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An earthquake occurs when rock that
has been deformed under stress rebounds
elastically along a fault plane (Gilbert,
1884; Reid, 1911), radiating seismic waves
through the surrounding earth. Rupture
along the entire fault surface does not
spontaneously occur at the same time,
however. Rather the rupture starts in one
tiny area, the rupture nucleation zone, and
spreads sequentially along the fault. Like
a row of dominoes, one bit of rebound-
ing fault triggers the next. This triggering
is understood to occur because of the large
dynamic stresses at the tip of an active
seismic rupture. The importance of these
crack tip stresses is a central question in
earthquake physics. The crack tip stresses
are minimally important, for example, in
the time predictable earthquake model
(Shimazaki and Nakata, 1980), which
holds that prior to rupture stresses are
comparable to fault strength in many loca-
tions on the future rupture plane, with
bits of variation. The stress/strength ratio
is highest at some point, which is where
the earthquake nucleates. This model does
not require any special conditions or pro-
cesses at the nucleation site; the whole fault
is essentially ready for rupture at the same
time. The fault tip stresses ensure that the
rupture occurs as a single rapid earth-
quake, but the fact that fault tip stresses
are high is not particularly relevant since
the stress at most points does not need to
be raised by much. Under this model it
should technically be possible to forecast
earthquakes based on the stress-renewaql
concept, or estimates of when the fault as
a whole will reach the critical stress level,
a practice used in official hazard mapping
(Field, 2008). This model also indicates

that physical precursors may be present
and detectable, since stresses are unusually
high over a significant area before a large
earthquake.

The fact that fault tip stresses are high
is critical in a second earthquake model,
however, which argues that stress condi-
tions over the the fault are in fact gener-
ally much lower than static fault strength.
Failure occurs only because of the high
fault tip stresses followed by the drop in
fault strength that is known to occur at
fast sliding speeds (Di Toro et al., 2011).
In this case there would not be any special
conditions over the fault before rupture,
making the prediction of large earthquakes
practically impossible. Likewise because
the whole fault plane does not need to
be at any particular stress before rupture,
the time-predictable stress renewal model
would not be effective. That is, with rup-
ture time not closely tied to fault stress, a
long quiescence since the last earthquake
would not foretell an imminent quake.
Because stress over most of the fault is
initially far below failure strength special
processes to decrease the stress/strength
ratio at the nucleation point would likely
be required to enable rupture initiation.
As will be explained below, although
this second model is more complicated,
it is overwhelmingly supported by the
observed data.

The observed data shows that there
is compelling evidence both that seismo-
genic faults are strong and that the average
static stress on faults at the time of rupture
is far below this strength. Borehole mea-
surements adjacent to faults, for exam-
ple, have shown a critically stressed crust
with hydrostatic pore pressure and friction

coefficients of 0.6–0.9 (Townend and
Zoback, 2000), indicating that the total
strength on well oriented faults should
be on the order of 50–100 MPa. Multiple
lines of evidence indicate, however, that
deviatoric shear stress resolved onto the
fault plane at the time of rupture is rarely
more than 10 MPa. This evidence includes
the lack of a heat flow anomaly around
the San Andreas Fault (Lachenbruch and
Sass, 1980; Fulton et al., 2004) which
cannot be explained by fluid heat trans-
port (Fulton et al., 2004), lack of heat
flow anomalies around other major faults
(Kano et al., 2006), slip striation rotations
on mainshock fault planes that show that
the initial stress was low (Spudich et al.,
1998), regional rotations of focal mecha-
nisms after large earthquakes that limit the
amount of stress that could have been on
the surrounding faults prior to the main-
shock (Hardebeck and Hauksson, 2001;
Hasegawa et al., 2011), and self healing
pulses during rupture which require low
stress/high strength conditions (Heaton,
1990; Noda et al., 2009). Direct bore-
hole measurements of resolved shear stress
along active faults have also found low val-
ues at the time of measurement (Zoback
and Healy, 1992; Brudy et al., 1997).
Furthermore, while there are some outliers
(Allman and Shearer, 2009), earthquake
stress drops generally fall in the range of
1–10 MPa (Abercrombie and Leary, 1993).
This would tell us little if each earthquake
released a small portion of the total stress
on the fault, but observational seismic
(Michael et al., 1990; Beroza and Zoback,
1993; Hasegawa et al., 2011) and bore-
hole studies (Barton and Zoback, 1994)
indicate that earthquake stress drops are

