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In this work, multivariate characterization data such as infrared spectroscopy was used as
a source of descriptor data involving information on molecular architecture for designing
structured molecules with tailored properties. Application of multivariate statistical tech-
niques such as principal component analysis allowed capturing important features of the
molecular architecture from enormous amount of complex data to build appropriate latent
variable models. Combining the property clustering techniques and group contribution
methods based on characterization (cGCM) data in a reverse problem formulation enabled
identifying candidate components by combining or mixing molecular fragments until the
resulting properties match the targets.The developed methodology is demonstrated using
molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces
biodiesel that meets the desired fuel specifications.The contribution of this work is that the
complex structures and orientations of the molecule can be included in the design, thereby
allowing enumeration of all feasible candidate molecules that matched the identified target
but were not part of original training set of molecules.

Keywords: systems engineering, chemical product design, additive design, optimization, chemometric technique,
reverse problem formulation, property clustering

INTRODUCTION
The impacts on the environment related to fossil raw materials are
the driving force for sustainable development concepts and their
use in industry. This also has implications for the design of chemi-
cal products and their production routes. Biofuels, mainly ethanol
used in gasoline engines and fatty acid alkyl esters (biodiesel) as
well as their blends with petro-diesel used in diesel engines, are
some of the few alternatives that do not required significant new
infrastructure or change on the part of consumers or auto man-
ufacturers. Recently, biodiesel has attracted much attention as an
important renewable energy source and is expected to grow higher
than gasoline demand growth (Janaun and Ellis, 2010).

Because of its biological origin, biodiesel has many advantages
compared to its petroleum derived counterparts such as renewa-
bility, biodegradability, reduction of most regulated exhaust emis-
sions due to lack of sulfur, etc. However, due to the inverse relation-
ship between oxidative stability and low-temperature operability,
the design of an optimal fuel for all environments can be a rather
difficult task (Knothe et al., 2005). Moreover, feedstock logistics
and competition with food markets result in biorefineries hav-
ing to use multiple feedstocks to produce biodiesel blends that
meet stringent environmental and fuel performance targets. As a
result, design of an optimal fuel for all environments can be a quite
difficult task.

In this paper, within the computer-aided molecular design
(CAMD) framework, a characterization-based method was com-
bined with chemometric and property clustering techniques

in reverse problem formulation (RPF) to molecularly design
biodiesel additives that correspond to particular set of desired
physico-chemical properties.

BIODIESEL
Any type of feedstock that contains free fatty acids and/or triglyc-
erides such as vegetable oil, waste oil, animal fat, and waste
grease can be converted into biodiesel (alkyl ester) through
alkali-catalyzed, acid-catalyzed, and enzyme-catalyzed processes.
Figure 1 represents an acid-catalyzed transesterification reaction
where R1, R2, and R3 represents long chain fatty acid radicals of the
mixed triglycerides used whereas R′ represents alkyl radical of the
alcohol used (Knothe et al., 2005). Figure 2 shows a typical triglyc-
eride structure of soybean oil that is made up of mixed fatty acid
fragments and a glycerol fragment. Glycerol is the main byprod-
uct in the biodiesel production. Transesterification does not alter
the fatty acid composition of the feedstocks and this composition
plays an important role in some critical parameters of biodiesel.

Since the fatty acid profile varies with different feedstock,
the final quality (physical and chemical fuel properties) of the
biodiesel product varies depending upon the parent feedstock
used (Canakci and Sanli, 2008; Knothe, 2008; Moser, 2009). A
feedstock dependent fuel property is one of the technical difficul-
ties associated with biodiesel that have limited its wide usability.
Fatty acids vary in their carbon chain length and in the number
of double bonds (unsaturation level), and are represented by C
XX:Y where “XX” is the number of carbon atoms and “Y” is the
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FIGURE 1 | Overall stoichiometric transesterification reaction scheme.
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CH3-(CH2)7-CH=CH-(CH2)7-COOH 

CH3-(CH2)4-CH=CH-CH2-CH=CH-(CH2)7-COOH 
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fragment
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Linoleic acid (C18:2)

Linolenic acid (C18:3)

CH3-CH2-CH=CH-CH2-CH=CH-CH2-CH=CH-(CH2)7-COOH 

FIGURE 2 | A typical triglyceride molecule with different fatty acid
chains of soybean oil.

number of double bonds. The fatty acid distributions of some
feedstock commonly used in biodiesel production are shown in
Table 1 (Canakci and Sanli, 2008).

TECHNICAL DIFFICULTIES WITH BIODIESEL USE
Although, biodiesel, because of its biological origin, has many
advantages compared to its petroleum counterparts, it has sev-
eral technical problems that have persisted to the present and have
impaired its use and commercialization. Three major limitations
are oxidative stability, low-temperature operability, and increased
nitrogen oxide (NOx) exhaust emissions (Knothe et al., 2005).
Simultaneous solution of these problems has proven difficult as
improvements in one area tend to impair another (Knothe et al.,
2005). For example, there exist an inverse relationship between
oxidative stability and low-temperature operability; structural
factors that improve oxidative stability adversely influence low-
temperature operability and vice versa (Moser, 2009). Therefore,
the design of an optimal fuel for all climate and seasonal conditions
of a region can be a challenge.

Several approaches are possible for improving the fuel proper-
ties of biodiesel (Ribeiro et al., 2007; Knothe, 2009; Boshui et al.,
2010). Modification of the fatty acid composition through physical
processes or uses of additives are the most prevalent (Wang et al.,
2005). Figure 3 presents an overview of the various approaches
(A–E) that have been explored (Knothe, 2009). Fuel additives,
such as antioxidants, cetane enhancers, or cold-flow improvers
have become indispensable tools not only to alleviate the draw-
backs described above, but also to assure that any fuel blend will
meet international and regional standards regardless of origin.

