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The pathogenesis of the chronic periodontal disease is associated with a skewed host

inflammatory response to periodontal pathogens, such as Porphyromonas gingivalis,

that accounts for the majority of periodontal tissue damage. Neutrophils are the

most abundant leukocytes in periodontal pockets and depending on the stage of

the disease, also plentiful PMNs are present in the inflamed gingival tissue and the

gingival crevice. They are the most efficient phagocytes and eliminate pathogens by

a variety of means, which are either oxygen-dependent or -independent. However,

these secretory lethal weapons do not strictly discriminate between pathogens and

host tissue. Current studies describe conflicting findings about neutrophil involvement

in periodontal disease. On one hand literature indicate that hyper-reactive neutrophils

are the main immune cell type responsible for this observed tissue damage and disease

progression. Deregulation of neutrophil survival and functions, such as chemotaxis,

migration, secretion of antimicrobial peptides or enzymes, and production of reactive

oxygen species, contribute to observed tissue injury and the clinical signs of periodontal

disease. On the other hand neutrophils deficiencies in patients and mice also result in

periodontal phenotype. Therefore, P. gingivalis represents a periodontal pathogen that

manipulates the immune responses of PMNs, employing several virulence factors, such

as gingipains, serine proteases, lipid phosphatases, or fimbriae. This review will sum up

studies devoted to understanding different strategies utilized by P. gingivalis tomanipulate

PMNs survival and functions in order to inhibit killing by a granular content, prolong

inflammation, and gain access to nutrient resources.
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PERIODONTITIS

Periodontitis is an inflammatory disease, which affects tissues surrounding and supporting the
teeth. It occurs in response to dysbiotic periodontal microbiota accumulating as a bacterial plaque
on the tooth surface below the gum line that triggers a chronic inflammatory reaction (Graves
et al., 2008). Dysbiotic bacteria, also called pahtobionts, are commensal microorganisms that
under conditions of disrupted homeostasis have a potential to deregulate inflammatory responses
and cause disease (Hajishengallis and Lamont, 2012). Chronic periodontitis is one of the most
prevalent inflammatory diseases of humans and in its most severe form it is the sixth most

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
https://doi.org/10.3389/fcimb.2017.00197
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2017.00197&domain=pdf&date_stamp=2017-05-23
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:maja\protect _sochalska@yahoo.com
https://doi.org/10.3389/fcimb.2017.00197
http://journal.frontiersin.org/article/10.3389/fcimb.2017.00197/abstract
http://loop.frontiersin.org/people/383944/overview
http://loop.frontiersin.org/people/213491/overview


Sochalska and Potempa Corruption of Neutrophils by P. gingivalis

prevalent disease affecting 11.2% of the global population and
representing a substantial public health burden (Kassebaum et al.,
2014). Risk factors for developing periodontal disease (PD) are
genetic factors, cigarette smoking, diabetes, osteoporosis, age,
and infections with red complex bacteria. Red complex bacteria
is a group of three species including Porphyromonas gingivalis,
Treponema denticola, and Tannerella forsythia, which presence is
strongly associated with each other and disease sites (Socransky
et al., 1998; Van Dyke and Sheilesh, 2005).

According to the well-accepted polymicrobial synergy
and dysbiosis model, the host immune response is initially
manipulated by keystone pathogens (e.g., P. gingivalis) with the
help of accessory pathogens and is subsequently over-activated
by pathobionts (Hajishengallis et al., 2015a). This concept of
keystone species is derived from basic ecological studies. A
keystone pathogen is a microorganism that exerts a huge impact
on the microbiotic community, while being present at very
small quantity (Darveau et al., 2012). Another hypothesis on
the development of the oral diseases is based on the imbalance
in the oral microflora caused by ecological stress, causing an
enrichment of some periodontal pathogens (Marsh, 1994, 2003).
This “Ecological Plaque Hypothesis” is supported by the fact that
expressed by P. gingivalis gingipains degrade collagen (Houle
et al., 2003) and therefore enrich the growth environment in
peptides favoring growth of the red complex bacteria. A futile
attempt of the host to eradicate periodontopathogens fuels a
chronic inflammatory reaction in the infected periodontium.
In genetically susceptible hosts, this leads to a dissolution of
periodontal ligament, alveolar bone resorption, deep periodontal
pocket formation, and eventual tooth loss (Reynolds and
Meikle, 1997). The presence of keystone pathogens can cause
deregulated inflammation and disease without apparent
predispositions (Hajishengallis, 2014).

NEUTROPHILS’ FUNCTIONS AND
SURVIVAL

Neutrophils, also called polymorphonuclear leukocytes or, in
short, PMNs, are the most abundant white blood cells in the
gingival crevice and periodontal pocket, where they play a crucial
role in the innate immunity response against bacterial infection
and thus are responsible for the maintenance of homeostasis in
periodontal tissues. PMNs are produced in the bone marrow
in large amounts, meaning 5−10

× 1010 cells per day, and are
released into the peripheral blood as terminally differentiated
and fully competent effector cells (Borregaard, 2010). This is
in contrast to adaptive immunity, where T and B lymphocytes
require activation and proliferation steps in secondary lymphatic
organs in order to become effector cells (Segal, 2005; Nathan,
2006).

Neutrophils are the most efficient phagocytes and they
eliminate pathogens by a variety of means, which are either
oxygen-dependent (oxidative burst) or oxygen-independent
(anti-microbial peptides and lytic or proteolytic enzymes;
Figure 1). Neutrophil priming by pro-inflammatory signals
recruits the cytosolic NADPH oxidase complex to the phagosome

