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Salmonella are Gram-negative rod-shaped facultative anaerobic bacteria that are

comprised of over 2,000 serovars. They cause gastroenteritis (salmonellosis) with

headache, abdominal pain and diarrhea clinical symptoms. Salmonellosis brings a

heavy burden for the public health in both developing and developed countries.

Antibiotics are usually effective in treating the infected patients with severe gastroenteritis,

although antibiotic resistance is on the rise. Understanding the molecular mechanisms

of Salmonella infection is vital to combat the disease. In vitro immortalized 2-D cell lines,

ex vivo tissues/organs and several animal models have been successfully utilized to study

Salmonella infections. Although these infection models have contributed to uncovering

themolecular virulencemechanisms, some intrinsic shortcomings have limited their wider

applications. Notably, cell lines only contain a single cell type, which cannot reproduce

some of the hallmarks of natural infections. While ex vivo tissues/organs alleviate some of

these concerns, they are more difficult to maintain, in particular for long term experiments.

In addition, non-human animal models are known to reflect only part of the human

disease process. Enteroids and induced intestinal organoids are emerging as effective

infection models due to their closeness in mimicking the infected tissues/organs. Induced

intestinal organoids are derived from iPSCs and contain mesenchymal cells whereas

enteroids are derive from intestinal stem cells and are comprised of epithelial cells only.

Both enteroids and induced intestinal organoids mimic the villus and crypt domains

comparable to the architectures of the in vivo intestine. We review here that enteroids

and induced intestinal organoids are emerging as desired infection models to study

bacterial-host interactions of Salmonella.

Keywords: Salmonella, infection models, enteroids, intestine, organoids

GENERAL INTRODUCTION OF SALMONELLA

Salmonella are Gram-negative rod-shaped and facultative anaerobes belong to the family of
Enterobacteriaceae (Coburn et al., 2007). According to the recent classification by the International
Code of Nomenclature of Bacteria, the genus Salmonella are classified into two distinct species
including Salmonella enterica and Salmonella bongori based on their 16S rRNA sequence
relatedness (Popoff et al., 2003). Salmonella bongori (V) is treated as a separate species due to its
unique clinical features (Fierer and Guiney, 2001). Salmonella enterica is further classified into six
subspecies: enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV), and indica
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(VI), mainly based on their genomic sequence and biochemical
properties (Fierer and Guiney, 2001). Diverse biochemical
properties of the flagellar, carbohydrate and lipopolysaccharide
(LPS) of S. enterica divided them further into over 2,000 serovars
(Eng et al., 2015). Over 50% of these serovars belong to S. enterica
subspecies enterica which are responsible for most infections
in human (Itri et al., 2017). Salmonella are also classified
based on their somatic (O), capsular (K), and flagellar (H)
antigenic determinants (Brenner et al., 2000). The commonly
used Salmonella classification in clinical laboratories is based on
simple agglutination reactions to antibodies or antisera specific
to the somatic O antigens containing six serogroups designated
A, B, C1, C2, D, and E (Eng et al., 2015).

Salmonella infections remain a big burden for the public
health worldwide (Eng et al., 2015). There are three main types of
Salmonellosis: (1) localized intestinal infection (gastroenteritis),
(2) systemic infection of otherwise healthy hosts (typhoid), and
(3) systemic infection of immune-compromised hosts (Griffin
and McSorley, 2011; Hurley et al., 2014). Salmonella strains that
cause these infections are separated into typhoid Salmonella and
non-typhoid Salmonella (NTS) based on the clinical patterns
in human salmonellosis (Crump et al., 2015; Eng et al., 2015).
Typhoid Salmonella infection seems to be more severe, in
which patients show prodromal symptoms such as headache,
abdominal pain and diarrhea (or constipation), followed by the
onset of fever, which might sustain an incubation period of 1
week or more (Eng et al., 2015). Typhoid Salmonella strains
are normally restricted to humans causing typhoid fever (also
called enteric fever), while NTS strains have a broader host-range
and represent zoonotic features (Gordon, 2011). The typhoid
Salmonella infections occur mostly in developing countries
including many regions of the African and Asian continent. The
illness causes 93.8 million foodborne cases and 155,000 deaths
annually (Eng et al., 2015). In comparison, gastroenteritis is
caused mainly by S. enterica Serovar Typhimurium (Salmonella
Typhimurium) and Serovar Enteritidis, which are common even
in developed countries (Eng et al., 2015). The clinical signs of
gastroenteritis can be diarrhea, cramping, and most patients
usually recover within 4–7 days without treatment (Griffin and
McSorley, 2011). Salmonellosis is transmitted mainly via food or
water contaminated with human or animal feces (Crump et al.,
2015). NTS have been reported to transmit via contaminated
animals and animal products (Crump et al., 2015). The mortality
caused by typhoid Salmonella strains can be up to 7% even
when antibiotics are used (Eng et al., 2015). The incidence of
enteric fever in the USA and European countries is normally low,
representing less than 10 per 100,000 each year (Eng et al., 2015).
In contrast, the invasive infections caused by NTS are estimated
to be 3.4 million with 681,000 deaths worldwide in 2010 (Crump
et al., 2015). Up to 57% of these illnesses and deaths are in Africa
(Crump et al., 2015). Most NTS infections occur in animals,
while it can also happen in infants, young children, elderly people
and immunocompromised patients (Eng et al., 2015). The actual
cases of Salmonella infections are estimated to be much higher
than the reported numbers because milder cases are likely not
diagnosed or reported, especially in some developing countries
(Hurley et al., 2014).

