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Dengue is currently the highest and rapidly spreading vector-borne viral disease,

which can lead to mortality in its severe form. The globally endemic dengue poses

as a public health and economic challenge that has been attempted to suppress

though application of various prevention and control techniques. Therefore, broad

spectrum techniques, that are efficient, cost-effective, and environmentally sustainable,

are proposed and practiced in dengue-endemic regions. The development of vaccines

and immunotherapies have introduced a new dimension for effective dengue control

and prevention. Thus, the present study focuses on the preventive and control strategies

that are currently employed to counter dengue. While traditional control strategies bring

temporary sustainability alone, implementation of novel biotechnological interventions,

such as sterile insect technique, paratransgenesis, and production of genetically modified

vectors, has improved the efficacy of the traditional strategies. Although a large-scale

vector control strategy can be limited, innovative vaccine candidates have provided

evidence for promising dengue prevention measures. The use of tetravalent dengue

vaccine (CYD-TDV) has been the most effective so far in treating dengue infections.

Nonetheless, challenges and limitation hinder the progress of developing integrated

intervention methods and vaccines; while the improvement in the latest techniques and

vaccine formulation continues, one can hope for a future without the threat of dengue

virus.
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INTRODUCTION

Dengue is a mosquito-borne viral infection (Simmons et al., 2012), which has affected almost 2.5
billion people around the globe (Koh et al., 2008). It is transmitted by vector species Aedes aegypti
and poses a global threat to humans due to its high adaptability to urban communities (Araújo
et al., 2015). In 2012, WHO reported that dengue outbreaks place a large burden on communities,
healthcare systems, and economies in most tropical countries worldwide. According to WHO,
Asia, Americas, Africa, and the Mediterranean regions are affected by the emerging and prevailing
DENV (WHO, 2012).

Recently, Bhatt et al., estimated about 390 million DENV infections occurring each year, of
which 96 million were seemingly evident (Bhatt et al., 2013). The DENV infection starts with mild
fever, and further leads to many other consequences (Figure 1). However, preventive strategies
for DENV have been developed in the form of vector control, including chemical, biological, and
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physical controls. Apart from general control strategies,
development of vaccines have offered effective prevention and
control of this disease (DeRoeck et al., 2003).

Similarly, the following study aims to discuss the prevention
and control strategies to counter DENV, including the
development of immunotherapies and vaccines. It also examines
the challenges confronted in the effective implementation of
these strategies in light of peer reviewed literature, and draws a
conclusion of the research.

Prevention and Control Strategies
The prevention and control methods are divided into three
categories, which have been discussed accordingly.

Physical Control
GIS Mapping of Dengue Foci
Among the advanced techniques used for location of DENV, GIS
mapping has been efficient in locating dengue concentrations. By
locating dengue seri-positive cases within the study area, dengue
transmission can be prevented by locating dengue foci, and then
treating them with diverse preventive strategies (Gandhi et al.,
2017). Kittayapong et al., showed that GIS mapping not only
allowed better surveillance and community-based intervention
programs for suppressing dengue; it also determined the rate
of successful control in the mapped areas. In their study,
surveillance of the mapped dengue foci determined the major
breeding sites of A. egyptimosquitoes to be water containers and
bath basins (Kittayapong et al., 2008).

Focused and Effective Surveillance
Surveillance provides fundamental information on the
assessment of risk, outbreak reaction, program evaluation
and guidance, as well as delivers timely responses to prevent and
control dengue (Wilder-Smith et al., 2012). Surveillance enables
the understanding of spatiotemporal distribution of dengue
cases, and provides entomological and epidemiological links
for better planning (WHO, 2012; Scarpino et al., 2017). On the
other hand, these programs are not focused on the elimination
of dengue vector (Abbas et al., 2014). The eruption of dengue in
Singapore, after decades of surveillance, indicated unsustainable
vector control measures and ineffective surveillance (Ooi et al.,
2006) in 2005 (Koh et al., 2008). An effective surveillance
system aiming at vector identification (Gómez-Dantés and
Willoquet, 2009) and eradication (Abbas et al., 2014), providing
the underlying information regarding vector concentration and
its breeding, will prove beneficial in controlling vector species.