membrane which leads to the generation of reactive oxygen
species (ROS). The respiratory burst can disrupt bacterial
phospholipid bilayers, degrade or inactivate proteins, and
trigger DNA damage (Segal, 2005; Nauseef, 2007). Importantly,
these processes can occur in hypoxic periodontal pockets,
where oxygen concentration is as low as 1–3% (Loesche
et al., 1988). In order to meet high-energy requirements,
neutrophils engage glycolysis, which is a huge advantage
under hypoxic conditions present in periodontal pockets. This
unique strategy is in contrast to ATP production mechanisms
in most cells in the human body (Borregaard and Herlin,
1982). Non-oxidative microbial killing relies on the contents
of three types of cytoplasmic granules, namely: azurophilic
(primary) granules, specific (secondary) granules, and gelatinase
granules. Neutrophil activation triggers granule fusion with
phagosomes. These granules deliver antimicrobial proteins and
peptides, such as azurocidin, cathelicidin, α-defensins, lysozyme,
lactoferrin, elastase, and cathepsin G, that disrupt bacterial cell
envelope, destroy peptydoglican, degrade proteolytic bacterial
virulence factors, or sequester iron (Soehnlein, 2009). Beside this
antimicrobial arsenal, PMNs can additionally form neutrophil
extracellular traps (NETs), which are composed of decondensed
nuclear or mitochondrial DNA associated with antibacterial
(granule) enzymes, peptides, and histones. These extracellular
structures are designed to disable invading pathogens and elicit
proinflammatory responses (White P. C. et al., 2016). PMNs
have the shortest lifespan of all immune cells, i.e., around
24 h under the steady state, while for example T lymphocytes
may stay alive for weeks. Normally, neutrophils circulate in
the blood for 6–12 h and then home to the bone marrow,
spleen or liver where they undergo apoptosis. Subsequently, they
are phagocytosed by Kupffer cells in the liver or by red pulp
macrophages in the spleen (Summers et al., 2010; Vier et al.,
2016). This short life-span of neutrophils is tightly controlled
by apoptosis, which is a form of programmed cell death relying
on enzymes of the Caspase family of endopeptidases. It is
a critical process involved in embryonic development or the
maintenance of tissue homeostasis in the adult organism. Its
deregulation is implicated in different pathologies, including
cancerogenesis or disorders of the immune system (Sochalska
et al., 2016; Tuzlak et al., 2016). Apoptosis is a very precise process
controlled by the Bcl-2 family proteins, which encompasses
many pro- and anti-apoptotic proteins that form homo-
or heterodimers in order to promote or prevent apoptosis
(Sochalska et al., 2015). The pro-survival family members,
i.e., Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1, share four BH
(Bcl-2 homology) domains and beside A1, they possess a
transmembrane domain at the C-terminal end. They prevent
apoptosis by sequestering (inhibiting) pro-apoptotic BH3-only
proteins, such as Bim, Bmf, Noxa, Puma, Bid, Bad, Bmf,
and HRK. The BH3-only proteins act as sentinels for various
stress stimuli, such as DNA damage, growth factor deprivation,
ER-stress or oncogenic transformation (Tuzlak et al., 2016).
Moreover, after successful phagocytosis of invading bacteria,
neutrophils undergo apoptosis, a very important step for the
resolution of inflammation, which is called phagocytosis-induced
cell death (PICD). Exposure of the cell to an apoptotic stimulus
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FIGURE 1 | Immune responses to pathogens. During an infection with pathogens, for example E. coli, lipopolisaccharide enhances the secretion of chemotactic

IL-8 and stimulates the upregulation of E- or P-selectins expression on gingival endothelial cells (GECs). Selectins facilitate neutrophils adhesion during transmigration

as they interact with PSGL-1 expressed on PMNs. Moreover, the presence of microbes and their particles activates the complement cascade. C3a and C5a are

anaphylatoxins with a strong chemotactic and pro-inflammatory potential. IgG and IgM antibodies or C3b recognize bacterial antigens and opsonize invading

pathogens thus facilitating bacterial phagocytosis. LPS activates the TLR4 signaling pathway in recruited neutrophils, eliciting strong inflammatory responses designed

to inactivate the pathogen. Inflammatory responses include the production of reactive oxygen species, secretion of pro-inflammatory cytokines and antimicrobial

enzymes or peptides, such as cathepsin G, elastase, cathelicidins or defensins. After a successful bacterial clearance, neutrophils undergo apoptosis, an essential

process triggering the resolution of inflammation.
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frequently engages BH3-only proteins, either transcriptionally
or translationally, which allows them to either directly (Bim
and tBid) or indirectly (all BH3-only) activate the pro-apoptotic
effector proteins Bax/Bak (Czabotar et al., 2014; Garcia Saez and
Villunger, 2016).

However, in the context of P. gingivalis infection, neutrophils
are unable to phagocyte this periodontopathogen present
within the huge biofilm structure. During phagocytosis of
something too big to be ingested, a process so-called “frustrated
phagocytosis,” they generate reactive oxygen species and secrete
enzymes in order to destroy the pathogen. Unfortunately, these
secreted weapons concomitantly contribute to the inflammatory
destruction of gingival tissues and alveolar bone (Scott and
Krauss, 2012).

NEUTROPHILS IN PERIODONTITIS

On one hand, functional neutrophils are indispensable for the
maintenance of periodontal health, as illustrated by several
neutrophil genetic defects, including neutropenias (Ryder, 2010;
Wiesmeier et al., 2016), LAD-I Syndrome (Leukocyte Adhesion
Deficiency Type I; Moutsopoulos et al., 2014) or Papillon-
Lefevre syndrome (Eick et al., 2014), which are associated
with periodontal phenotype. On the other hand, neutrophilia,
which is the accumulation of neutrophils and their histotoxic
cargo in the tissue, has been clinically linked to cystic
fibrosis and meningitis and may also account for the currently
unknown etiology of inflammatory bowel disease, Crohn’s
disease, ulcerative colitis, or periodontal disease (Hajishengallis
et al., 2008a; Koedel et al., 2009; Levine and Segal, 2013;
Gifford and Chalmers, 2014; Prat et al., 2014). Thus, tight
control of neutrophil functions and survival after bacterial
clearance by induction of apoptosis, immune tolerance and
resolution of inflammation, exert protective effects toward the
host tissues against inflammatory tissue damage. A failure to
properly regulate neutrophil abundance and turnover directly
contributes to the pathogenesis of periodontitis and current
literature implicates neutrophils as the main immune cell type
responsible for periodontal disease progression (Hajishengallis
et al., 2008b, 2015a; Scott and Krauss, 2012).

A hyper-reactive neutrophil phenotype is considered to
play a central function in the periodontal disease (Chapple
and Matthews, 2007; Scott and Krauss, 2012; Hajishengallis
and Lamont, 2016) and, importantly, many systemic
inflammatory diseases are associated with periodontitis,
including cardiovascular disease, rheumatoid arthritis and
diabetes type 2. As such, “hyper-inflammation” may represent
one casual mechanism by which periodontitis contributes to
co-morbidity (Hatanaka et al., 2006; Yasunari et al., 2006; Koziel
et al., 2014b).