Many assays have been developed to diagnose Salmonella
infections. Widal test is the most commonly used diagnostic
assay based on agglutinating antibodies against Salmonella
LPS (O) and flagella (H). The enzyme-linked immunosorbent
assays (ELISAs) and sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) immunoblotting assays are useful
in measuring antibodies in patients’ sera. Recently, PCR, real-
time PCR, and proteomic approaches have been used to analyze
bacterial genes and proteins (Kumar et al., 2012; Nigro et al.,
2016). Once the infection is diagnosed, antibiotics might be used
to treat infected patients with severe gastroenteritis, while most
milder infections do not require antibiotics treatment (Boyle
et al., 2007; Hurley et al., 2014). Two typhoid vaccines have been
licensed against enteric fever, both are only suitable for endemic
situation (Griffin and McSorley, 2011; Crump et al., 2015; Eng
et al., 2015). Vaccines against NTS infections have been developed
recently (Griffin andMcSorley, 2011; Eng et al., 2015). Currently,
food safety from farm to fork and treatment of municipal water
remain the most effective measures to control the transmission of
Salmonella (Crump et al., 2015).

The virulence determinants needed for S. Typhimurium are
similar to those of many other intestinal pathogens: First, it
needs to successfully survive the hostile acidic environment
in the stomach before making its way to colonize the small
intestine. In the intestine, the bacteria must breach the barrier
of intestinal epithelial cells and it has to survive inside the host
cells. Pathogenic Salmonella spp. evolve complex systems, which
enable the organisms to respond and survive in the stomach with
low-pH (Foster, 1995), and to reachM cells and enterocytes in the
small intestine (Takeuchi, 1967; Moulder, 1985; Lindquist et al.,
1987; Nietfeld et al., 1992; Clark et al., 1994, 1996; Jones et al.,
1994; Sansonetti and Phalipon, 1999). Salmonella Typhimurium
has the ability to enter non-phagocytic eukaryotic cells and to
exist as intracellular parasites inside enclosed vacuoles (Takeuchi,
1967; Moulder, 1985). The intracellular environment provides a
unique niche for the bacteria to multiply and evade host immune
responses. In addition, S. Typhimurium is capable of surviving
and replicating within macrophages (Buchmeier and Heffron,
1989).

Several studies have led to the identification of genes
that are required for Salmonella pathogenesis, in particular
for Salmonella invasion into non-phagocytic cells (Galán and
Curtiss, 1989; Ochman et al., 1996; Shea et al., 1996; Blanc-
Potard and Groisman, 1997; Wong et al., 1998; Wood et al.,
1998). Many of these virulence genes and operons are located
in large genetic elements of the Salmonella chromosome. Since
these large elements are absent from the chromosome of closely
related Escherichia coli, they are termed pathogenicity islands.
Virulence plasmids also contribute to Salmonella survival in
macrophages and virulence (Gulig, 1990; Guiney et al., 1994;
Wallis et al., 1995). At least five pathogenicity islands have
been identified in Salmonella (Galán and Curtiss, 1989; Ochman
et al., 1996; Shea et al., 1996; Blanc-Potard and Groisman,
1997; Wong et al., 1998; Wood et al., 1998) that contribute to
virulence at defined stages of the infection process. Salmonella
Pathogenicity Island I (SPI1) is the best studied one. It is located
at centisome 63 on the Salmonella chromosome and is 43-kb in
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length. SPI1 is required for Salmonella entry into M cells (Clark
et al., 1996) and epithelial cells (Galán and Curtiss, 1989) of
the intestine. This is consistent with the fact that SPI1 mutants
are defective in virulence when administered orally, but not if
given systematically (Galán and Curtiss, 1989). Mutants that are
defective in entry into epithelial cells were found to be avirulent
in studies using the mouse-typhoid model (Galán and Curtiss,
1989) and in calves (Watson et al., 1998; Tsolis et al., 1999,
2000). SPI2, SPI3, and SPI4 are situated at centisome 31, 82, and
92 of the Salmonella chromosome, respectively. Genes in these
three islands are essential for Salmonella survival and growth in
the host (Hensel et al., 1997, 1998; Shea et al., 1999; Vazquez-
Torres et al., 2000). SPI5 was originally found to be involved in
inflammation and fluid secretion in the intestine (Norris et al.,
1998; Wood et al., 1998). We have shown that at least one gene
in this island (sopB) is also involved in the Salmonella invasion
process (Galan and Zhou, 2000).

SPI1 and SPI2 encode specialized protein secretion and
translocation systems termed type III secretion system. Genes in
SPI1 can be divided into three groups: (1) one includes genes that
encode the actual secretion/translocation apparatus; (2) a second
group encodes proteins that are secreted and/or translocated into
host cells; (3) a third group involves in gene regulation. The SPI1
secretion apparatus was shown by electron microscopy (Kubori
et al., 1998) that appears to constitute a “needle complex” that
is similar to the bacterial flagella system both biochemically and
structurally. Purified needle complexes consist of at least three
proteins encoded in SPI1 (PrgK, PrgH, and InvG). Mutations in
prgK, prgH, or invG have been shown to abolish the secretion of
a panel of S. Typhimurium proteins (SipA, SipB, SipC etc.). The
translocation of these bacterial proteins into eukaryotic host cells
is required for Salmonella invasion into non-phagocytic epithelial
cells. Secretion has been reported to require host-cell contact
(Zierler and Galán, 1995). However, these proteins are secreted
under certain laboratory conditions in sufficient amounts to
facilitate their studies in the absence of host cells. These secreted
proteins can be visualized by SDS-PAGE from supernatants of S.
Typhimurium cultures under such inducing conditions. At least
nine secreted proteins have been identified using this approach,
including: AvrA, SipA, SipB, SipC, SipD, SopE, SopE2, SopB, and
SptP. During the infection process, these proteins are thought to
be translocated inside the host cell, where they engage host cell
components to promote bacterial uptake (Galán, 1998, 1999).