Determination of Oviposition Sites
As determined by Morrison et al., Aedes aegypti females lay
eggs above the water in containers or jars and so on for their
survival improvement (Morrison et al., 2004). To detect and
reduce the population density of dengue vectors, it is necessary
to determine the behavioral pattern of vectors. Wong et al.,
studied the oviposition pattern of A. aegypti and reported that
strong intra-specie affinity may be an indication of targeting
vector specie. Moreover, once the oviposition sites have been
determined, introduction of strategies that eliminate mosquito

population at a later developmental stage will increase the efficacy
of control strategies (Wong et al., 2011). Recently, introducing
oviposition-based innovative techniques have shown promising
results in intensifying control of vector species (Johnson et al.,
2017).

Community-Based Control Programs
Community-based control programs are developed with the
aim to educate the community about the measures for the
extermination of mosquito breeding sites. People in a community
are divided into various groups depending upon their level
of education and understanding (Abbas et al., 2014). The
significance of community-based programs for elimination of
dengue mosquitoes in Kerala district (George et al., 2017),
Mexico (Tapia-Conyer et al., 2012), and Cuba (Vanlerberghe
et al., 2010) has been proven in the form of elevated awareness
among the communities. Through community involvement, a
variety of techniques can be integrated for maximum control of
vector population (Heintze et al., 2007; Pérez-Guerra et al., 2009;
Shriram et al., 2009), such as, the combination of community-
based program and chemical control of A. aegypti have yielded
significant results in Cuba (Baly et al., 2007).

Education of Prevention Strategies
It has been noted that the success of community-based strategies
depends upon the knowledge, education, and behavior of the
people, and strategies involved (Nam et al., 2005). Education
serves as a basis for an ability of an individual to identify
and deal with vector habitats, and use preventive measures.
Madeira et al., emphasized that distribution of information
brings awareness in order to control dengue, and provides
necessary measures for the destruction of vector habitats
(Madeira et al., 2002). A recent study in Thailand showed
that education of prevention strategies through media also
played a vital role in developing awareness (Boonchutima et al.,
2017).

Biological Control
Paratransgenesis and Use of Wolbachia
Nowadays, genetic control of A. aegypti has risen as a set
of promising techniques, among which paratransgenesis is the
popular method (Araújo et al., 2015; Ogaugwu and Durvasula,
2017). This approach utilizes genetically-modified symbiotic
bacteria that are reintroduced in the vector to colonize the
vector population, hence limiting the transmission of disease
(Araújo et al., 2015; Wilke and Marrelli, 2015). These genetically
modified bacteria cause harmful effects in the host body,
dysregulate its sexual cycle, decrease the host competence
and interfere with the developmental processes of the vector
species, thereby suppressing the vector population (Wilke and
Marrelli, 2015). As reported in the study by Jeffery et al., the
most effective bacterial agents used is Wolbachia (Jeffery et al.,
2009; Saldaña et al., 2017), which is a reproductive parasite
interfering with the cellular and reproductive mechanisms of the
vector species (Araújo et al., 2015; Kamtchum-Tatuene et al.,
2016).
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FIGURE 1 | Dengue virus infection.

Vector Specie Genetic Modification
The genetic methods for the control of A. aegypti aim
at suppressing the population and its replacement or
transformation. Therefore, the aim is designed to provide
an alternate that could be accounted for providing an effector
gene for reduction and inhibition of disease transmission (Reis-
Castro, 2012; Carvalho et al., 2014; Jupatanakul et al., 2017). The
field release of genetically modified mosquito species in Brazil
showed an 85% decline in A. aegypti population (Pan American
Health Organization, 2014), indicating that genetically modified
vector species are innovative and feasible methods used for
blocking the transmission of mosquito-borne diseases (Fraser,
2012; Favia, 2015).

