).
After inoculation with either of the two isolates or mixed popula-
tions, all of the groups of birds were colonized by Campylobacter at
similar levels (Figure 1A). When separately inoculated into chick-
ens, the two strains showed no significant differences (P > 0.05)
in the level of colonization (the number of Campylobacter shed
in feces; Figure 1A). Differential plating by using ciprofloxacin-
containing plates showed that the group inoculated with the FQS

revertant alone shed homogeneous FQS Campylobacter, whereas
the group inoculated with FQR strain shed homogeneous FQR

Campylobacter during the entire course of the experiment. How-
ever, in the group inoculated with mixtures of the two strains, the
FQS revertant strain was outcompeted by its parent FQR Campy-
lobacter (P < 0.05; Figure 1B). E-test of Campylobacter colonies
(10∼15 colonies per group per time point) randomly selected from
non-antibiotic plates confirmed the results of differential plating.
This result clearly indicates that once the C257T mutation in gyrA
is reverted, Campylobacter loses its fitness advantage in chickens,
confirming the previous results using clonally related and isogenic
strains (Luo et al., 2005). To further show the specific effect of the
C257T mutation on fitness, we introduced this mutation into a dif-
ferent strain background (NCTC 11168) and conducted chicken
competition using the isogenic pair of constructs. As shown in
Figure 1C, 11168(S) was outcompeted by 11168(R) (P < 0.05),
indicating the mutation had the same impact on fitness in a C.
jejuni strain different from the previously tested ones. These new
findings plus our previously published studies (Luo et al., 2005)
convincingly showed that the C257T mutation in gyrA is directly
responsible for the enhanced fitness of Campylobacter in chickens.

NO COMPENSATORY MUTATIONS IN topA
Campylobacter jejuni has only two types of topoisomerases, type
I (TopA) and type II (gyrase). The gyrase introduces negative
supercoiling to DNA, while TopA relaxes DNA to prevent excessive
supercoiling. Thus, the two enzymes are the key proteins modulat-
ing the level of DNA supercoiling in Campylobacter. To determine
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A

B

C

FIGURE 1 | Pairwise competitions between FQS and FQR strains in

chickens using isogenic pairs of 62301R33S/62301R33R (A,B) and

11168(S)/11168(R) (C). (A) The colonization level of total Campylobacter in
three groups of chickens that were inoculated with 62301R33S (solid circle),
62301R33R (open circle), or 1:1 mixture of the two stains. (B) Differential
enumeration of FQS (solid circle) and FQR (open circle) Campylobacter in the
group inoculated with a mixture of 62301R33S and 62301R33R. (C) A second

chicken experiment shows the competition between FQS (solid triangle) and
FQR (open triangle) Campylobacter in a different strain background. The
chickens were inoculated with a 1:1 mixture of 11168(S) and 11168(R). In all
panels, each symbol represents the colonization level of a single chicken and
the median level of each group is indicated by a horizontal bar. The detection
limit of the plating method was about 100 CFU/g of feces and a negative
sample was arbitrarily assigned a value of zero. DAI, days after inoculation.
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if there were any mutations in TopA that might potentially offset
the impact of the Thr-86-Ile mutation in GyrA, we sequenced
topA and compared its transcription between isogenic strains.
The whole ORF of topA was PCR amplified from 62301R33 and
sequenced, which showed that the topA sequence was identical to
that in 62301S2. In addition, the expression level of topA was not
different in 62301R33 and 62301S2 as determined by qRT-PCR
(data not shown). These results suggest that the Thr-86-Ile muta-
tion in GyrA was not accompanied by changes in topA sequence
or expression.