Successful Salmonella infection requires the bacteria to gain a
growth advantage over the intestinal microflora while inducing
intestinal inflammation. Although it remains a challenge to
understand how Salmonella achieve this in the gut, several
recent studies have shed light on the molecular mechanisms
that Salmonella use. It has been reported that the long O-
antigen chain in Salmonella conferred a growth advantage in the
mouse colitis model (Crawford et al., 2012). It was proposed that
Salmonella-induced colitis increased the luminal concentrations
of total bile acids and fepE-mediated (O-antigen assembly) bile
acid resistance is responsible for conferring a fitness advantage
during luminal growth in the inflamed intestine (Crawford et al.,
2012). Furthermore, in search for additional signals generated
during Salmonella-induced inflammation, the methyl-accepting
chemotaxis proteins (MCPs) including Trg, Tsr, and Aer, were

identified to enhance the fitness of Salmonella in a mouse
colitis model (Rivera-Chávez et al., 2013). Thus, it is becoming
apparent that Salmonella utilize their virulence factors to induce
inflammation and to generate inflammation-derived nutrients to
edge out competing microbes in the inflamed intestine (Rivera-
Chávez and Báumler, 2015). Furthermore, Salmonella are capable
of using inflammation-derived nitrate to respire anaerobically
and to compete with the commensal microbes in the gut
using three nitrate reductases, encoded by the narGHI, narZYV,
and napABC genes (Lopez et al., 2015). A recent study also
demonstrated that the disturbance of the commensal Clostridia
increased the susceptibility to Salmonella infection in a mouse
model (Rivera-Chávez et al., 2016). This is largely due to the
decreased butyrate levels, produced from the butyrate-producing
Clostridia, led to increased oxygenation in the gut, promoting the
aerobic expansion of Salmonella (Rivera-Chávez et al., 2016).

CURRENT MODELS FOR STUDYING
SALMONELLA

Many experimental models have been developed to study
Salmonella infections including various in vitro, ex vivo, and
in vivo models (Table 1). The most commonly used ones are the
two-dimensional (2-D) immortalized cell line models including
the Caucasian colon adenocarcinoma (Caco2) cells (Martinez-
Argudo and Jepson, 2008), the immature human normal fetal
intestinal epithelial cells (H4) (Newburg et al., 2016), the mature
human metastatic colonic epithelial cells (T84) (Newburg et al.,
2016), the human normal colon mucosal epithelial cells (NCM-
460) (Newburg et al., 2016), the Microfold cells (or M cells)
(Martinez-Argudo and Jepson, 2008), the RAW 264.7 murine
macrophage cells (Tang et al., 2012), the cervical cancer (HeLa)
cells (Fang et al., 2017), and the gut fermentation models (Le Blay
et al., 2009). In addition, three-dimensional (3-D) organotypic
models derived from the Int-407 cell line (later found to be
a HeLa derivative) and the human colorectal adenocarcinoma
cells (HT-29) (Nickerson et al., 2001; Höner Zu Bentrup et al.,
2006). Salmonellosis in humans, monkeys, and calves are known
to affect primarily the distal ileum and the proximal colon
(Kinsey et al., 1976; Giannella et al., 1977; Wray and Sojka, 1978;
McGovern and Slavutin, 1979; Samuel et al., 1980). These models
have greatly aided the genetic, cell biological and biochemical
analysis of the infection process.

In vitro cell culture lines are relatively easy to maintain and
provide a more consistent environmental niche for evaluating
bacterial survival and replication than most animal hosts
(Finlay and Brumell, 2000). Genetic manipulations in these
cell lines greatly aided the investigation of how Salmonella
interact with host epithelial and macrophage cells (Finlay and
Brumell, 2000; Zhou, 2001, 2006; Zhou and Galán, 2001).
However, immortalized cell lines lack the complexity of cell
types and the robust immune components, thus cannot closely
mimic the natural infection process (Finlay and Brumell, 2000).
For instance, the apoptosis process is regulated differently in
immortalized cells comparing to that of healthy tissues (Finlay
and Brumell, 2000). In addition, many mammalian cells cannot
sustainably maintain their original characteristics during the
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TABLE 1 | Salmonella infection models.

