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It is widely recognized that the release of nutrients by herbivores via their waste products

strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N) and

phosphorus (P) recycled through herbivore release (i.e., waste N:P) aremainly determined

by the stoichiometric composition of the herbivore’s food (food N:P) and its body nutrient

content (body N:P). Waste N:P can in turn impact autotroph nutrient limitation and

productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is

dominated by theoretical and experimental research in freshwater systems, in particular

interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the

impact of herbivores on nutrient cycling and availability is often limited to studying carbon

(C):N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also

likely to influence herbivore-driven nutrient recycling. In this review, we use rules and

predictions on the stoichiometry of nutrient release originating from algal-based aquatic

systems to identify the factors that determine the stoichiometry of nutrient release by

herbivores.We then explore how these rules can be used to understand the stoichiometry

of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals,

and its impact on plant nutrient limitation and productivity. Future studies should focus

on measuring both N and P when investigating herbivore-driven nutrient recycling in

terrestrial ecosystems, while also taking the form of waste product (urine or feces) and

other pathways by which herbivores change nutrients into account, to be able to quantify

the impact of waste stoichiometry on plant communities.

Keywords: autotroph productivity, aquatic ecosystems, C:N:P ratios, excretion, feces, herbivore-driven nutrient

recycling, nitrogen, phosphorus

INTRODUCTION

Herbivores are a major component of most ecosystems, ranging in size from zooplankton to
elephants. All herbivores consume and digest autotroph biomass, and release nutrients, e.g.,
nitrogen (N) and phosphorus (P), in wastes through excretion (urine) or egestion (feces). Nutrient
release by herbivores can strongly impact nutrient availability for autotrophs in terrestrial, marine,
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and freshwater ecosystems (Pastor et al., 1993; McNaughton
et al., 1997; Covich et al., 1999; Sirotnak and Huntly, 2000;
Hunter, 2001; Vanni, 2002; Bardgett and Wardle, 2003; McIntyre
et al., 2007; Cech et al., 2008; Roman and McCarthy, 2010;
Metcalfe et al., 2014; Turner, 2015; Doughty et al., 2016).
The ratio of N to P released (i.e., waste N:P) may be crucial
for mediating ecosystem impacts of herbivore-driven nutrient
recycling (Sterner, 1990; Urabe et al., 1995; Elser and Urabe,
1999). Two basic “stoichiometric rules” have been formulated,
one based on how food and consumer body N:P determine waste
N:P (rule 1), and the other on how waste N:P affects autotroph
nutrient limitation and productivity (rule 2). Both rules allow
for explicit predictions about the N:P stoichiometry of nutrient
release and its ecosystem consequence (Table 1).

Thus far, evidence for these rules is mainly restricted to
interactions between freshwater (pelagic) algae and invertebrate
herbivores (Elser et al., 1988; Sterner, 1990; Sterner et al., 1992;
Elser and Urabe, 1999; Sterner and Elser, 2002; Vanni, 2002),
and to a lesser extent herbivorous fish (Schindler and Eby,
1997; Hood et al., 2005). However, herbivore-driven nutrient
recycling also likely plays a major role in terrestrial ecosystems
(Pastor et al., 1993; McNaughton et al., 1997; Hunter, 2001;
Wardle et al., 2004; Metcalfe et al., 2014; Doughty et al., 2016).
Indeed, the ratio of carbon (C) to nutrient (N and/or P) in plant
tissues has long been recognized as an important determinant
of herbivore feeding selectivity and subsequent nutrient cycling
and availability in terrestrial ecosystems (Ritchie et al., 1998;
Pastor et al., 2006; Bakker et al., 2009b). However, compared to
aquatic systems, the role of terrestrial herbivores in mediating
N:P ratios has received little attention so far. Because the ratio of
N:P availability influences the type of growth limitation and the
functional composition of terrestrial plant communities (Elser
et al., 2007; Fujita et al., 2014), we hypothesize that the impact
of terrestrial herbivores on this ratio has potentially strong
ecosystem consequences.