EFFECT OF GyrA MUTATIONS ON IN VITRO SUPERCOILING
To determine the impact of the resistance-conferring muta-
tions on the enzymatic activities of GyrA, we produced the
recombinant forms of various gyrases. As estimated by SDS-PAGE,
the recombinant GyrA and GyrB were 97 and 87 kDa, respectively,
comparable with the calculated molecular masses of the two pro-
teins. The recombinant GyrA carrying a Thr-86-Ile, Thr-86-Lys, or
Asp-90-Asn mutation migrated at a position similar to the recom-
binant GyrA of the WT strain on SDS-PAGE (data not shown),
indicating that the point mutations did not affect the migration of
GyrA on SDS-PAGE. The supercoiling activity of the recombinant
DNA gyrases from the WT and mutant strains was analyzed by
an in vitro assay. Both GyrA and GyrB are required for producing
negative supercoiling and no detectable supercoiling activity was
observed when only one subunit (either GyrA or GyrB) was used in
the assay (data not shown). The recombinant GyrA from mutant
strains carrying the Thr-86-Lys or Asp-90-Asn mutation exhibited
a supercoiling activity similar to that of the recombinant GyrA
from the WT strain, whereas the negative supercoiling activity of
the GyrA from the mutant strain carrying the Thr-86-Ile change
was substantially reduced compared with the GyrA from the WT
strain (Figure 2). In fact, the most supercoiled band was absent
with this mutant GyrA (Figure 2). The results were consistently
shown in multiple experiments with different concentrations of
gyrases (up to 1200 nM; data not shown) and indicate that the
Thr-86-Ile mutation, but not other mutations, alters the negative
supercoiling activity of GyrA.

EFFECT OF THE GyrA MUTATIONS ON IN VIVO SUPERCOILING
The recombinant GyrA carrying the Thr-86-Ile mutation showed
reduced supercoiling activity in vitro, but it is important to deter-
mine if the same mutation also affects DNA supercoiling in vivo
(in Campylobacter cells). For this purpose, we used pRY107, a
shuttle plasmid, as a reporter plasmid to monitor the relative
levels of DNA supercoiling in the FQS and FQR strains. Plas-
mid pRY107 was transferred into 62301S2 (WT strain), 62301R33
(carrying the Thr-86-Ile mutation in GyrA), 52901-II2 (carry-
ing the Thr-86-Lys mutation in GyrA), and 62301R37 (carry-
ing the Asp-90-Asn mutation), which were clonally related and
all derived from strain S3B (Luo et al., 2005). Plasmid DNA
was re-isolated from these constructs and analyzed by agarose
gel electrophoresis in the presence of chloroquine. Under the
condition utilized in this study (20 μg/ml chloroquine), nega-
tively supercoiled forms of pRY107 migrated slower than relaxed
topoisomers. This pattern of migration was confirmed by using
commercially available plasmid pBR322 (supercoiled and relaxed;

FIGURE 2 | Supercoiling activities of the recombinant WT gyrase and

the three recombinant mutant gyrases measured by an in vitro assay.

Lane 1, DNA ladder; Lane 2, relaxed pBR322 (control); Lane 3, WT
GyrA + GyrB; Lane 4, mutant GyrA (Thr-86-Ile) + GryB; Lane 5, mutant GyrA
(Thr-86-Lys) + GryB; Lane 6, mutant GyrA (Asp-90-Asn) + GryB; and Lane 7,
supercoiled pBR322 (control). SC indicates supercoiled DNA and R
represents relaxed DNA.