PERIODONTITIS PATIENT-DERIVED
NEUTROPHILS

A chronic type of the periodontal disease is frequently associated
with P. gingivalis infection (Guentsch et al., 2009). As neutrophil
influx into periodontal pockets is strongly induced during such

infections, several studies analyzed the functions and survival
of periodontitis patient-derived neutrophils. Patients suffering
from PD showed overly increased numbers of neutrophils in the
oral cavity (Bender et al., 2006). Accordingly, one microarray
study characterized neutrophil transcriptome changes at the
site of inflammation (the oral cavity) and compared the
gene expression in the periphery in healthy and PD subjects.
The only significant changes were found in the “apoptosis”
cluster (Lakschevitz et al., 2013). Another study revealed
that GM-CSF-dependent neutrophil apoptosis was diminished
in periodontitis biopsies, as analyzed by TUNEL staining.
Moreover, accumulation of GM-CSF and TNF-α in gingival
tissue sections was noted in the majority of diseased sites
(Gamonal et al., 2003). Furthermore, functionality of tissue-
derived and peripheral blood neutrophils from PD patients was
deregulated. These PMNs produced higher baseline levels of
ROS and elastase (Matthews et al., 2007; Guentsch et al., 2009;
Aboodi et al., 2011; Damgaard et al., 2017) and secreted more
pro-inflammatory cytokines, namely IL-8, IL-6, IL-1β, and TNF-
α (Ling et al., 2015). Additional challenge of patient-derived
neutrophils with P. gingivalis augmented the secretion of elastase
and pro-inflammatory cytokines (Guentsch et al., 2009; Ling
et al., 2015). Moreover, further exposure of PMNs to either
P. gingivalis- or E. coli-derived LPS enhanced ROS generation
and cathelicidin (LL-37) secretion. Similar hyper-activation of
neutrophils was noted upon FcÈR engagement and treatment
with either GM-CSF or phorbol ester (PMA; Johnstone et al.,
2007; Matthews et al., 2007; Guentsch et al., 2009; Mariano et al.,
2012). In contrast, reduced production of nitric oxide (NO) by
peripheral PMNs from PD patients was noted (Mariano et al.,
2012), which may actually contribute to P. gingivalis persistence
in the gingival tissue. Importantly, a potential oral-systemic
inflammatory activation loop (a self-driving sequence of events)
was suggested to operate in patient-derived neutrophils. Analysis
of serum isolated from aggressive and chronic periodontitis
patients revealed elevated systemic antibodies to P. gingivalis
(Guentsch et al., 2009), while plasma from periodontal patients
was more efficient in neutrophil priming to fMLP and directly
induced the oxidative burst (Dias et al., 2008). Interestingly,
this excessive neutrophil activation could be abolished by
antibodies neutralizing IL-8, GM-CSF, or IFN-α (Dias et al.,
2011). Interestingly, elevated NETs release was noted in patients
suffering from gingivitis, but no differences were observed
in peripheral neutrophils isolated from periodontitis patients.
However, NETs degradation by plasma was significantly reduced
in periodontitis patients, what might contribute to the chronic
inflammation, exaggerated inflammatory responses and tissue
destruction observed in PD patients. Importantly, the authors
noted that a non-surgical periodontal treatment restored full
plasma capacity (Cooper et al., 2013; White P. et al., 2016).
These patient data demonstrated that chronic periodontitis
is associated with accumulation in the gingiva of hyper-
active neutrophils, which exhibit an elevated release of pro-
inflammatory cytokines, ROS, and anti-bacterial enzymes and
show defects in apoptosis. Strikingly, P. gingivalis-derived LPS
might be found in the bloodstream in over 50% of periodontitis
patients, what clearly might modulate neutrophil and other
white blood cells responsiveness (Deleon-Pennell et al., 2013).
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This deregulation of leukocyte function could modulate not
only local, but also systemic inflammatory-immune responses

and influence the risk and severity of periodontitis-associated

systemic inflammatory diseases. Therefore, many studies have

been devoted to elucidate molecular mechanisms underlying

such aberrant functions and prolonged survival of neutrophils in
the context of P. gingivalis infection.

Immune Host Responses in Mouse Models
of Periodontal Disease and Their
Limitations
Keeping in mind that studies of periodontitis in humans are
burdened with some limitations due to variables that are difficult
to control among patients, animal models enable studying
development, and progression of periodontal disease in a precise
and controlled manner. Moreover, genetically modified mice
allow to uncover defined molecular aspects of periodontitis for
example involvement of specific immune cell types or signaling
pathways in pathogenesis of periodontal disease.

The localized injection of periodontal pathogen P. gingivalis
or its component into the palatal gingival tissue, oral gavage or
ligature models are very convenient micemodels of periodontitis.
These models are characterized by periodontal tissue destruction
as well as inflammation as measured by increased expression of
inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, which
are typical hallmarks of periodontal disease observed in patients
(Adamowicz et al., 2012; Saadi-Thiers et al., 2013; deMolon et al.,
2013; Maekawa et al., 2014). Importantly, it was reported that
the ligature model and injection of heat-killed P. gingivalismodel
were the most representative of periodontal disease in humans,
whereas the oral gavage models were not effectively inducing
periodontitis under the experimental conditions (de Molon et al.,
2014). Thus, certainly some of these in vivo mouse models are
burdened with limitations. Nevertheless, analysis of for example
periodontitis induced by ligatures (either previously incubated
with P. gingivalis or not) or oral gavage application of P. gingivalis
strain ATCC 33277, revealed elevated serum levels of IL-1β and
IL-6 (Saadi-Thiers et al., 2013). These results clearly indicated
that P. gingivalis sustained periodontal inflammation. However,
it is difficult to state which particular cells are responsible for this
effects. Especially that pro-inflammatory cytokines such as IL-1β,
IL-6, or TNF-α are produced by a variety of immune cell types
(Arango Duque and Descoteaux, 2014).

The best mouse model, which allows analysis of specific
immune cell types responsible for P. gingivalis-mediated
inflammation is the mouse chamber model. This model
involves injectable inoculation of bacteria into the lumen of
a subcutaneously implanted titanium-coil chamber is better
to pinpoint which particular cell types promote inflammation.
Strikingly, over 95% of recruited cells to the chambers are Ly6G+

leukocytes (neutrophils). Therefore, reported by Maekawa and
colleagues accumulation of pro-inflammatory mediators by in
the fluid aspirated from chambers as measured by levels of IL-1β,
IL-6, TNFα, or IL-17 was distinctly due to neutrophils activation
(Maekawa et al., 2014). Thus, this chamber mouse model clearly
confirmed that P. gingivalis triggers neutrophils inflammatory

responses at the site of infection. Nevertheless, these in vivo
results were validated using either ATRA differentiated HL-60
neutrophils or neutrophils isolated from human blood (Maekawa
et al., 2014). Therefore, results obtained in vivo during analysis of
mouse models of periodontitis need to be further verified ex vivo
or in vitro.