www.frontiersin.org August 2014 | Volume 2 | Article 20 | 1

EARTH SCIENCE

http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/editorialboard
http://www.frontiersin.org/Earth_Science/about
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org/journal/10.3389/feart.2014.00020/full
http://community.frontiersin.org/people/u/131257
mailto:kfelzer@usgs.gov
http://www.frontiersin.org
http://www.frontiersin.org/Structural_Geology_and_Tectonics/archive


Felzer Earthquake nucleation by pulverization

near complete. Thus the 10 MPa maxi-
mum usually seen in stress drops and the
10 MPa maximum usually seen in more
direct measures of fault prestress are not an
accidental coincidence; both are measures
of the average fault pre-stress at rupture
initiation.

In order for a low fault stress/high
fault strength model to be completely sat-
isfactory, however, we must be able to
explain how earthquakes nucleate. I pro-
pose that the nucleation results from a
multi-step process that starts with high
frequency acceleration coming from the
fault tip of a previous earthquake. The cul-
mination of this process is a small area
of severely weakened fault which allows
for local stress/strength parity. While this
hypothesis, in supporting the low fault
pre-stress model, indicates that the stress
renewal model cannot work, it suggests
that the areas of most likely earthquake
occurrence can be forecast because many
earthquakes will nucleate near triggering
earthquakes that occurred recently. This
concept has been borne out experimen-
tally in the results of the prospective 5 year
RELM California earthquake forecasting
experiment (Schorlemmer et al., 2010). In
contrast, repeated efforts to use variations
of the time predictable model, includ-
ing the Parkfield earthquake experiment
(Bakun and McEvilly, 1984) which was
officially sanctioned by the U.S. Geological
Survey, and various seismic gap global
forecasts, have met with repeated failure
(Rong et al., 2003; Jackson and Kagan,
2006).

The key that high frequency acceler-
ation may be important in earthquake
nucleation comes from their unique pres-
ence before the nucleation of most after-
shocks. Types of events that are depleted
in high frequency energy, such as aseismic
events and nuclear test blasts (Hough and
Anderson, 1989) produce relatively few
aftershocks (Pollitz and Johnston, 2006;
Llenos et al., 2009; Parsons and Velasco,
2009), even if the accompanying static
stress change and low to intermediate
frequency dynamic stress change, respec-
tively, are comparable to tectonic events.
Another compelling observation is that
total aftershock productivity scales lin-
early with mainshock area, or with main-
shock magnitude M as 10M (Felzer et al.,
2002). Total high frequency energy release

scales the same way (Hanks and McGuire,
1981; Boatwright, 1982; Zeng et al., 1994),
but static and lower frequency dynamic
stress changes do not. The decay of high
frequency acceleration energy with dis-
tance from the mainshock fault plane also
matches the decay of aftershock density
with distance from the fault plane, a fea-
ture which is again not matched by the
decay of static stress change amplitude
(Gomberg and Felzer, 2008). There may
be concern that high frequency acceler-
ation decays too rapidly with distance
from the mainshock to trigger aftershocks
at distances out to 50 km, where they
have been observed to occur (Felzer and
Brodsky, 2006). Rapid attenuation of high
frequencies does occur at the surface, but
attenuation is much slower at seismogenic
depths. Frequencies up to 200 Hz have
been observed 100 km away from earth-
quakes in borehole seismometers (Leary,
1995).