data not shown). Compared to the pRY107 from 62301S2,
the plasmid topoisomers from 62301R33 harboring the Thr-
86-Ile mutation in GyrA shifted to lower positions, indicat-
ing less supercoiling (Figure 3A). As determined by densito-
metrical analysis, the percentage of the most supercoiled DNA
in the total population of the plasmid topoisomers extracted
from 62301S2 and 62301R33 was 87.4 and 20.2%, respectively.
The plasmids from 52901-II2 and 62301R37 showed topoiso-
mer distribution patterns similar to that of 62301S2 (Figure 3A).
These results indicate that the GyrA mutant with the Thr-
86-Ile mutation reduced DNA supercoiling in Campylobacter
cells, while the mutants with the Thr-86-Lys or Asp-90-Asn
changes in GyrA did not alter DNA supercoiling. To further
confirm the impact of the Thr-86-Ile change on DNA super-
coiling, we introduced pRY107 to a different strain background,
NCTC 11168 and 11168CT. The only known difference between
this pair of isolates is the C257T mutation in gyrA (Table 1).
Similar to the result from 62301R33, the plasmid topoisomers
from 11168CT shifted to lower positions compared with NCTC
11168 (Figure 3B), indicating reduced negative supercoiling.
The in vivo supercoiling results were consistent with the find-
ings from the in vitro supercoiling assay and demonstrated that
the Thr-86-Ile mutation in GyrA reduced DNA supercoiling in
Campylobacter.

GyrA MUTATIONS REDUCE THE SUSCEPTIBILITY TO CIPROFLOXACIN
The GyrA mutations confer resistance to FQ antimicrobials and it
is likely that the resistance is due to the reduced susceptibility of the
mutant gyrases to the antibiotics. This possibility was determined
using the in vitro supercoiling assay. As shown in Figure 4, the
MEC of ciprofloxacin to the recombinant WT GyrA is 32, while
the MEC of the two recombinant mutant gyrases carrying the
Thr-86-Lys or Asp-90-Asn mutations were 1024, indicating that
the two mutations significantly reduced the susceptibility of GyrA
to the inhibition by ciprofloxacin. With the mutant GyrA carrying
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A

B

FIGURE 3 | Agarose gel electrophoresis analysis of plasmid

topoisomers extracted from different strain background. The plasmid
DNA was run on a 1.0% agarose gel containing 20 μg/ml chloroquine. (A)

Plasmid pRY107 isolated from strain S3B derivatives. Lane 1, pRY107 from
62301S; Lane 2, pRY107 from 62301R (carrying the Thr-86-Ile mutation in
GyrA); Lane 3, pRY107 from 52901-II2 (carrying the Thr-86-Lys mutation in
GyrA); and Lane 4, pRY107 from 62301R37 (carrying the Asp-90-Asn
mutation in GyrA). (B) Plasmid pRY107 isolated from strain 11168 and its
derivatives. Lane 1, pRY107 from NCTC 11168; and Lane 2, pRY107 from
11168CT (carrying the Thr-86-Ile mutation in GyrA). The results of
densitometric scanning are shown to the right of each gel image. The
numbers on the left of the densitometric scanning correspond to the lane
numbers of the gel image. The number below each lane indicates the
percentage of the most supercoiled DNA in the total population of plasmid
topoisomers as measured by densitometry.

the Thr-86-Ile change, the inhibitory effect of ciprofloxacin was
not measurable because the mutation itself abolished the ability
of the enzyme to form the supercoiled band in the in vitro assay
(Figure 4). These findings suggest that the resistance-conferring
mutations in GyrA desensitize the inhibitory effect of ciprofloxacin
and provide a molecular basis for the reduced susceptibility of FQR

mutants to ciprofloxacin.

DISCUSSION
Several reports have documented the variable fitness changes asso-
ciated with topoisomerase mutations in bacteria (Bagel et al.,
1999; Gillespie et al., 2002; Giraud et al., 2003; Ince and Hooper,
2003; Kugelberg et al., 2005). In S. typhimurium, the FQR mutants
selected by in vitro plating were highly resistant to FQs, but grew
significantly slow in culture media, and failed to colonize chickens
(Giraud et al., 2003). On the contrary, the in vivo selected FQR Sal-
monella isolates exhibited intermediate susceptibility to FQs, had