Another possibility to overcome obstacles during analysis
of actual cell types responsible for P. gingivalis-mediated
inflammation is visualization by confocal microscopy.
Adamowicz and colleagues quantified co-localization of
infiltrating Ly6G+ neutrophils and pro-inflammatory IL-17
cytokine expression in periodontal tissues in P. gingivalis–
induced periodontal bone loss model, clearly showing neutrophil
contribution to periodontal inflammation (Adamowicz et al.,
2012).

In order to pinpoint contribution of the specific immune
cells in development and progression of periodontitis genetically
modified mice deficient in leukocytes or lymphocytes were
analyzed. For example it was shown that mice, which failed
to develop MHC class II-reactive CD4+ T cells, presented
with significantly reduced bone loss. Of note, analysis of mice
devoid of NK T cells or CD8+ T cells did not protect mice
from periodontitis (Baker et al., 1999). However, to our best
knowledge, impact of neutrophils ablation on periodontal disease
development and progression was not analyzed in any of mouse
models of periodontitis. Instead, it was reported by Hajishengallis
that loss of neutrophil infiltration inhibited disease development
(Eskan et al., 2012). Mice deficient in Del-1, a negative regulator
of neutrophil LFA-1-dependent recruitment to periodontium,
exhibited enhanced neutrophil infiltration and IL-17-mediated
inflammatory bone loss. In opposite, other authors described that
IL-17-mediated neutrophil recruitment was critical in protection
against P. gingivalis-induced alveolar bone loss in a mouse model
(Yu et al., 2007). Along the same lines, other authors noted
that neutrophil infiltration as well as CD45+ B lymphocytes
was beneficial in mice infected with P. gingivalis (Settem et al.,
2014). Importantly, IL-17 produced by Th17 cells themselves can
drive periodontal bone loss in chronic P. gingivalis infections
(Moutsopoulos et al., 2012). In chronic settings neutrophils
themselves can also become a source of IL-17, leading to IL-17-
dependent bone loss (Hajishengallis and Hajishengallis, 2014).
Therefore, the complex role of leukocytes, lympohocytes, and
IL-17 (Th17) in periodontitis remind to be determined.

Nevertheless, these results indicated that mouse models are
certainly very useful tools in analysis of P. gingivalis-mediated
periodontal inflammation and in vivo analysis contribute to
development targeted therapeutics modulating inflammatory
cascades regulated by complement (Hajishengallis and Lambris,
2013), GSK-3 (Adamowicz et al., 2012), regulatory T cells
(Glowacki et al., 2013), and neutrophils (Eskan et al., 2012).

CORRUPTION OF NEUTROPHILS BY
PORPHYROMONAS GINGIVALIS

P. gingivalis has developed a variety of mechanisms in order to
overcome neutrophil-mediated killing and sustain inflammation,
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TABLE 1 | P. gingivalis virulence factors involved in the manipulation of neutrophil immune responses.

Virulence factor Action Consequences References

Ser B (serine phosphatase) Dephosphorylation of Ser536 of NFκB subunit p65 Suppression of IL-8 production by GECs

(so-called chemokine paralysis); abolished PMNs

recruitment

Madianos et al., 1997;

Bainbridge et al., 2010;

Takeuchi et al., 2013

LPS TLR2 activation and cross-talk with C5aR inhibits the

Myd88 pathway while the Mal-PI3K pathway is

induced

Abolition of the Myd88-dependent antimicrobial

response and PI3K-mediated phagocytosis;

activation of Mal-dependent inflammation

Murray and Wilton,

2003; Darveau et al.,

2004; Liang et al.,

2011; Maekawa et al.,

2014; Olsen and

Hajishengallis, 2016

LPS with penta-acylated lipid A TLR4 agonist; pro-inflammatory potential; produced

during low hemin availability

Increased expression of E-selectins; enhanced

PMNs recruitment; impairment of immune

tolerance; inhibition of PMNs apoptosis

Dixon and Darveau,

2005; Al-Qutub et al.,

2006; Bainbridge et al.,

2006; Reife et al.,

2006; Berezow et al.,

2009; Zaric et al., 2010

LPS with tetra-acylated lipid A TLR4 antagonist; anti-inflammatory potential;

produced during high hemin availability

Suppression of E-selectins expression; inhibition

of PMNs recruitment

Dixon and Darveau,

2005; Al-Qutub et al.,

2006; Bainbridge et al.,

2006; Reife et al., 2006

Kgp (Lys-specific gingipain) Degradation of IgG1, IgG3; TREM-1 degradation Inhibition of opsonization and phagocytosis;

Anti-inflammatory effect

Vincents et al., 2011;

Guentsch et al., 2013

Rgps (Arg-specific gingipains) Increased expression of TREM-1 and PAR2; shedding

of sTREM-1

Elevated production of pro-inflammatory

cytokines; pro-inflammatory effects

Lourbakos et al., 1998,

2001; Bostanci and

Belibasakis, 2012a;

Bostanci et al., 2013

High gingipain levels, Pg-bound

enzymes

Degradation of IL-8 (72aa); proteolysis of TNF-α by

Rgp

Abolished IL-8 dependent chemotaxis and ROS

production by PMNs; diminished inflammation;

chemokine paralysis

Darveau et al., 1998;

Mikolajczyk-Pawlinska

et al., 1998

Low gingipain levels, secreted

enzymes

Selective cleavage of IL-877aa results in the generation

of a truncated, hyper-active IL-869aa variant

Pro-inflammatory effects; intensified PMNs

recruitment and respiratory burst

Dias et al., 2008

Rgps—initial stages of infection,

secreted enzymes

Selective cleavage of C3 and C5 complement factors

and generation of active C3a and C5a; induction of

C5aR and TLR2 signaling pathways cross-talk (see

above)

Induced PMNs chemotaxis; elevated production

of pro-inflammatory cytokines and ROS

Wingrove et al., 1992;

Popadiak et al., 2007;

Guo et al., 2010

Rgps—advanced stages of

infection, Pg-bound enzymes

Degradation of C3 and C5 complement factors Anti-inflammatory effects Popadiak et al., 2007;

Guo et al., 2010

Kgps Cleavage of C5aR; C4BP capture on the bacterial

surface

Inhibited MPO release; suppression of the

formation of the complement membrane attack

complex

Jagels et al., 1996a,b;