Year Author Salmonella type Model

In vitro 2001 Nickerson et al. Salmonella Typhimurium 3D organotypic model based on the human embryonic intestinal epithelial cells
(Int-407) (Barrila et al., 2010)

2006 Zu Bentrup et al. Salmonella Typhimurium 3D organotypic model based on the human colon adenocarcinoma cell line (HT-29
cell line) (Höner Zu Bentrup et al., 2006)

2008 Isabel Martinez-Argudo
and Mark A. Jepson

Salmonella enterica M cell model (Martinez-Argudo and Jepson, 2008)

2009 Le Blay et al. Salmonella Typhimurium Colonic fermentation model (Le Blay et al., 2009)

2012 Tang et al. Clinical non-typhoid
Salmonella (NTS) isolates

RAW 264.7 murine macrophage cell line (Tang et al., 2012)

2014 Dostal et al. Salmonella Typhimurium Gut fermentation-cell model (Dostal et al., 2014)

2014 Zhang et al. Salmonella Typhimurium Crypt-derived mouse intestinal organoids (Zhang K. et al., 2014)

2015 Forbester et al. Salmonella Typhimurium Intestinal organoids derived from human induced pluripotent stem cells (hIPSCs)
(Forbester et al., 2015)

2016 Newburg et al. Salmonella Typhimurium Immature human normal fetal intestinal epithelial cell (H4), mature human metastatic
colonic epithelial cell (T84) and human normal colon mucosal epithelial cell
(NCM-460) (Newburg et al., 2016)

2017 Fang et al. Salmonella Typhimurium HeLa cells, Caco-2 cells, THP-1 cells and LS174T cells (Fang et al., 2017)

ex vivo 1997 Frost et al. Salmonella Typhimurium Calf ileal epithelium (Frost et al., 1997)

2004 Haque et al. Salmonella Typhimurium
TML

Human intestinal in vitro organ culture (IVOC) (Haque et al., 2004)

2012 Tsilingiri et al. Salmonella Typhimurium Organ culture model (intestinal mucosa) (Tsilingiri et al., 2012)

2015 Boyle et al. Salmonella Typhimurium Perfusion of the isolated rat small intestine (Boyle et al., 2015)

2016 Newburg et al. Salmonella Typhimurium Immature human intestinal tissue (Newburg et al., 2016)

In vivo 1973 Giannella et al. Salmonela Typhimurium The ligated rabbit ileal loop model (Giannella et al., 1973)

2003 Barthel et al. Salmonella Typhimurium C57BL/6 mice (Barthel et al., 2003)

2007 Woo et al. Salmonela Typhimurium SLC11A1 wild type mice (Woo and Berk, 2007)

2009 Ren et al. Salmonella Typhimurium C57BL/6 mice (Ren et al., 2009)

2011 Mian et al. Salmonella Typhi Humanized mice (alymphoid RAG-2-/-γc-/- mice engrafted with human leukocytes)
(Firoz Mian et al., 2011)

2012 Özkaya et al. Salmonella Typhimurium BALB/c mice (Özkaya et al., 2012)

2012 Mathur et al. Salmonella Typhi A mouse model (tlr11-/+ mice) (Mathur et al., 2012)

2014 Zhang et al. Salmonella Typhimurium Neonate mice (Zhang Y. G. et al., 2014)

long culturing process (Finlay and Brumell, 2000). For example,
derivative cells may arise (Foulke-Abel et al., 2014). The 2-D
cultures of immortalized cells only have one cell type, making
it difficult to mimic complex architecture in the mucosa in vivo
(Yin et al., 2015).

The lack of suitable models for testing effects of antimicrobials
on enteropathogens hampers the development of novel
antimicrobials combating Salmonella infections. Commonly
used animal models cannot reproduce microbiota residing in
the human intestine, and most continuous models for human
intestinal microbiota have limitations on the microbial diversity,
stability, cell density, and lack the ability to support long-term
studies. An in vitro continuous colonic fermentation model
has been developed to allow the bacteria to grow in biofilm
structures, facilitating tests of new antimicrobials against
Salmonella infections (Le Blay et al., 2009). This model uses
immobilized child fecal microbiota and the introduction of
Salmonella for the proximal colon to produce high bacterial
density in gel beads and in reactor effluents. The growth
conditions allow the protection of sensitive bacteria from
shear, oxygen stress, and limit the washout and loss of less
competitive bacteria. Le Blay et al. successfully used this model

to examine the effects of two antibiotics on Salmonella and on
the dynamic change of microbiota. Their result is consistent with
in vivo data validating the fermentation model as a promising
model platform for development of new antimicrobials against
Salmonella.

Fully differentiated, functional intestinal epithelia in vivo
possess unique organization of junctional, extracellular matrix,
and brush border proteins, as well as highly localized mucin
production (Höner Zu Bentrup et al., 2006). To mimic the 3-
D architectural organization of the intestinal epithelia, a 3-D
organotypic model has been developed to better recapitulate
the characteristics associated with intestinal epithelia in vivo
(Nickerson et al., 2001; Höner Zu Bentrup et al., 2006). This
organotypic model uses RWV bioreactor based monolayer
cultures of Int-407 or HT-29 cells. In contrast to the 2-D cells,
the 3-D organotypic model has better organization of junctional,
extracellular matrix, brush-border proteins, and highly localized
mucin production (Höner Zu Bentrup et al., 2006). However, the
3-D organotypic model do not contain niches of the normal stem
cells, which are responsible for renewing the intestinal tissues.
To circumvent these shortcomings, ex vivo tissue culture models
including the calf ileal epithelium model (Frost et al., 1997), the
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human intestinal in vitro organ culture (IVOC) model (Haque
et al., 2004), the ex vivo intestinal mucosa model (Tsilingiri et al.,
2012), and the ex vivo immature human intestinal tissue model
(Newburg et al., 2016) have been developed to more closely
mimic the surroundings of the organ during infection (Table 1).
Despite the close resemblance of these ex vivo models to the
clinical situation in the gut, their short lifetimes, laborious setups,
wide experimental variabilities, limited availability of cells, and
limited numbers of cells have hampered their potential use in the
study of Salmonella infections (Höner Zu Bentrup et al., 2006).