normal growth in liquid medium, and were able to colonize chick-
ens as efficiently as or lower than that of the WT strains (Giraud
et al., 2003; Zhang et al., 2006). In the case with FQR E. coli, single
mutations in DNA gyrase or topoisomerase IV conferred a low-
level resistance to FQs and did not incur a significant fitness cost,
while accumulation of multiple mutations in the enzymes resulted
in a high-level resistance and a significant fitness disadvantage
(Bagel et al., 1999; Komp Lindgren et al., 2005; Morgan-Linnell
and Zechiedrich, 2007). A recent study using isogenic constructs
further demonstrated the variable effects of single and multiple
GyrA mutation on the fitness of E. coli (Marcusson et al., 2009).
Thus, depending on the types of mutations, bacterial organisms,
and the environment in which fitness is measured, FQR-conferring
GyrA mutations either have no effects on bacterial fitness or incur
a fitness cost.

In contrast to the findings in other bacteria, Luo et al. (2005)
using clonally related isolates and isogenic transformants showed
that FQR Campylobacter outcompeted FQS strains in chick-
ens in the absence of FQ antimicrobials and the enhanced fit-
ness was linked to the single point mutation (Thr-86-Ile) in
gyrA, which confers on Campylobacter a high-level resistance
to FQ antimicrobials. To exclude the possible involvement of
compensatory mutation and further confirm the specific role of
this resistance-conferring mutation in the enhanced fitness, we
constructed a revertant of FQR Campylobacter, in which the C257T
change was reverted. The in vivo results showed that once the Thr-
86-Ile mutation in GyrA of 62301R33 was reverted, Campylobacter
lost its fitness advantage in chickens (Figure 1), confirming the
specific effect of the point mutation on Campylobacter fitness. In
addition, introducing the Thr-86-Ile mutation into the GyrA of
C. jejuni NCTC11168, which is a different strain and divergent
from the S3B derivatives used in the previous work (Luo et al.,
2005), also enhanced its fitness in chickens. These new results
along with the previous findings conclusively establish that the
Thr-86-Ile mutation in GyrA modulates fitness of C. jejuni in
chickens.

Previously it was shown in other bacteria that antibiotic
resistance-conferring mutations in GyrA affected the supercoil-
ing activity of GyrA (Barnard and Maxwell, 2001; Kugelberg et al.,
2005). For example, Barnard and Maxwell (2001) showed that FQR

E. coli mutant carrying a single (Ala87) or double mutations (Ala83

Ala87) in GyrA exhibited reduced supercoiling compared to that of
the WT strain. In Pseudomonas aeruginosa, it was also shown that
FQR GyrA Ile83 mutant and Tyr87 mutant had decreased super-
coiling, which was associated with reduced growth rate (Kugelberg
et al., 2005). In this study, we demonstrated that in Campylobac-
ter the recombinant GyrA with the Thr-86-Ile change showed a
greatly reduced supercoiling activity compared with that of the
WT enzyme (Figure 2). The mutation also reduced DNA super-
coiling in Campylobacter cells (Figure 3). The results from the
in vitro and in vivo supercoiling assays are consistent and indicate
that acquisition of the Thr-86-Ile mutation in GyrA impacts DNA
supercoiling homeostasis within Campylobacter. In contrast, the
supercoiling activity of the mutant gyrases harboring the Thr-86-
Lys or the Asp-90-Asn mutation was comparable to that of the WT
gyrase (Figure 2), suggesting that these two types of mutations do
not affect the physiological function of the enzyme.
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A B

C D

FIGURE 4 | Agarose gel electrophoresis showing the inhibition of DNA

gyrase supercoiling activities by ciprofloxacin. In each reaction, the
relaxed pBR322 was incubated with different enzymes in the presence of
various concentration of ciprofloxacin. (A) Reactions with recombinant GyrA
from the WT strain and GyrB; (B) reactions with mutant GyrA (Thr-86-Lys) and

GyrB; (C) reactions with mutant GyrA (Asp-90-Asn) and GyrB; and (D)

reactions with mutant GyrA (Thr-86-Ile) + GyrB. The numbers on top of each
panel are the concentrations of ciprofloxacin (μg/ml) used in the reaction. SC
indicates supercoiled DNA and R represents relaxed DNA (TopoGen). In each
lane, the most supercoiled band migrates faster than the other topoisomers.