Potempa et al., 2008

Ruberythrin Protection from oxidative stress Pro-inflammatory effects; enhanced PMNs

recruitment; resistance to reactive nitrogen

species-mediated PMNs killing

Mydel et al., 2006

PPAD C5a citrullination Reduced pro-inflammatory potential of

anaphylatoxin; protection from PMNs-mediated

killing

Maresz et al., 2013;

Bielecka et al., 2014

FimA Fimbriae Increased IL-8 production; activation of TLR2 signaling

and the CD11b-CD18 integrin pathway

Pro-inflammatory effects; intensification of PMNs

chemotaxis, secretion of pro-inflammatory

cytokines, and phagocytosis

Harokopakis and

Hajishengallis, 2005;

Sahingur et al., 2006;

Wang et al., 2007

which allows colonization and contributes to tissue damage.
This periodontopathogen utilizes several virulence factors that
manipulate neutrophils recruitment, survival, and functions
at the site of infections. This review will focus on virulence
factors involved in the subversion of neutrophils, namely
serine phosphatase (SerB), fimbriae, gingipains (RgpA,
RgpB, and Kgp), P. gingivalis peptidyl arginine deiminase
(PPAD), lipopolysaccharide (LPS), and its component (lipid A)
(summarized in Table 1).

PMNs Deregulation by SerB
Serine phosphatase is an enzyme secreted by P. gingivalis
that modulates inflammatory responses, as it was shown to
inhibit IL-8 production by gingival epithelial cells through the
dephosphorylation of serine S536 of p65 NF-κB subunit. This
subsequently abolished PMNs recruitment and gave P. gingivalis
enough time for colonization of periodontal pockets (Figure 2).
Such insidious manipulation of cell signaling protected this
periodontopathogen and bystander bacteria from neutrophil
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FIGURE 2 | Manipulation strategies of neutrophils and the immune

system by P. gingivalis at the initial phase of infection. During the initial

phase of an infection with the keystone pathogen P. gingivalis (Pg) secretes

serine phosphatase (SerB), inhibiting IL-8 production. At the same time, a

tetra-acylated lipid A variant of P. gingivalis LPS suppresses the expression of

L- and P-selectins on gingival epithelial cells. These manipulation strategies

hinder neutrophil recruitment, giving periodontal pathogens enough time for

colonization of periodontal pockets.

killing during the initial stages of infection. Consequently, SerB
expression enhanced alveolar bone resorption in experimentally
induced periodontitis in rats (Madianos et al., 1997; Bainbridge
et al., 2010; Takeuchi et al., 2013). This implies that manipulation
of NF-κB signaling by SerB hinders PMNs recruitment and
bacterial clearance in the periodontium and therefore is involved
in a pathogenic mechanism referred to as a local chemokine
paralysis.

PMNs Deregulation by LPS
Toll-like receptors (TLR) engagement, neutrophil recruitment
to the site of inflammation, pro-inflammatory cytokine release,
and subsequent elimination of bacteria by PMNs are essential

mechanisms of the host immune response against infection.
However, after the bacterial clearance, several processes need
to be engaged to prevent inflammatory tissue destruction,
including the induction of immune tolerance and removal of
apoptotic neutrophils from the site of infection. They contribute
to the control of the host’s defense and trigger resolution of
inflammation (Bratton and Henson, 2011; McCracken and Allen,
2014). Lipopolysaccharide (LPS), also known as endotoxin, is a
fundamental structural element of the cell envelope of gram-
negative bacteria and it is able to elicit appropriate host innate
responses. LPS is composed of three elements, namely O-
antigen, core polysaccharide, and lipid A. The latter is responsible
for the toxicity of Gram-negative bacteria and consists of di-
glucosamine with two phosphate moieties at both 1′- and 4′-
positions of the disaccharide backbone, where acyl chains are
attached (Kumada et al., 1995; Raetz et al., 2007, 2009). However,
P. gingivalis can deceitfully modify its lipid A structure due to
both dephosphorylation and deacylation in order to manipulate
host immune responses and promote chronic inflammation
(Dixon and Darveau, 2005; Al-Qutub et al., 2006; Reife et al.,
2006). When considering the heterogeneous acylation patterns
of P. gingivalis lipid A, two variants are predominant, namely
tetra-acylated and penta-acylated. Strikingly, these two variants
were described to induce opposing host responses. The penta-
acylated lipid A activated TLR4 (Toll-like receptor 4) signaling,
whereas tetra-acylated lipid A variant had antagonistic effects
against TLR4. Importantly, these changes in acylation were
dependent on microenvironmental conditions. In particular,
when bacteria were grown in low hemin conditions, LPS
consisted of phosphorylated, penta-acylated lipid A structure,
which exerted weak LPS agonistic effects. Whereas, during
high hemin availability, mimicking an inflammatory condition,
phosphorylated penta-acylated lipid A was converted into
non-phosphorylated tetra-acylated lipid A, and exhibited an
antagonistic activity (Al-Qutub et al., 2006). Moreover, tetra-
acylated version of P. gingivalis lipid A was shown to inhibit
E-selectin expression, while penta-acylated lipid A variant
had a stimulatory effect (Reife et al., 2006). Therefore, P.
gingivalis can exert opposing effects on the expression of this
adhesion molecule expressed on endothelial cells, which impairs
neutrophil transmigration during inflammation (Figures 2, 3).

On top of acylation, P. gingivalis can change the
phosphorylation status of lipid A (Rangarajan et al., 2008).
Similarly to other Gram-negative bacteria, P. gingivalis
synthesizes lipid A that initially contains two phosphate groups
at the di-glucosamine backbone. However, dephosphorylation of
P. gingivalis lipid A can facilitate its deacylation and subsequently
manipulate neutrophil responses.