The unique power of high frequency
acceleration is that above 150/s it can
pulverize cracked rock; higher frequency
acceleration may pulverize solid rock
(Doan and Gary, 2009). Pulverization
occurs at the point when energy enters
the system too rapidly to be supported by
the growth of a limited number of cracks.
Whether or not this point is reached is a
function of the frequency of the incom-
ing energy and the geometry of exist-
ing cracks, with the amplitude apparently
playing a minimal role (Doan and Gary,
2009). Near a mainshock fault the amount
of energy is very high, and pulveriza-
tion has been observed at the surface and
subsurface near major faults (Doan and
Gary, 2009; Mitchell et al., 2011; Wechsler
et al., 2011). Wide swaths of pulveriza-
tion that can be readily recognized in
the field may require extreme events, but
recent nanometer-scale observations have
demonstrated that the thin concentrated
veins of fault gouge that are universally
found within the principal slip zone (PSZ)
of earthquakes contain particles so small
that they are consistent with creation by
pulverization, not abrasion (Sammis and
Ben-Zion, 2008). Other evidence from
exposed earthquake faults in mines and in
the field further support the idea that pul-
verization is central to creating the gouge
in the PSZ (Wilson et al., 2005). This indi-
cates that pulverization may be a routine

feature of earthquake occurrence. There
is no direct evidence that pulverization
occurs outside of the narrow PSZ for most
earthquakes or outside of the near fault
zone for more extreme events. The mea-
sured existence of frequencies at depth
high enough to pulverize out to 100 km,
however, suggests that pulverization could
occur at depth out to these distances in
optimally cracked and oriented locations.
Pulverization would not be expected to be
common at these distances, but we know
that with distance from the fault plane
the incidence of aftershocks also drops
of rapidly. Furthermore, as noted above,
the region that needs to be weakened to
nucleate an earthquake can be very small.
Therefore away from the immediate fault
plane region pulverization only needs to
occur at sparse and tiny optimal loca-
tions for the mechanism to be viable. Once
an earthquake occurs the nucleation site
becomes part of the PSZ, so there is no way
to prove from field observations that a part
of the pulverization occurred during the
nucleation phase. My primary argument is
that the occurrence of pulverization at the
hypocenter of every aftershock is entirely
possible and may be further investigated
with modeling studies.

When fresh gouge is created by pulver-
ization the direct effect is to change the
frictional regime from velocity weaken-
ing to velocity strengthening (Beeler et al.,
1996). Velocity strengthening areas that
are above the brittle/ductile transition are
technically in a regime of “brittle creep”
(Perfettini and Avouac, 2004). When these
areas are subject to static or long period
dynamic stress change they experience a
sharp increase in velocity (Perfettini and
Avouac, 2004). Laboratory results further
show that after several to 10 mm of slip,
an amount of afterslip that can accu-
mulate rapidly after an earthquake (Hsu
et al., 2002; Freed, 2007), slip localiza-
tion will occur within fresh gouge (Beeler
et al., 1996). This localization caused a
2–3 times reduction in fault strength in an
experimental surface subjected to 2.4 MPa
of normal stress (Reches and Lockner,
2010); under more realistic higher normal
stresses the strength reduction should be
even higher, if experiments with strength
reduction at larger slip speeds serve as a
guide (Di Toro et al., 2011). The loss of
strength is accompanied by a shift back to
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velocity weakening friction (Beeler et al.,
1996). Thus the area is both weakened and
returned to the proper frictional regime
for earthquake nucleation. The pulverized,
weakened point may now be pushed to
final failure by static pressure from the
fault tip, rapidly becoming part of the
same earthquake, or by surrounding after-
slip, occurring later as part of the for-
mal aftershock sequence (Perfettini and
Avouac, 2004), or by later fluid flow, slow
earthquake slip, a long period wave arrival
from a distant earthquake, or other stress
transferring event. In the latter case the
event could appear to be an independent
earthquake.

It is important to note that while the
above hypothesis nullifies the time pre-
dictable model as commonly presented it
does not completely negate the concept
of a seismic cycle. Because stress drop is
expected to be near complete, fault seg-
ments that rupture should require some
minimum recovery time before they can
rupture again, and this has been observed
in the field (Rubin et al., 1999; McGuire,
2008). Once a minimum recovery time
has passed, however, there will be a long
period of time during which fault stress
is far below fault strength, but the fault
may fail if pulverization occurs at one tiny
point. Hence the wait time between rup-
tures becomes the sum of a predictable
recovery time and an unpredictable fault
interaction time, in agreement with obser-
vation that repeat times between paleo-
seismic ruptures is not periodic but is
also not entirely random (Scharer et al.,
2010).
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