Interestingly, the Thr-86-Ile and Thr-86-Lys mutations
occurred at the same place, but had a different impact on the
enzyme function. This is probably due to the fact that Thr and
Lys are both hydrophilic amino acids, while Ile is a hydrophobic
residue. Thus the Thr-86-Ile change would conceivably more dis-
ruptive than the Thr-86-Lys mutation to the function of GyrA.
In Campylobacter GyrA, Thr-86 is equivalent to Ser-83 in E.
coli GyrA (Wang et al., 1993). It has been known that Ser-83
is located in the QRDR and Ser-83 is involved in the interac-
tion of gyrase–quinolone–DNA complex (Barnard and Maxwell,
2001). Thus changes in the QRDR of GyrA in Campylobacter likely
prevent FQ binding, producing resistance to FQ antimicrobials.
Indeed, we demonstrated that the mutant gyrases carrying the
Thr-86-Lys or the Asp-90-Asn mutation had significantly higher
MECs of ciprofloxacin than the WT GyrA (Figure 4.), indicating
that the mutant gyrases are more resistant to the inhibition by
ciprofloxacin. Interestingly, the MECs of ciprofloxacin with the
enzymes were significantly (at least 250 times) higher than the
MICs of ciprofloxacin in these strains. This finding was consistent
with the results from other studies (Gootz and Martin, 1991; Mar-
tinez et al., 2006) in which MECs and MICs were found to differ by
one or two orders of magnitude. Due to the lack of supercoiling
activity in the absence of ciprofloxacin, the MEC of the mutant
gyrase with the Thr-86-Ile mutation was not measurable using
the in vitro supercoiling assay (Figure 4). However, the MEC of
this mutant gyrase is expected to be much higher than those of
the other two mutant gyrase as the mutation Thr-86-Ile produces
a higher level of FQR than the other types of mutations. These

findings provide a molecular explanation for the resistance FQ
antimicrobials in Campylobacter.

In Campylobacter, the genes encoding topoisomerase IV
(parC/parE) are absent (Parkhill et al., 2000b), and the super-
coiling homeostasis is controlled by topoisomerase I (TopA) and
topoisomerase II (GyrA and GyrB). Our previous study has shown
that the FQR isolates had no compensatory mutations in GyrA and
GyrB (Luo et al., 2005). Since topoisomerase I, encoded by topA,
is involved in the relaxation of DNA supercoiling and also plays
an important role in maintaining the topological state of DNA,
it is necessary to determine if there are any compensatory muta-
tions in topA and whether the expression of the topA is changed in
FQR Campylobacter. Our results showed that the coding sequence
of topA was identical between strains 62301S2 and 62301R33
and there was no difference in the expression of topA between
these two strains, which excluded the possibility that mutations
or altered expression of topA contributed to the fitness change in
FQR Campylobacter.

In conclusion, the present study shows that the Thr-86-Ile
mutation in GyrA is directly linked to the enhanced fitness of
FQR Campylobacter and no compensatory mutations in topA are
associated with this fitness change. The Thr-86-Ile mutation, not
other types of mutations, reduces the supercoiling activity of GyrA
and modulates DNA supercoiling homeostasis in Campylobacter.
Given that DNA supercoiling is important for gene expression in
bacteria (Dorman and Corcoran, 2009; Booker et al., 2010), it is
tempting to speculate that the altered DNA supercoiling might be
linked to the fitness change in FQR Campylobacter. This possibility
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awaits further investigation in future studies. Findings from this
study provide new insights into the molecular mechanisms asso-
ciated with the enhanced fitness in FQR Campylobacter, which
continue to persist in the absence of antibiotic selection pressure.
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