It is a well-documented innate immunity paradigm that
LPS is recognized by Toll-like receptor 4 of the host innate
immune system, which triggers pro-inflammatory cytokine
production and promotes bacteria elimination (Murdock and
Nunez, 2016; Figure 1). While it is true for the LPS of
most Gram-negative species, P. gingivalis-derived LPS is also a
potent activator of TLR2 (Darveau et al., 2004). Importantly,
this degenerative manipulation of TLR signaling separates
pathogen phagocytosis from neutrophil inflammatory response
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FIGURE 3 | Manipulation strategies of neutrophils and the immune system by P. gingivalis at the later phase of infection. During a later phase of the

infection P. gingivalis releases a penta-acylated LPS variant leading to the increased expression of L- and P-selectins on GECs and enhanced production of IL-8. This

strongly stimulates neutrophil chemotaxis and transmigration to the site of infection. Moreover, P.g.-derived LPS and fimbriae strongly stimulate neutrophil

pro-inflammatory and anti-bacterial responses, such as the secretion of reactive oxygen species and pro-inflammatory cytokines, and the production of anti-microbial

peptides and enzymes. An elevated secretion of these anti-bacterial molecules results in gingival tissue destruction, while many virulence factors secreted by P.

gingivalis protect this periodontopathogen from the consequences of hyper-inflammation. The keystone pathogen is protected from oxidative stress, as it expresses

ruberythrin (Rbr) protein. Additionally, the expression of Lys-specific gingipains degrades immunoglobulins at the hinge region, and, coupled with the activation of the

TLR2 signaling pathway (by LPS), abolishes bacterial opsonization and phagocytosis. Also, gingipains manipulate anti-bacterial responses by deregulating the

complement cascade and IL-8-mediated neutrophil chemotaxis. In particular, depending on the concentration and the position of gingipains within the biofilm, these

(Continued)
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FIGURE 3 | Continued

enzymes can exert opposing effects. C3, C5, and IL-8 are degraded at high gingipain concentration or by gingipains associated with bacterial cells or vesicles thus

inhibiting pro-inflammatory responses and protecting bacteria from elimination. In contrast, low levels of soluble Arg-specific gingipains activate C5 and C3 by limited

proteolysis that results in the generation of C5a and C3a anaphylatoxins. Furthermore, under such circumstances, gingipains can selectively cleave IL-8 generating a

truncated, hyperactive IL-869aa variant (written in red) acting in concert with C5a and C3a in order to excessively activate neutrophil pro-inflammatory responses.

Additionally, the secreted penta-acylated LPS variant diminishes neutrophil apoptosis which delays the resolution of inflammation Together, these events strongly

contribute to the inflammatory tissue destruction observed in periodontitis and to excessive bleeding, providing P.g. and bystander bacteria with access to nutritional

resources.

(Figure 3). This pathologic effect was achieved by the induction
of a cross-talk between the complement receptor C5aR and
TLR2, which inhibited the TLR-2-MyD88 signaling pathway
and activated an alternative TLR2-Mal-PI3K pathway in vivo
(Liang et al., 2011; Maekawa et al., 2014). The authors
reported that the ability to activate TLR2 signaling had a
protective effect not only toward P. gingivalis, but also toward
bystander bacteria, otherwise susceptible to bacterial killing.
These studies revealed the molecular mechanism of TLR
signaling manipulation by P. gingivalis, which clearly contributes
to the persistence of dysbiotic microbial communities and drives
chronic inflammation in periodontal disease (Hajishengallis and
Lambris, 2011).

Neutrophil apoptosis and subsequent uptake by macrophages,
referred to as efferocytosis, is among the key processes leading to
the resolution of inflammation. Therefore, neutrophil resistance
to cell death and diminished efferocytosis may additionally
contribute to the chronic inflammation and collateral tissue
damage observed in periodontal disease (Hiroi et al., 1998;
Zaric et al., 2010). Indeed, neutrophils exhibited an impaired
immune tolerance to P. gingivalis endotoxin. Stimulation with
penta-acylated dephosphorylated LPS, the most potent and
prevalent endotoxin isoform of P. gingivalis, led to continued
IL-8 secretion upon secondary exposure, but inhibited TNF-α
production. Interestingly, observed results were in contrast to
the effect elicited by E. coli-derived lipopolisaccharide, which
abolished the production of both cytokines upon repeated
treatment (Bainbridge et al., 2006; Berezow et al., 2009). This
deregulated inflammatory response to P. gingivalis LPS resulted
in enhanced neutrophil migratory potential while apoptosis was
inhibited as identified by reduced caspase-3 activity (Bainbridge
and Darveau, 2001; Reife et al., 2006; Zaric et al., 2010; Figure 3).
Additionally, not only LPS and lipid A, but also capsular
polysaccharide isolated from three different P. gingivalis strains
(HG-184, A7A1–28, and 381) diminished human or murine
PMNs cell death in a time- and dose-dependent manner (Hiroi
et al., 1998; Preshaw et al., 1999) that was not influenced by IL-
10 treatment (Murray and Wilton, 2003). However, taking into
account that P. gingivalis endotoxin may engage TLR2 instead
of TLR4, this may account for its inhibitory effect on apoptosis
(Bainbridge and Darveau, 2001; Murray and Wilton, 2003).
This is particularly important due to the fact that P. gingivalis
LPS can penetrate gingival tissues and consequently can exert
a broad impact toward all immune cells in the periodontium
and affect their responses to all bacteria present within the
biofilm (Schwartz et al., 1972). Therefore, manipulation of PMN
apoptosis results in an accumulation of long-lived and fully active

neutrophils in the inflamed periodontium, which may contribute
to the development and progression of periodontal disease.

These studies provided the molecular evidence that
changes in the P. gingivalis endotoxin structure influence
its binding affinity to TLR4. This selectively affects downstream
signaling in order to evade antibacterial responses and sustain
inflammation. Collectively, LPS modifications depend on the
microenvironment and exert opposing actions on the host
immune system. This ensures access to nutrient resources and
can potentially protect the entire microbial community from
TLR-mediated immune responses.

PMNs Deregulation by Gingipains
Gingipains are major cysteine proteases, which are either
membrane-bound or secreted and they account for 85% of
the total proteolytic activity of P. gingivalis (Potempa et al.,
1997). Based on their specificity, they are divided in two
groups, namely arginine-specific (RgpA and RgpB) and lysine-
specific (Kgp; Potempa et al., 2003). Working in concert,
gingipains exhibit trypsin-like activity and can cleave many
host components, such as the extracellular matrix, cytokines,
immunoglobulins, or complement factors (Guo et al., 2010).
However, these proteases are not merely responsible for an
indiscriminate degradation of proteins, but show a large
degree of specificity in action that accounts for much of P.
gingivalis resistance to host antibacterial strategies (Bostanci and
Belibasakis, 2012b). Gingipains are able to override host defense
mechanisms, such as antibody opsonization, complement system
activation, or pro-inflammatory signaling, which ensures this
periodontopathogen’s exceptional resistance to the bactericidal
activity of the human serum and the killing potential of
neutrophils (Figure 3).