Animal models are often used to explore the virulence
mechanisms of Salmonella infections (Santos et al., 2001).
Animals possess the complex cell types, architectural
organizations, and specialized organ structures. More
importantly, the intact immune systems of the animals
have obvious advantages over all other models and therefore
are considered the closest to clinical settings over in vitro
cell or ex vivo organ and tissue models. C57BL/6 (Barthel
et al., 2003; Ren et al., 2009) and BALB/c mice (Özkaya et al.,
2012) are most commonly used for Salmonella infections. The
rabbit ligated ileal loop model is used as an in vivo model
for studying Salmonella infections (Giannella et al., 1973).
These non-human animal models, including primates, only
partially mirror the human disease process due to their inherent
differences from humans (Hurley and McCormick, 2003; Firoz
Mian et al., 2011). To circumvent this limitation, “humanized”
mice have been developed as alternative platforms to study
human infectious diseases (Legrand et al., 2009). These mice
are transplanted with human cells or tissues representing
confined human environments suitable for infectious agents. For
example, humanized mice were generated by engrafting human
hematopoietic stem cells into immunocompromised mice. These
mice were used to study S. enterica Serovar Typhi which is
usually restricted to infect only humans (Firoz Mian et al., 2011).
However, the high cost of humanized mice hampers its wide
application.

PRIMARY ENTEROIDS AND INTESTINAL
ORGANOIDS

The term “enteroids” refer to multilobulated structures with a
lumen that develops from intestinal stem cells (cycling crypt
base columnar cells and quiescent stem cells) near the bottom of
the intestinal crypts (also termed the intestinal stem cell niche),
or single intestinal stem cells by formation of budding crypts
(Stelzner et al., 2012). They generate the in vivo architecture and
multi-lineage differentiation of the original intestinal epithelium
in mammals (Dutta et al., 2017). They were first generated from
mouse intestinal stem cells by Drs. Clevers and Sato at the
Hubrecht institute (Utrecht, Netherlands) (Sato et al., 2009).
Subsequently, human enteroids were successfully cultured by the
same group (Sato et al., 2011). The growth of these intestinal
stem cells is regulated mainly by Wnt, Notch, epidermal growth
factors (EGFs), and the bone morphogenetic proteins (BMPs)
signaling pathways in vivo (Sato and Clevers, 2013). Wnt and
Notch signaling pathways play major roles in the proliferation
of stem cells. EGF signals exert the robust mitogenic effects

on stem cells via their corresponding receptors (EGFRs). BMP
has an inhibitory effect on the stemness. Noggin promotes
crypt like structures to form along the flanks of the villi (Sato
and Clevers, 2013). To generate enteroids, the intestinal crypts
containing the intestinal stem cell niches are separated from
intestinal tissues by EDTA treatment. These crypts are then
embedded in Matrigel, followed by supplementing with stemness
supporting factor cocktails such as EGF, R-spondin-1, Noggin,
and Wnt3a. The crypts will gradually develop into 3-D enteroids
displayingmany important organizations of the normal intestinal
epithelium (Figures 1A,B).

Enteroids have many advantages over traditional cell
culture models. For example, they can be ever-expanding, and
retain their original organ identity (Sato and Clevers, 2013).
Karyotypings are usually done for long term cultures and
demonstrated genetic stability of the enteroids after more than
15 generations (Yin et al., 2014). Enteroids also contain luminal
layers with crypt and villus domains similar to the real intestine
(Figure 1B). They contain almost all intestinal epithelial cell
types including the intestinal stem cells, Paneth cells, Goblet
cells, enteroendocrine cells, and enterocytes (Sato and Clevers,
2013). It was reported that certain specific intestinal cell types
such as tuft cells or Peyer’s patch M cells can be differentiated
from intestinal stem cells in the enteroids by supplementing the
media with rIL-4/rIL-13 or Tnfsf11 (RankL), respectively (de
Lau et al., 2012; Gerbe et al., 2016).

Induced intestinal organoids with a lumen resembling the
intestine could also be generated from pluripotent stem cells
(PSCs) under specific culture conditions (Stelzner et al., 2012;
Dutta et al., 2017). Induced intestinal organoids from PSCs have
intestinal epithelium and mesenchyme (Figure 3). Meanwhile,
induced intestinal organoids contain most cell types that are
present in the human intestine (i.e., the polarized monolayer of
epithelial cells with clear apical and basal sides, microvilli, Paneth,
goblet, and enteroendocrine cells, etc.) with villi domain and
crypt domain (Forbester et al., 2015). It takes a few weeks for
induced intestinal organoids to “mature” (Yin et al., 2015). In
contrast, enteroids derived from adult stem cells (ASCs) need
only several days to grow into a 3-D structure with remarkable
villi domains and crypt domains resembling the in vivo intestinal
tissue (Yin et al., 2015). In addition, primary enteroids are often
taken from individuals with underlying pathological conditions.
Usually, the “healthy” tissues adjacent to the diseased tissue
may carry pathological changes and influence the outcome of
infections.