In this review, we explore how we can apply these
stoichiometric rules to terrestrial ecosystems, focusing on N:P
ratios. We first explain the two rules derived from algae-
invertebrate interactions in more detail. We then synthesize
studies that applied these rules to terrestrial herbivores and
ecosystems, identify research gaps, and suggest perspectives for
future research.

RULE 1 (INDIVIDUAL CONSUMER
LEVEL)—RELATIONSHIPS BETWEEN
FOOD, BODY AND WASTE N:P

Rule 1 is based on mass balance and the assumption that
consumers maintain elemental homeostasis in their tissues by
differential release of N and P. Stoichiometry theory predicts a
positive relationship between food N:P and waste N:P, assuming
constant consumer body N:P (Sterner and Elser, 2002). Second,
waste N:P is predicted to be negatively related to body N:P, if
food N:P is constant (Figure 1). These predictions have been
supported in lab studies using aquatic invertebrate herbivores
(Daphnia) feeding on phytoplankton (Elser and Urabe, 1999; T
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FIGURE 1 | Predicted relationships for the N:P of the consumer’s waste

products as a function of its food N:P and body N:P. Two curves for

herbivores with body N:P values of 10 and 20 are shown. First, the predicted

relationship between waste N:P and food N:P is positive; linear when food N:P

> body N:P and curvilinear when food N:P < body N:P. This means that if the

herbivore with a body N:P of 20 consumes food with an N:P of 15, it will

release wastes with an N:P < 15. In contrast, if the same herbivore ingests

food with an N:P of 25, it will release wastes that have an N:P > 25. Secondly,

for any given food different consumers will recycle nutrients at different ratios

depending on their body N:P ratio. If both herbivores feed on plants with an

N:P ratio of 15, the herbivore with the low N:P (10) needs to sequester

relatively more P, and will thus release wastes at a much higher N:P, than the

herbivore with high body N:P. Redrawn from Sterner and Elser (2002) with

permission of authors.

Sterner and Elser, 2002). However, support for these predictions
from field data is mixed. For example, a strong negative
correlation between consumer body N:P and waste N:P was
found in systems with large variation among animal species in
body N:P (e.g., Vanni et al., 2002; McManamay et al., 2011), while
in other systems food N:P was more important in predicting
waste N:P (e.g., Urabe, 1993; Torres and Vanni, 2007). Recent
syntheses suggest that body size and temperature have much
more influence than body nutrients on excretion rates and ratios
(Allgeier et al., 2015; Vanni and McIntyre, 2016).

RULE 2 (ECOSYSTEM LEVEL)—IMPACT OF
N:P RELEASE BY HERBIVORES ON
PLANTS

Rule 2 states that the stoichiometry of nutrient release by
herbivores strongly affects autotroph nutrient limitation and
primary production (Elser and Urabe, 1999). For example,
if a consumer feeding on N-limited plants (low plant N:P)
releases waste products with an even lower N:P than that in
plant tissue (following rule 1), the herbivore could render the

plant community even more N-limited, which can then impact
competitive interactions between plants and plant community
composition (Sterner, 1990; Fujita et al., 2014). However, the
impact on plant communities will depend on the proportion
of nutrient demand met by consumer-driven recycling. In
freshwater systems, for instance, it sustains anywhere from <5
to >80% of algal nutrient uptake (Taylor et al., 2015). So far, field
evidence that nutrient recycling by herbivores can shift autotroph
assemblages between N- and P-limitation is scant (e.g., Sterner
et al., 1992; Knoll et al., 2009), and hence a general underpinning
of rule 2 is still lacking.

Even though tests of these rules are still scarce, especially
under field conditions, according to mass-balance principles
the relative ratios of nutrient release by herbivores should be
influenced by stoichiometric balance. In the following sections,
we take on the challenge of applying this stoichiometric view to
herbivore-driven nutrient recycling in terrestrial ecosystems.