Use of Sterile Insect Technique (SIT)
As the name indicates, SIT refers to the release of laboratory-
sterilized male vectors in the target population. Once released,
these male mosquitoes help in suppressing the fecundity rate
in female mosquitoes and, consequently control the vector
density in urban environments (Dumont and Chiroleu, 2010;
Yakob et al., 2017) and transmission of vector-borne diseases
(Alphey et al., 2010). According to Oliva et al., SIT is a
promising strategy that helps in prevention and control of
mosquito-borne diseases. After examining the irradiation effect
on sterile male, they stated that sterile males were potential
competitors and can help suppress the number of offsprings
(Oliva et al., 2012).
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Use of Larvivorous Fish and Crustacean
Since the larvae of dengue vectors reside in open water bodies,
use of larvivorous fish, such as Poecilia reticulate (Seng et al.,
2008) and Mesocyclops formosanus (Kalimuthu et al., 2017)
comes as a cost-effective, eco-friendly, and innovate strategy
in controlling the population of A. aegypti (Abbas et al., 2014;
Han et al., 2015; Warbanski et al., 2017). A successful study in
Cambodia was carried out to evaluate the efficacy of introducing
larvivorous guppy fish (Poecilia reticulata) into heavily infested
water containers. It showed that the guppy fish in test houses
reduced vector larval population by 79% as compared to control
houses, thus indicating successful implementation of this strategy
(Seng et al., 2008).

Chemical Control
Use of Insecticides and Plant Derivatives
The chemical compounds, called insecticides, have been
utilized for mosquito control for many decades. These
insecticides became the most commonly used integrated
strategy; nevertheless, the continuous use developed resistance
in the target vector population, and can induce negative impacts
on the environment (Araújo et al., 2015). To counter the effects
of these compounds, researchers developed alternative control
method i.e., introduction of plant-based insecticides that can
sustain and induce less toxicity in environment than synthetic
insecticides (Ghosh et al., 2012). These plant-based insecticides
can be developed from different plant parts (leaves, stem, roots)
and/or herbal extracts, such as, Cipadessa baccifera (Ramkumar
et al., 2015), Callistemon rigidus (Pierre et al., 2014), Erythrina
indica, and Asparagus racemosus (Govindarajan and Sivakumar,
2015). Furthermore, these plant derivatives are not only limited
to produce insecticides; however, they have also proved their
efficiency as potential repellents against A. aegypti (Araújo et al.,
2015; Govindarajan and Sivakumar, 2015).

Use of Insect Growth Regulators (IGRs)
Among other known chemical compounds, insect growth
regulators (IGRs) are used for hindering the growth and
development in insects. During early stages of development, IGRs
induce changes that kills the insect before becoming an adult.
There are number of IGRs such as, diflubenzuron, endotoxins,
and methoprene that have been used to counter viral infections
spread by A. aegypti (Abbas et al., 2014). According to Lau et al.,
field population of vector species develops resistance to certain
IGRs; and in their study, they found that cyromazine showed
effective results in attenuating larval population indices of A.
aegypti (Lau et al., 2015).

Use of Pheromones as “Attract-and-Kill” Approach
The practical application of pheromones as a part of integrated
pest management (IPM) has been well-documented in various
fields. In a recent integrated approach using pheromones, also
termed attracticides, and IGRs, Nagpal et al., demonstrated the
prevention of developmental stages from eggs to adults (Nagpal
et al., 2015). In this study, larvae in test containers were found
in a greater number than controls containers, which indicated
that using attracticides hampers the progression of adulthood

in A. aegypti and is effective in field conditions (Nagpal et al.,
2015). Another study developed an uncomplicated “lethal lure
control” based on attract-and-kill strategy and found that the
pheromone (caproic acid)-insecticide (temephos) combination
not only attractedmosquitoes, but also restricted hatching of eggs
and killed the larvae, thus elaborating its significance (Ong and
Jaal, 2015).