The 3-D architecture of enteroids is believed to mimic that
of an intact tissue in vivo. Typical 3-D enteroids develop both
the apical side and basolateral side situated properly toward the
lumen and the outside of enteroids (Figure 2). This organization
poses a challenge to deliver the infecting bacteria to the lumen
from outside of enteroids (In et al., 2016). In most cases the main
site of infection is the polarized epithelium lining the intestinal
lumen (Martinez-Argudo and Jepson, 2008). However, the 3-D
architecture of the enteroids limited access of pathogens to the
luminal epithelial surface. To overcome this, microinjection has
been used to deliver enteric pathogen (e.g., mouse adenovirus
2, MAdV-2) to the lumen of enteroids (Wilson et al., 2017).
Despite its remarkable resemblance to tissues/organs, enteroids

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 April 2018 | Volume 8 | Article 102

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Yin and Zhou Enteroid Infection Models

FIGURE 1 | Enteroid model and its potential application in studying Salmonella infections. (A) Intestinal crypts can be isolated from surgery sections or biopsies,
followed by culturing into 3-D enteroids. (B) Enteroids recapitulate architectures of healthy intestine containing villus and crypt domains. (C) Enteroids may be a
promising experimental model for studying Salmonella infections for antimicrobial drug screening, personalized medicine, virulence mechanisms and bacterial-host
interactions.

can be experimentally manipulated similar to classical cell lines.
These include PCR, qPCR,Western blot, immunohistochemistry
(IHC), lentivirus transduction, and CRISPR/Cas9 gene editing
(Miyoshi and Stappenbeck, 2013; Van Lidth de Jeude et al., 2015;
Yin et al., 2015; Driehuis and Clevers, 2017). This advantage has
facilitated the rapid application of enteroids.

3-D enteroids can be substituted with 2-D monolayers on
top of membranes inside transwells due to the obvious time
and cost considerations. In this setup, transwells provide access
to the apical surfaces of 2-D monolayers (Figure 2) (Wang
et al., 2017). The 2-D monolayers have been widely used to
study host-pathogen interactions in a more controllable and
reproducible manner comparing to that of 3-D enteroids (Wang
et al., 2017). However, 2-D cultures can be maintained for only
a short period of time and are suitable for studying initial

pathogen/host interactions that last a few hours. In contrast, 3D
cultures are better suited for examining long-term host-pathogen
interactions. In addition, 3D cultures are uniquely suited for
modeling the contribution of the lumen (e.g., anti-microbial
response, reactive oxygen species, etc.), since they have been
shown to tolerate bacteria for days without obvious tissue damage
(Wilson et al., 2017).

ENTEROIDS AND INTESTINAL
ORGANOIDS FOR STUDYING
SALMONELLA INFECTION

Salmonella infection is a dynamic process in which the bacteria
encounter many cell types and organs. Proper in vitro models
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FIGURE 2 | Schematic diagram of establishing 2-D monolayer enteroids.

are essential for unraveling the pathogenic determinants
functioning at various stages of the infection, and for developing
new antimicrobials against Salmonella infections (Le Blay
et al., 2009). Certain Salmonella serovars are restricted
to human hosts or cause different diseases depending on
whether infecting animals or humans. One such example is
Salmonella Typhimurium (Forbester et al., 2015), which causes
gastroenteritis in humans, but typhoid-like disease in mice,
making it complicated to interpret data obtained from mouse
experiments. Although many cell lines have been established to
study Salmonella, the cancer-derived models cannot recapitulate
the complex architecture of the intestine andmight have different
physiological characteristics compared to normal tissues.

The iHOs have been demonstrated to be a promising infection
model for Salmonella, and microinjection is usually used to
inoculate Salmonella into the lumen of iHOs (Forbester et al.,
2015). The iHOs need 1–2 months to “mature” before it is
suitable for experimentation and the 3-D epithelial structure
is surrounded by mesenchyme (Figure 3; Yin et al., 2015). In
contrast, enteroids are easier to setup and mature in 4–7 days
(Figure 3).

Salmonella infections induce intestinal inflammatory
responses involving neutrophil infiltrations and the production
of pro-inflammatory cytokines. It has been shown that cytokine
secretions were enhanced in monolayer and 3-D organotypic
models of human colonic epithelium (HT-29) as well as in the
C57BL/6 mouse model upon Salmonella infection (Höner Zu
Bentrup et al., 2006; Ren et al., 2009). Furthermore, patients
infected by Salmonella display gamma interferon (IFN-γ)
induction together with elevated tumor necrosis factor alpha
(TNF-α) (Gal-Mor et al., 2012). Using crypt-derived mouse
enteroids, Zhang et al. were able to reproduce the Salmonella-
induced inflammatory responses (Zhang Y. G. et al., 2014).
Furthermore, Salmonella infection induced the activation of
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) signaling pathway in the mouse enteroids accompanied
by the expression of inflammatory cytokines including TNF-α
and IFN-γ (Zhang K. et al., 2014). This is in line with results
from Salmonella infection of iHOs where genes encoding
proinflammatory cytokines were upregulated (Forbester et al.,
2015). Moreover, Salmonella infection significantly decreased
the expression of intestinal stem cell markers, Lgr5 and Bmi 1
(Forbester et al., 2015). The significance and mechanism behind
this decrease require further investigation using the enteroids
model.