APPLYING RULE 1 TO TERRESTRIAL
HERBIVORES

Although rule 1 predicts a positive relationship between food
N:P and waste N:P (Figure 1, Table 1), most studies with
terrestrial herbivores focused on single nutrients. Mixed results
are found for invertebrate herbivores; food N and waste N can
be positively related (lepidopterans; Kagata and Ohgushi, 2012),
or unrelated (grasshopper; Zhang et al., 2014). Similarly, food
P and waste P were unrelated for caterpillars (Meehan and
Lindroth, 2009), but positively related for a grasshopper species
(Zhang et al., 2014). The latter study also investigated the N:P
ratio of food and waste simultaneously (the only terrestrial study
we know of), and the ratios were not correlated. The authors
suggest that the lack of relationship between food and waste
nutrients is likely because mechanisms other than excretion
maintain N:P homeostasis, such as pre-ingestive regulation of
the nutrient balance through food selection (Zhang et al., 2014)
or compensatory feeding (Meehan and Lindroth, 2009). Work
on large vertebrate herbivores is much more extensive—but
again, measurements were often done on either N or P and
not both—and generally finds positive correlations between food
and waste nutrient contents. For example, diet N and fecal
N were positively correlated for rabbits (Gil-Jimenez et al.,
2015), roe deer (Verheyden et al., 2011), white-tailed deer
(Osborn and Ginnett, 2001), blackbuck antelope (Jhala, 1997),
and several African herbivores (Wrench et al., 1997). This
positive relationship was also found for P for cattle (Zhang
et al., 2016) and several African herbivores (Wrench et al., 1997).
Furthermore, urinary N (excretion) of large ungulates increases
with plant N concentration (Hobbs, 1996). These relationships
seem so reliable that fecal N and P contents are used to predict
food N and P contents (Wrench et al., 1997; Verheyden et al.,
2011; Gil-Jimenez et al., 2015), although corrections for the
presence of indigestible forms of N, e.g., tannins, are needed
(Verheyden et al., 2011; Steuer et al., 2014).

The second prediction derived from rule 1 is a negative
relationship between consumer body N:P and waste N:P
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(Table 1). The only published study of terrestrial herbivores
found no clear relationship between body and waste N:P for
an invertebrate herbivore (grasshopper; Zhang et al., 2014); we
found no studies on vertebrate herbivores.

This synthesis reveals the lack of studies examining
relationships between food, body, and waste N:P (and not
just N or P) in terrestrial herbivores, making it impossible to
draw any general conclusions. Future work should include
simultaneous measurements of N and P in food, bodies, and
waste (Table 1). Controlled experiments where single herbivore
species (constant body N:P) feed on food sources varying in N:P
will provide a good test of the first prediction. Additionally, field
studies on single species experiencing seasonal changes in food
quality (food N:P) will be important, and again waste products
and food sources of these herbivores need to be analyzed for
both N and P. To test the second prediction, studies are needed
where herbivores with a range of body N:P are fed a constant
food N:P, and waste N:P is measured. Importantly, the predicted
stoichiometric relationships between food, body and waste
N:P might be impacted by several mitigating factors. These
include the degree to which animals maintain homeostasis,
which is variable and perhaps related to growth rate (Hood and
Sterner, 2010; Downs et al., 2016), and which mechanisms they
use to regulate this homeostasis (i.e., pre- or post-ingestive).
Furthermore, the type of waste product (excretion or egestion;
Halvorson et al., 2015) and the relationship between body size
and body N:P are important mitigating factors, which should be
taken into account and discussed below.

Animals that produce two types of wastes (feces and
urine) can regulate their body composition pre-assimilation (by
preferentially assimilating elements in short supply and releasing
excess nutrients in feces) or post-assimilation (by excreting excess
metabolic nutrients in urine before they reach toxic levels in the
blood). Interestingly, the N:P stoichiometry of these two forms
of nutrient release differ for terrestrial vertebrate herbivores; i.e.,
urine contains hardly any P but a high concentration of N in
soluble form, while feces contain most of the P and some N
(Morse et al., 1992; Hobbs, 1996). Relative concentrations of
N in urine and feces depend on forage N, whereby herbivores
that consume plants of high N (e.g., ungulate grazers consuming
green grasses) return N to the soil mainly in the form of urine,
while herbivores consuming plants of low N (e.g., ungulate
browsers consuming tree twigs) need to extract as much N as
possible and mainly produce feces of very low N (Pastor et al.,
2006). However, very few studies quantify total nutrient release,
instead of only excretion (often the case for aquatic animals)
or egestion (often the case for terrestrial vertebrates) to test
predictions of stoichiometry theory. This needs to be addressed
in future studies, as the theory is based onmass-balance, and tests
must therefore include all fluxes mediated by animal physiology
(Table 1).