Opsonization by natural or acquired antibodies is an
important protective feature of innate and adaptive immune
response and facilitates phagocytosis of invading bacteria.
However, gingipain K (Kgp) has the unique ability to cleave IgG1
and IgG3 at the hinge region, thus separating the antigen binding
Fab fragment from the effector Fc fragment of immunoglobulins.
This activity was observed not only in vitro using isolated IgGs
or human plasma, but it was also detected in vivo in gingival
crevicular fluid (GCF). Consequently, treatment of patient
serum samples with Kgp inhibited P. gingivalis opsonization
and subsequent phagocytosis by neutrophils (Kobayashi et al.,
2001; Guentsch et al., 2011; Vincents et al., 2011). Therefore,
lysine-specific gingipain suppresses IgG-mediated opsonization
and P. gingivalis phagocytosis, which contributes to pathogen
persistence.
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Gingipains can also influence the host innate immune
response by a manipulation of signaling dependent on the
TREM (Triggering Receptor Expressed on Myeloid cells) or
PAR (Protease-Activated Receptors) families of cell receptors.
TREM-1 receptor belongs to the immunoglobulin family and
is involved in the amplification of pro-inflammatory cytokines
production as well as regulation of apoptosis. It was reported that
gingipains increased the expression of TREM-1 on neutrophils,
which resulted in an elevated production of IL-8. Interestingly,
depending on gingipain specificity, authors noted opposing
biological effects. Arg-specific gingipains were capable of
shedding a soluble TREM-1 (sTREM-1) from the PMNs surface,
while Lys-specific gingipains were degrading TREM-1 (Bostanci
and Belibasakis, 2012a; Bostanci et al., 2013).

Gingipains were also shown to deregulate PAR signaling
in neutrophils, gingival fibroblasts, epithelial cells, and T
lymphocytes. In particular, Rgps were able to activate PAR2, a
G-protein-coupled transmembrane receptor expressed, among
others, on neutrophils. Rgps-mediated PAR2 activation enhanced
the biosynthesis of prostaglandin E2, IFN-È, IL-1β, and IL-6,
which led to accelerated alveolar bone loss in experimentally-
induced periodontitis in mice. Therefore, induction of PAR
expression by gingipains is designed to sustain inflammation
in P. gingivalis-infected periodontium (Lourbakos et al., 1998,
2001; Bostanci and Belibasakis, 2012b). Importantly, authors also
reported an elevated expression of PAR2 on neutrophils from
periodontitis patients, which indicated that deregulated PAR2
expression may contribute to periodontal inflammation severity
(Holzhausen et al., 2006, 2010). Therefore, differential regulation
of TREM-1 or PAR2 signaling by gingipains is designed to
manipulate the host innate immune responses and contributes
to chronic periodontal inflammation.

Additionally, gingipains were also shown to exploit IL-
8 signaling in order to sustain inflammation, deregulate
neutrophil chemotaxis and eventually inhibit bacterial
elimination. Interleukin 8 (IL-8) is a chemokine known as
a neutrophil chemotactic factor orchestrating many PMNs
bactericidal activities, such as phagocytosis, respiratory burst,
production of anti-bacterial enzymes, and pro-inflammatory
cytokines. P. gingivalis LPS is able to induce the secretion of
IL-872aa and IL-877aa variants from immune and non-immune
cells, respectively. While the first variant is very potent in
priming neutrophils, the latter needs to be truncated on
the N-terminus to elicit full activity. This functional and
structural diversity of IL-8 is exploited by P. gingivalis, which
can manipulate IL-8 signaling depending on the stage of
infection, gingipain concentration as well as the proximity of
the cytokine to the bacterial plaque (Figure 3). Specifically,
Arg- or Lys-gingipains can diminish IL-872aa activity and
inhibit neutrophil chemotaxis as well as ROS production
induced by fMLP during initial stages of infection, thus
significantly contributing to a local chemokine paralysis. On
the contrary, during later stages of P. gingivalis infection,
the limited proteolysis of IL-877aa by R- and K-gingipains in
the presence of fMLP resulted in the generation of truncated
hyperactive IL-869aa variant, which enhanced PMNs recruitment
and oxygen-dependent bacterial elimination (Darveau et al.,

1998; Dias et al., 2008). Additionally, it was shown that
enzymes associated with the bacterial outer-membrane blebs
(vesicles) degrade and inactivate this chemokine, whereas
soluble gingipains were able to process IL-877aa into the
hyper-active variant (Mikolajczyk-Pawlinska et al., 1998).
Of note, Arg-specific gingipains interfere also with TNF-α
signaling by degrading the soluble as well as membrane-bound
forms of this cytokine (Mezyk-Kopec et al., 2005), which
attenuated host immune response and neutrophil recruitment,
both especially important during initial stages of P. gingivalis
infection.

Also, various complement components strongly regulate
PMNs activity as these cells constitutively express several
complement receptors, such as CR1 (CD35), CR3 (CD11b/CD18,
Mac-1), CR4 (CD11c/CD18, Mac-1), or CR5 receptors.
Engagement of complement receptors activates many different
signaling pathways and triggers neutrophil migration,
phagocytosis, degranulation, intracellular killing, or ROS
production (Krauss et al., 2010; Hajishengallis et al., 2015b).
Not surprisingly, another strategy of immune evasion employed
by P. gingivalis is the inactivation of complement factors
(Figure 3). This periodontopathogen produces high quantities
of gingipains targeting these fundamental complement-
mediated innate immune responses (Popadiak et al., 2007). In
particular, RgpA can precisely cleave C3 and C5 to produce
active C3b and C5a, the latter being an anaphilatixin, strongly
promoting neutrophil recruitment to the gingiva (Wingrove
et al., 1992). Actually, gingipains have been shown to have
complex, “biphasic” effects on the complement system. At low
concentrations of gingipains, which mimic early infection stages,
they precisely cleave C3 and C5 and generate active C3a and
C5a, respectively. In turn, at high concentrations or at deeper
gingival localization, where the biofilm resides, they inhibit
the complement pathway. This indicates that at the beginning
of bacterial invasion, gingipains enhance inflammation in
order to increase nutrients supply, while at advanced stages of
periodontal disease they inactivate the complement cascade,
which is designed to protect P. gingivalis and bystander
bacteria from the bactericidal activity of the human serum and
neutrophil killing (Popadiak et al., 2007; Potempa and Pike,
2009).