Invasion of the intestinal epithelium is an essential step for
Salmonella virulence (Galán and Curtiss, 1989; Galan and Zhou,
2000). A study using the crypt-derived mouse enteroids (6 days
after passage) showed that Salmonella quickly attached and
invaded the enteroids (Zhang Y. G. et al., 2014) accompanied
by the typical morphologic changes of the host cells during
Salmonella invasion as well as the disruption of epithelial tight
junctions (Finlay et al., 1991; Galan and Zhou, 2000; Zhang Y.
G. et al., 2014). It is further shown that wild type Salmonella
strains microinjected into the lumen of iHOs are able to invade
the epithelial layer, and continue to traffic inside the Salmonella-
containing vacuoles. In contrast, a Salmonella invA mutant,
defective in the Salmonella pathogenicity island 1 invasion
apparatus, was less capable of invading the iHO epithelium
(Forbester et al., 2015). Furthermore, mouse enteroids were
utilized to study the survival and replication of Salmonella and
found that naturally secreted α-defensins by Paneth cells in the
lumen suppressed the growth of Salmonella (Wilson et al., 2015).
This finding is in agreement with data obtained when using
ex vivo intestinal crypts and villus (Ayabe et al., 2000).

Chronic Salmonella Typhi infections are one of the reported
risk factors for Gallbladder carcinoma (GBC) (Wistuba and
Gazdar, 2004). A recent study showed that Salmonella infections
induced malignant transformation in murine gallbladder
organoids (Scanu et al., 2015). Interestingly, Scanu et al. found
that Salmonella-mediated activation of mitogen-activated
protein kinase (MAPK) and protein kinase B (PKB or AKT)
pathways is responsible for the transformation. Importantly, the
result from murine gallbladder organoids is in agreement with
observations in GBC patients (Scanu et al., 2015). Collectively,
both iHOs and enteroids have been successfully used for
dissecting Salmonella pathogenesis. Enteroids may provide
a promising experimental platform to investigate Salmonella

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 April 2018 | Volume 8 | Article 102

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Yin and Zhou Enteroid Infection Models

FIGURE 3 | Comparison between iHOs and primary enteroids. (A) Culture process and features of iHOs. (B) Culture process and features of primary enteroids.

infections for antimicrobial drug screening and personalized
medicine.

LESSONS LEARNED FROM STUDIES OF
OTHER ENTEROPATHOGENS

Conventional 2-D monolayer cultures have greatly aided the
advancement of our understanding of host-pathogen interactions
despite their limitations in single cell type and being tumor-
derived (Duell et al., 2011). It is known that different pathogens
may preferentially infect a subset of cell types and could exploit
different host molecules to promote their infections. In addition,
many biological processes that drive immune responses against
pathogens are difficult if not impossible to mimic using just
monolayer cell line cultures (Duell et al., 2011). Many infectious
agents have been shown to infect enteroids (Table 2), including
parasites (Gerbe et al., 2016), rotavirus (Yin et al., 2015),
norovirus (Ettayebi et al., 2016), Enterohemorrhagic Escherichia
coli (In et al., 2016), and Salmonella (Zhang Y. G. et al., 2014;
Scanu et al., 2015; Wilson et al., 2015).

Rotavirus is the leading cause of gastroenteritis and diarrhea
in worldwide. Rotavirus is known to target the human intestinal
epithelial cells and was shown to infect human enteroids
(Foulke-Abel et al., 2014; Yin et al., 2015). This significant
advance overcame the fact that human rotavirus replicates
poorly in transformed cell lines. In addition, many animal
models have limited use due to host range restrictions of
rotavirus. It was shown that rotavirus infections led physiological
lumenal expansion, a hallmark of rotavirus-induced diarrhea
(Saxena et al., 2015). Laboratory adapted rotavirus strains and
patient derived isolates were able to infect both mouse and

human enteroids. Interestingly, human enteroids were more
susceptible to human rotavirus infections than mouse enteroids
(Yin et al., 2015). Moreover, patient derived rotavirus showed
different infectivity in response to commonly used antiviral
drugs including ribavirin and IFNα from that of the laboratory
adapted rotavirus when infecting human enteroids (Yin et al.,
2015). Rotavirus also induced less pronounced expression
of genes involved in innate immune responses (interferon
stimulated genes, ISGs) in enteroids than that in Caco2 cells
(Yin et al., 2015). Consistent with clinical patient data, the
antiviral effect of IFNα was less in enteroids as compared
to that in Caco2 cells (Yin et al., 2015). Recently, enteroids
developed from transgenic mice have been successfully used to
characterize NOD-like receptor (NLR) Nlrp9b inflammasome-
mediated rotavirus restriction in intestinal epithelial cells in mice
(Zhu et al., 2017). Therefore, enteroids derived from a variety
of transgenic mice highlight their potential to contribute to
the understanding of molecular mechanisms during intestinal
epithelial cell infections.

Norovirus is another enteric virus causes severe gastroenteritis
in both infants and adults (Ettayebi et al., 2016). It is known
that cultured cell lines do not support the replication of
norovirus (Papafragkou et al., 2014). 3-D intestinal model
derived from INT-407 cells and Caco2 cells also failed to
facilitate norovirus replication (Papafragkou et al., 2014).
In contrast, enteroids were shown to support norovirus
infection and clear cytopathic effects (CPE) and viral
particles were observed upon norovirus infection. The viral
replication was even more pronounced by adding bile to the
growth media. Human enteroids were also recently reported
to be used to examine roles of secreted alpha-defensins
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TABLE 2 | Various intestinal physiology and disease processes have been
modeled by organoids and enteroids.