Generally, differences in body N:P are driven by patterns of
investment in P-rich materials such as RNA and bone (Gillooly
et al., 2005). Investments in RNA decrease significantly with
body size (small organisms generally have higher growth rates),
suggesting an increase in body N:P with increasing body size
for invertebrates (Sterner and Elser, 2002; Back and King,

2013). However, more P is sequestered into supportive tissue
like bones, suggesting that for vertebrates body N:P decreases
with body size (Sterner and Elser, 2002) since skeleton mass
scales allometrically (more than proportionally) with body mass
(Anderson et al., 1979; Prange et al., 1979). This uncovers an
important difference between aquatic and terrestrial systems,
where terrestrial herbivores, especially larger individuals, need
to invest more in P-rich structural tissue to counterbalance
gravity. Hence, more studies investigating the role of body size
in determining body N:P both within and between invertebrate
and vertebrate herbivore species are needed (Table 1).

APPLYING RULE 2 TO TERRESTRIAL
ECOSYSTEMS

Rule 2 states that the stoichiometry of nutrient release by
herbivores can strongly affect autotroph nutrient limitation
and primary production (Elser and Urabe, 1999). However, in
terrestrial ecosystems it is hard to isolate the effect of herbivore-
driven nutrient recycling, as the “net effect” of herbivores on
nutrient cycling depends not only on direct effects of nutrient
release through waste products, but also on indirect effects
through modification of plant litter quantity and quality, and in
the case of vertebrates, by alteration of soil physical properties
through trampling (Ritchie et al., 1998; Belovsky and Slade, 2000;
Hunter, 2001; Bardgett and Wardle, 2003; Schrama et al., 2013).
Therefore, most empirical studies addressing how terrestrial
herbivores shift plant assemblages between N- or P-limitation
examined the “net effect” of herbivores (e.g., Carline et al., 2005;
Frank, 2008; Zhang et al., 2011; Bai et al., 2012; Nitschke et al.,
2015; Sitters et al., 2017) and not on the effects of nutrient release
per se.

Many studies on herbivore-driven nutrient recycling in
terrestrial ecosystems have focused on N, both for invertebrates
(e.g., Seastedt and Crossley, 1984; Lovett and Ruesink, 1995;
Belovsky and Slade, 2000; Reynolds and Hunter, 2001; Hunter
et al., 2003; Metcalfe et al., 2014) and vertebrates (e.g., Pastor
et al., 1988, 1993, 2006; McNaughton et al., 1988; Hobbs et al.,
1991; Frank and McNaughton, 1993; Frank and Evans, 1997;
McNaughton et al., 1997; Ritchie et al., 1998; Sirotnak and
Huntly, 2000; Olofsson et al., 2001; Stark et al., 2003; Fornara
and Du Toit, 2008). For invertebrate herbivores, the general
view is that they speed up nutrient cycling in terrestrial systems
by changing litter quantity and quality, modifying the nutrient
content of throughfall, and releasing easily-available nutrients in
frass and cadavers (Hunter, 2001). The direction of the impact
of vertebrate herbivores on N cycling has traditionally been
considered to depend on system fertility and corresponding plant
N content; vertebrates have a positive effect on N availability and
primary production in systems of high fertility, and a negative
effect in low fertility systems (Hobbs, 1996; Bardgett andWardle,
2003; Pastor et al., 2006). This is partly based on the proportion of
N released, which is higher and mainly through urine when the
nutrient content of plants is higher (Hobbs, 1996), but also on
changes in plant litter quality, as herbivores feeding in systems
with low plant N facilitate a shift toward litter of low N by
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selectively consuming high-N plant tissue (Bardgett and Wardle,
2003).