Development of Immunotherapies and
Vaccines
Although no specific vaccine for dengue has been licensed at
commercial scale, several candidates have been undergoing a
developmental phase. Some of these are discussed below:

Live, Attenuated Dengue Vaccines
Among the vaccines having been improved, the development
of live, attenuated vaccines, known as ChemariVax-Dengue
(CYD)-based bivalent and tetravalent vaccines (CYD-TDV),
have shown protection against DENV in a trial conducted in
Mexico (Dayan et al., 2014). The study determined that the
group receiving bivalent vaccine showed an immune response
against CYD serotype 3, while the immune response rates of
other group receiving first injection of CYD-TDV were generally
higher and well-tolerated (Dayan et al., 2014). Evidences from
randomized, controlled studies have emphasized the importance
of tetravalent CYD vaccine in Asian (Capeding et al., 2014),
Thai (Sabchareon et al., 2012), and Latin American (Villar et al.,
2015) children along with adults in Singapore (Sin Leo et al.,
2012), suggesting its potential in providing protection against
various CYD serotypes. However, studies also suggested the
lower risk of CYD in CYD-TDV vaccinated children aged 2–16
years than the unvaccinated control group (Hadinegoro et al.,
2015), neutralization of antibody response to dengue serotypes,
and safe profile of CYD-TDV (Qiao et al., 2011; Villar et al.,
2013). The available candidates for dengue vaccine are listed in
Table 1.

Besides live and/or attenuated vaccines, inactivated and
non-replicating vaccines have also been used. The developing
non-replicating vaccine approaches focus on recombinant
DENV antigens, inactivated viruses, and use of non-replicating
transmission agents produced specifically to extract DENV
antigens in vivo. Using inactivated vaccines also reduce the risk
of infection by conferring resistance. Also, subunit vaccines
and genetic vaccination have been developed to respond to the
inactivated viruses (Swaminathan and Khanna, 2010).

Recent outbreak of Zika virus (ZIKV) epidemics has raised
a growing concern in many parts of the world. However,
several viral diseases have been controlled using vaccination
strategies. Nevertheless, for majority of arthropod transmitted
viral diseases, there is no specific vaccine yet. Therefore,
exploring potential transmission blocking vaccines (TBV) could
halt the viral infection to humans, and could be applied to most
of the arboviruses, including chikungunya, DENV, and ZIKV.

Development of Dengue Human Infection Model
In order to develop the understanding of DENV pathogenesis
and effective dengue countermeasures, the evolution of the
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TABLE 1 | Current Vaccine Candidates for Dengue Prevention (Source:Sandrasegaran, 2016).

Vaccine type Developer Process Progress

Live, attenuated chimeric

(recombinant)

Acambis/Sanofi Pasteur Insertion of genes coding for DENV structural

proteins into a yellow fever virus (17D) backbone.

Phase III tetravalent—leading

candidate

Centre for Disease Control (CDC)/Inviragen Insertion of serotype genes into serotype II (DENV2-

PDK53) DNA backbone.

Phase II monovalent

National Institutes of Health

(NIH)/University of Maryland

Insertion of serotype II and III genes into safer, more

immunogenic serotype I and IV DNA backbone. Live

attenuated DENV Delta-30 mutation

Phase I tetravalent

Live, traditionally attenuated Walter-Reed Army Institute of Research

(WRAIR)/GlaxoSmithKline (GSK)

Attenuation achieved by growing the virus in

cultured cells and selecting strains

Phase II tetravalent; technical

issues

Mahidol Institute/Sanofi Pasteur Phase II tetravalent

Inactivated GSK Viruses cultured and killed Phase I tetravalent

Subunit Hawaii Biotech Viral immunogenic envelope is combined with viral

non-structural protein antigens to produce

recombinant 80% E subunit vaccine

Phase I tetravalent

DNA WRAIR Dengue prM-E DNA vaccine incorporating

membrane and envelope genes into a plasmid

vector

Phase I monovalent

dengue human infection model (DHIM) is also deemed
necessary. Developing a DHIM requires a thorough examination
of measures to reduce risks to participants and guidelines for
clinical management. Moreover, DHIM serves as a promising
research tool, which enables the understanding of pathways for
vaccine development, examines the immunological pathogenesis,
exploits protection by immune associates, supports the evolution
of vaccine clinical development, and would put into effect the
efforts for the development of effective vaccines (Thomas, 2013).
In line with the same notion, murine infection models have also
shown to be effective in examining DENV pathogenesis and
evaluation of vaccine candidates and antiviral drugs (Sarathy
et al., 2015).