Moreover, Lys-specific gingipain was shown to block C5a-
mediated anti-microbial activity by cleaving C5aR and abolishing
myeloperoxidase release by neutrophils (Jagels et al., 1996a,b).
Interestingly, membrane-bound RgpA can capture complement
inhibitor C4BP on P. gingivalis surface, which abolishes
membrane complement attack (MAC; Potempa et al., 2008).
Furthermore, gingipains were also shown to interfere with the
clotting cascade by degradation of fibrinogen. Especially Kgp
increased bleeding tendency at the site of infection and prolonged
inflammation (Imamura et al., 1995, 1997; Rapala-Kozik et al.,
2011).

This data proved that P. gingivalis represents a periodontal
pathogen, which employs different strategies to gain access to
nutrient resources and overcome neutrophil-mediated killing.
Not only endogenous host enzymes, but also gingipains
mediate periodontal tissue breakdown. Moreover, gingipains,
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which are found at very high concentrations in periodontal
pockets, deregulate the complement cascade, opsonization by
immunoglobulins and receptor signaling, collectively leading
to increased vascular permeability and bleeding. These effects
increase the availability of hemin required for bacterial growth
and facilitate the spreading of the pathogen. Depending on
the stage of infection, position within the biofilm and specific
circumstances, this periodontopathogen can either promote or
prevent such activities as complement activation, neutrophil
recruitment and inflammatory response. However, observed in
vitro suppression of inflammatory responses, which manipulate
neutrophils infiltration to the periodontium at the very early
stages of P. gingivalis colonization was not observed in vivo
during analysis of mouse models of periodontitis. However,
it is difficult to establish in vivo relevant in vitro systems as
either cell lines or isolated primary neutrophils are separated
from their normal environment. On one hand, in vitro
approaches allow to study molecular mechanisms in a very
precise and controlled manner. On the other hand, in vitro
work simplifies the system under study. Therefore, conclusions
based on in vitro approaches or mouse models will be
ultimately verified by clinical trials involving periodontitis
patients.

Collectively, this compartmentalization of pro- and anti-
inflammatory responses protects P. gingivalis from elimination
and fuels the inflammation in distal positions from bacterial
plaque, which clearly contributes to inflammatory tissue damage
observed in patients suffering from the periodontal disease.

PMNs Deregulation by RBR
P. gingivalis expresses a non-haem iron protein called
rubrerythrin (Rbr) in order to avoid oxidative stress and
gain protection from reactive oxygen and nitrogen species.
Rbr-positive P. gingivalis was shown to be more resistant to
neutrophil killing, which enabled colonization of the periodontal
tissues.Moreover, this virulence factor increased themobilization
and activation of neutrophils which was indispensable for the
establishment of inflammation and contributed to greater tissue
damage in vivo (Mydel et al., 2006). These results suggest that
the host respiratory burst is manipulated by rubrerythrin in
order to provoke inflammation which, paradoxically, promotes
P. gingivalis survival.

PMNs Deregulation by PPAD
P. gingivalis peptidyl arginine deiminase (PPAD) is another
enzyme unique to P. gingivalis, which converts proteins Arg
residues, usually present at the carboxy terminus, into citrulline
(McGraw et al., 1999). This modification is implicated in the
development of rheumatoid arthritis. However, it was also
shown that C5a citrullination reduced the chemotactic and
proinflammatory potential of this anaphylatoxin (Maresz et al.,
2013; Bielecka et al., 2014; Koziel et al., 2014a). Therefore,
modifications of host proteins by PPAD represent another
manipulative strategy designed to protect P. gingivalis and
bystander bacteria from neutrophil-mediated killing.

PMNs Deregulation by Fimbriae
Fimbriae, also called pili, are proteinaceous appendages on the
bacterial outer surface, which promote both adhesion to and
invasion of the host cells (Enersen et al., 2013). In order to
colonize the subgingival region, P. gingivalis utilizes two types of
fimbria, namely long, composed of the FimA protein, and short,
or minor, which consists of the Mfa protein. However, fimbriae
do not only facilitate bacterial invasion, but also manipulate
neutrophil responses. Challenge of PMNs with FimA, a main
structural protein of the P. gingivalis long fimbriae, resulted
in an increased release of the pro-inflammatory cytokine IL-
8 and enhanced fibrinogen binding, which could be further
augmented by additional stimulation with fMLP (Sahingur et al.,
2006). Detailed analysis of neutrophil signaling revealed that P.
gingivalis fimbriae activated TLR2 signaling by employing CD14
and PI3K. This, in turn, induced activation in neutrophils of
CD11b-CD18 (also called Mac-1 or CR3) integrins (Harokopakis
and Hajishengallis, 2005), which are the most abundant integrin
type. Usually, Mac-1 engagement trigger inside-out signaling,
resulting in inflammatory and antibacterial responses, such as
leukocyte adhesion, transmigration, production of inflammatory
cytokines, and phagocytosis (Ehlers, 2000). However, activation
of CR3 by P. gingivalis was reported to facilitate the invasion and
colonization of macrophages, which subsequently served as an
intracellular bacterial reservoir. Therefore, it would be interesting
to investigate whether similar mechanisms are employed
to corrupt PMNs. Collectively, already published results
undoubtedly show that P. gingivalis fimbriae strongly manipulate
neutrophil signaling in order to prolong a nutritionally favorable
inflammatory response and promote bacterial persistence.

CONCLUSIONS AND FUTURE
DIRECTIONS

Neutrophil homeostasis in the periodontium is ensured by a
balance between neutrophil migration to the site of infection,
anti-bacterial and pro-inflammatory response, and finally
the clearance of apoptotic PMNs during the resolution of
inflammation. However, excessive neutrophil recruitment to
the periodontium and their hyper-activation arises as a novel
mechanism strongly contributing to the development and
progression of periodontal disease. Different P. gingivalis
virulence factors corrupt many neutrophil functions in order
to sustain inflammation, gain access to nutrient resources and
ensure protection from killing. This suggests that neutrophil
contribution to the progression of periodontitis might not only
be related to defective elimination of bacteria, but additionally
involve a deregulation of immune tolerance, neutrophil apoptosis
and mechanisms driving resolution of inflammation. However,
depending on the specific circumstances and the stage of bacterial
infection, the manipulation of PMNs might actually lead to
opposing effects, either pro- or anti-inflammatory. Therefore,
future research might discover the link between regulatory
defects in anti-bacterial or effector neutrophil functions and
the progression of chronic periodontal disease. A better
molecular understanding of periodontitis-associated neutrophil
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dysfunctions due to their manipulation by P. gingivalis could be
used as a potential targeted therapy in patients.
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