Stoichiometry theory has challenged the traditional views
for impacts of herbivores on nutrient cycling. Modeling results
demonstrate that if herbivores promote microbial C-limitation
through vegetation consumption and respiration, they will have
a positive effect on N availability in sites with low plant N by
decreasing microbial immobilization rates, and a positive effect
in sites with high plant N by decreasing mineralization rates
(Cherif and Loreau, 2013). For vertebrate herbivores these results
are party supported by field data (Bakker et al., 2009a; Sitters
et al., 2017). Also, for invertebrates, labile C in excreta can result
in N immobilization and lower availability (Lovett and Ruesink,
1995). These studies again show the need for a more integrative
framework to understand and quantify the different pathways
by which vertebrate (Sitters and Olde Venterink, 2015) and
invertebrate herbivores (Hunter, 2001) impact nutrient cycling
and availability to plants.

To predict how the stoichiometry of nutrient release by
herbivores affects autotroph nutrient limitation and primary
production in terrestrial systems, we must expand studies on
the role of P, because N- and P-limitation are both prevalent
in terrestrial ecosystems (Elser et al., 2007). The effect of
herbivores on N- and P-limitation depends first on the form
in which N and P are returned to the soil (urine or feces).
N in urine is soluble and directly available to plants, while
feces contain a substantial amount of organic matter, which
needs to be decomposed and mineralized to render the N and
P available to plants (Hobbs, 1996). Furthermore, N in feces
and urine is subject to a significant loss from the system via
ammonia volatilization and leaching (Ruess and McNaughton,
1988; Frank and Zhang, 1997; Augustine, 2003), suggesting
that terrestrial herbivores (that produce both types of waste
products) may drive ecosystems to N-limitation through nutrient
release (e.g., Cech et al., 2008). Very little data however
exist, comparing the consequences of nutrient return through
urine or feces for the stoichiometry of nutrient availability to
plants.

Additionally, nutrient release by herbivores strongly increases
the spatial heterogeneity of N:P availability across the landscape.
Terrestrial herbivores typically do not graze and excrete
randomly, but are attracted to landscape features, such as
nutrient-rich areas with high food quality, resulting in a net
import of nutrients and creating nutrient hotspots in the
landscape. At the same time, large parts of the landscape with
poorer quality vegetation experience a net removal of nutrients
(McNaughton et al., 1997; Augustine et al., 2003; van der Waal
et al., 2011). Water bodies may also induce spatial patterns;
semi-aquatic herbivores such as hippopotamus, beaver or water
birds can transport nutrients across ecosystem boundaries and

thus strongly impact nutrient redistribution (Sitters et al., 2015;
Subalusky et al., 2015; Bakker et al., 2016). Furthermore, social
behavior may affect nutrient release. When herbivores defecate
in common latrines, they concentrate nutrients in the landscape
(e.g., rhinos, rabbits, horses), which function as hotspots of
nutrients, possibly with a low N:P ratio, though data are scarce
and not fully consistent regarding the effect on soil P (see

Edwards and Hollis, 1982; Willott et al., 2000; Jewell et al., 2007).
In this respect, there are similarities and differences between
terrestrial and aquatic habitats. In both, animals can mediate
a net translocation of nutrients across habitats and ecosystems
(Vanni et al., 2001; Flecker et al., 2010; Ebel et al., 2015; Sitters
et al., 2015). However, in aquatic habitats excreted nutrients may
easily mix in the water, whereas in terrestrial habitats patches
of released nutrients are much more spatially disconnected; this
suggests that terrestrial animals may induce spatial variation in
nutrient supply and stoichiometry more so than aquatic animals.

CONCLUDING REMARKS

The stoichiometric view of herbivore-driven nutrient recycling
in terrestrial ecosystems has not yet received the attention it
deserves. We were unable to find firm evidence for rule 1, as
most studies investigating relationships between food, herbivore
bodies, and wastes focused on single nutrients. At the same
time, many studies consider the “net” effect of herbivores on
nutrient cycling, making it impossible to determine the impact
of waste stoichiometry on plant communities per se (rule 2).
We therefore suggest several perspectives on future research,
to increase our understanding of the stoichiometry of nutrient
release by terrestrial herbivores, ranging from invertebrates to
mammals, and its impact on ecosystem stoichiometry, plant
nutrient limitation, and productivity (Table 1).
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