Introducing Balance in Immunity and Reactogenicity
The two way relationship between immunity and reactigenicity
has long been discussed with regards to DENV infection.
It has been noticed that elevated reactogenicity may lead
to a better immune response in some vaccine candidates;
nonetheless, severe outcomes may be caused in others.
Similarly, lower reactogenicity may result in deficient immune
response (Perng et al., 2011). An ideal CYD-TVD vaccine
for DENV should be able to minimize the harmful effects
along with providing host responses that enhance immune
protection and immune evasion. To maintain the proper
balance between reactogenicity and immunity, the vital
components in the CYD-TDV vaccine play an important
role (Perng et al., 2011; Kirkpatrick et al., 2015), which
remains a crucial yet biggest task to the vaccine development
strategies.

Mitigation of the Risk of Autoimmunity
During current vaccine development strategies, the role of cross-
reactive antibodies as mediators of DENV infection has not
been the center of attention among the vaccine developers
(Nikin-Beers and Ciupe, 2015). Thus, the cross-reactivity of these

antibodies has not been considered as a part of the efficacy
evaluation index in the clinical trials of CYD-TDV vaccines.
However, the details of the protein sequencing in viral antigens
eliciting autoimmunity have been well-documented (Perng et al.,
2011). Moreover, the significant side effects can be lessened and
safety profile of dengue vaccines can be enhanced by applying a
strategy, which requires modification of viral genomes genetic
code sequence and alteration of these determinants in these
altered viral strains (Cheng et al., 2009; Perng et al., 2011).

Enhancement of the Efficacy of Antibody-Producing

Plasma Cells
During vaccine development program, the significance of
antibody-producing B cells is highly observed. Of the main
strategies proposed to improve vaccine potential is the high
survivability of plasma or memory B cells (Nothelfer et al.,
2015). Furthermore, it has been determined that cysteine-rich
interdomain region 1α (CIDR1α) of the P. falciparum can defend
and save plasma cells from death. Hence, integrating CIDR1α
as an additional component with live and/or attenuated dengue
vaccines can improve the survivability and functional potential of
the plasma cells (Perng et al., 2011).

Synthetic Nucleic Acid Antibody Immunotherapy
Since none of the current vaccines could provide a balanced
protection against DENV, Flingai et al., reported that production
of single intramuscular engineered DNA plasmids with human
antiviral neutralizing antibodies (nAbs) protectedmurinemodels
against antibody-modified DENV (Flingai et al., 2015). While
the currently used vaccines produce traditional antibodies, the
authors emphasized that plasmid-encoded LALA antibodies that
defend against DENV and antibody-dependent enhancement
(ADE)-induced disease can act as an alternative or become an
incentive for traditional vaccine strategies. In fact, this synthetic
nucleic acid immunotherapy can also be utilized for traveling
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population to increase protection against viral infections and
reduce the dengue epidemic (Flingai et al., 2015).

Challenges and Limitations to Dengue
Prevention Strategies
Just as new strategies and vaccines are devised for prevention
and control of DENV, there is always a gap left in the form of
challenges and limitations for perfect implementation of such
strategies (Achee et al., 2015). Since prevention and control
strategies to counter dengue have not shown satisfactory results
in reducing disease transmission, the utilization of vaccines
as cost-effective and potential resistance has become the main
priority to restore public health. However, the complicated
immunopathology of dengue has perplexed the development of
vaccines. These vaccines also confront various challenges, such
as unavailability of suitable models for disease and the want for
eligible markers of immunity protection (Ghosh and Dar, 2015).

CONCLUSION

As the pandemic outbreak of DENV continues to prevail
in today’s world, the development of safe, cost-effective,

and potential preventive and control measures, including
development of new and improved vaccines, evidently promise
the reduction of dengue viral infection. As the strategies grow
and are used in an integrated manner with other methods,
advanced combinations have also predicted attenuation of vector
population. Among the vaccines developed, the approbation of
recombinant, live and attenuated tetravalent dengue vaccine has
proved safe and tolerable, as well as protective against dengue.
With more research and experimentation of novel methods and
techniques, the future could enjoy better control with protective
immunity to DENV.
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