Year Author Modeling disease

Non-infectious
diseases

2013 Dekkers et al. Cystic fibrosis caused by mutations of
CFTR genes (Dekkers et al., 2013)

2015 Matano et al. Colorectal cancer (Matano et al.,
2015)

2016 Zachos et al. Transport of electrolytes and intestinal
fluid (Zachos et al., 2016)

2017 Noben et al. Inflammatory bowel disease including
ulcerative colitis and Crohn’s disease
(Noben et al., 2017)

2017 Zou et al. Evaluation of the effectiveness of
personalized medicine on
chemotherapy drugs (Zou et al.,
2017)

Infectious
diseases

2014 Foulke-Abel et al. Rotavirus (Foulke-Abel et al., 2014)

2014 Zhang et al. Salmonella (Zhang Y. G. et al., 2014)

2015 Bartfelt et al. Helicobacter pylori (H. pylori) (Bartfeld
and Clevers, 2015)

2015 Forbester et al. Salmonella enterica serovar
Typhimurium (Forbester et al., 2015)

2015 Wilson et al. Salmonella enterica serovar
Typhimurium (Wilson et al., 2015)

2015 Leslie et al. Clostridia difficile (C. difficile) (Leslie
et al., 2015)

2015 Yin et al. Rotavirus (Yin et al., 2015)

2016 Ettayebi et al. Norovirus (Ettayebi et al., 2016)

2016 Gerbe et al. Parasites (Gerbe et al., 2016)

2016 In et al. Enterohemorrhagic Escherichia coli
(In et al., 2016)

2016 Yin et al. Rotavirus (Yin et al., 2016)

2017 Karve et al. E. coli O157:H7 (Karve et al., 2017)

2017 Wilson et al. Mouse adenovirus 2 (MAdV-2)
(Wilson et al., 2017)

2017 Yin et al. Rotavirus (Yin et al., 2017)

during infection by mouse adenovirus 2 (Wilson et al.,
2017).

In addition to viral studies, enteroids have been used
successfully to explore bacterial pathogeneses besides Salmonella.
Enterohemorrhagic Escherichia coli (EHEC) cause foodborne
diseases in both developing and industrialized countries (In et al.,
2016). Recently, human enteroids with the addition of human
neutrophils were established to study E. coli O157:H7 infections
(Karve et al., 2017). In the lumen of enteroids, pathogenic
O157:H7 replicated rapidly while commensal E. coli did
not (Karve et al., 2017). Interestingly, O157:H7 infections
promoted the recruitment of human neutrophils (Karve et al.,
2017). Furthermore, enteroids provided a unique model to
study the interactions between the gut microbiota, enteric
pathogens, and the host intestinal environment (Nigro et al.,
2016).

Clostridium difficile (C. difficile), a Gram-positive obligate
anaerobic bacteria ubiquitous in nature, infects the human
colon in 2–5% of the adult population. Imbalance of the
normal gut flora could increase the chances of Clostridium

infection. The bacteria may produce diarrhea and inflammation
in infected patients via the well characterized enterotoxin
(C. difficile toxin A) and cytotoxin (C. difficile toxin B).
IHIOs derived from human pluripotent stem cells were
used to study C. difficile and the contribution of toxins.
It was shown that the toxins played a major role in the
colonization and disruption of the iHIO epithelium, and in
the loss of the paracellular barrier function (Leslie et al.,
2015).

Helicobacter pylori (H. pylori) colonization of the human
stomach has been associated with chronic gastritis, ulceration,
and adenocarcinoma. To study the pathogenesis of H. pylori
infection, human gastric organoids were generated from surgical
samples of human gastric corpus. The gastric organoids displayed
the typical characteristics of their corresponding tissues, based
on their histology, expression of markers, and euploidy (Bartfeld
et al., 2015). This system has the potential to be used to
study other gastric pathologies in addition to H. pylori
infection.

One exciting potential use of patient-derived enteroids is
to evaluate the effectiveness of personalized medicine, such
as precision chemotherapy for cancer patients. Roy et al.
successfully evaluated the effects of Mitomycin-C, 5-Fluorouracil
(5-FU), Irinotecan, Oxaliplatin, Doxorubicin, and Paclitaxel
on peritoneal metastases using enteroids (Roy et al., 2017).
Enteroids have also been used to model various intestinal
physiology and disease processes (Table 2). Human enteroids
have been used to study the transport of electrolytes and
intestinal fluid using luminal dilatation assay (Zachos et al.,
2016). Enteroids have also contributed to the understanding
of cystic fibrosis caused by mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR) using a swelling
assay (Dekkers et al., 2013). Moreover, enteroids have been
used to model colorectal cancer and inflammatory bowel
disease including ulcerative colitis and Crohn’s disease (Matano
et al., 2015; Young and Reed, 2016; Noben et al., 2017).
Finally, the potential transplantation of enteroids into patients
with intestinal failure (IF), a life-threatening condition, further
expanded the possibility of using enteroids to treat patients
(Hong et al., 2017). Taken together, enteroids are emerging
as robust infection models for study both viral and bacterial
infections and may play a key role in the development of
personalized medicine to aid the treatment of human infections
and diseases.

SUMMARY AND CONCLUSIONS

Salmonellosis remains a major public health concern globally.
The availability of various infection models has helped to identify
bacterial virulence factors responsible for causing the diseases.
Studies utilizing these infection models have advanced our
understanding of how pathogens deploy their virulence factors to
modulate host cell functions during infection. Classical infection
models include various 2-D cultures of immortalized cells and
animal models. Recent advances in stem cell research have helped
to establish organoids and enteroids as viable alternatives to
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many established infection models. We anticipate that organoids
and enteroid infection models will play a key role in advancing
out understanding in antimicrobial drug screening, personalized
medicine, virulence mechanisms and pathogen-host interactions.
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