However, it is also equally important to ensure that the formu-
lations of these additives cover a blend of biodiesels originating
from multiple feedstocks.

In addition, to ensure a uniform quality of biodiesel produced
from vegetable oils or animal fats, the final products must meet
stringent international and regional quality requirements such as
ASTM D 6751 in the U.S. and EN 14214 in Europe. These stan-
dards identify the parameters the pure biodiesel (B100) must meet
before being used as a pure fuel or being blended with petroleum
based diesel fuel. Table 2 provides the specifications for biodiesel
and diesel (Knothe, 2009).

Therefore, it is desired to molecularly design biodiesel addi-
tives to account for the unintended effect on other fuel properties
in the neat and the blend fuel in order to achieve the performance
properties of the petroleum based fuel. In this way, biofuels can
be formulated that are adaptable to a range or blend of feedstocks
and the desirable fuel characteristics like oxidative stability and
wide operating temperature range.

METHODOLOGY
In this work, we aim to identify all possible compounds which,
when added to off-spec biodiesel, results in a fuel that satisfies
performance standards such as ASTM D6751. To meet this end,
multivariate characterization data obtained from infrared (IR)
spectroscopy of common additives were combined with decom-
position and property clustering techniques in a RPF. In this
approach, the fuel additive property targets are identified in the
first reverse problem followed by molecular design to match the
targets. The characterization data consists of multitude of attrib-
utes/properties of interest (such as cetane number, melting point,
and kinematic viscosity) to ensure adequate performance. To
facilitate an efficient design, we consolidated these various proper-
ties into a principal property domain using principle component
analysis (PCA) techniques. Finally, characterization-based group
contribution (cGC) parameters are then used to build novel addi-
tives that match the fuel specifications in the principal property
space.

CHARACTERIZATION TECHNIQUES
By exploiting the fact that molecules absorb specific frequencies
that are characteristic of their structure, vibrational spectroscopy
can be used to elucidate chemical constituents, and the orientation
and alignment of molecules (Socrates, 2004). For example, IR and
near-infrared (NMR) spectroscopy based characterization contain
large quantities of descriptor data involving information on mol-
ecular architecture at atomic-, nano-, and micro-scales to describe
physical properties and attribute of chemical products. They pro-
vide specific information on the presence of functional groups,
information on the orbital configurations of the electrons, and
details of the carbon–hydrogen structure of the chemical products.
The added structural information available from this characteri-
zation can also be used to distinguish some orientation specific
information in various isomer geometries.

Some common characterizations used to quantify molecu-
lar architectures at other length scales include nuclear magnetic
resonance (NMR) and x-ray diffraction (XRD) (Workman and
Weyer, 2008). An IR based characterization technique was applied
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Hada et al. Molecular design of bio-fuel additives

Table 1 | Fatty acid profiles of some common biodiesel feedstock.

Feedstock Fatty acids (wt%)

C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3

Sunflower – 6.08 – 3.26 16.93 73.73 –

Rapeseed – 3.49 – 0.85 64.40 22.30 8.23

Soybean – 10.58 – 4.76 22.52 52.34 8.19

Tallow 3–6 24–32 – 20–25 37–43 2–3 –

Lard 1–2 28–30 – 12–18 4–50 7–13 –

Yellow grease 2.43 23.24 3.79 12.96 44.32 6.97 0.67

Table 2 | Specifications for biodiesel and diesel.

Specification EN ASTM EN

14214:2008 D 6751:2009 590:1999

Applies to Units FAMEa FAAEb Diesel

Kinematic viscosity mm2/s, at 40°C 3.5–5.0 1.9–6.0 2.0–4.5

Cetane number – 51 minimum 47 minimum 51 minimum

Cloud point °C – Report –

CFPP °C Location and time specific – Location and time specific

Oxidation stability h, at 110°C 6 minimum 3 minimum N/A (25 g/m3)

aRefers to fatty acid alkyl esters.
bRefers to fatty acid methyl esters.
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FIGURE 3 | Approaches to improving biodiesel fuel properties.

to a training set of molecules used to explore a set of property
attributes. Solvason (2011) proposed a general guide for managing
the complexity of the information through a systematic method
for determining, which specific information on molecular archi-
tecture will be necessary to build appropriate models for a specific
application as shown in Figure 4.

Figure 5 is an IR spectrum of a butylated hydroxytoluene
(BHT) molecule and its molecular structure showing first and
second order group contribution (GC) groups. IR spectra of such
molecules contain large quantities of descriptor data involving
information on molecular architecture. In addition, there is a high
probability that many of the descriptor variables will be corre-
lated, i.e., that some variables will be linear functions of other
variables. Managing such complexity of information to design
chemical products and to build appropriate models for a spe-
cific application will require a systematic method for capturing

FIGURE 4 | An overview of the interconnectivity of characterization
techniques, molecular architecture, and physical properties and
attributes of chemical and material products.

important features of the molecular architecture. In order, to
decompose large quantities of information, and identify system-
atic patterns and important features of the molecular architecture
in such multivariate data, multivariate statistical techniques such
as PCA is used (Gabrielsson, 2002; Eriksson et al., 2006). Appro-
priate latent variable (LV) property models are developed using
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Hada et al. Molecular design of bio-fuel additives

FIGURE 5 | Infrared spectra and molecular structure of butylated
hydroxytoluene molecule.

principal component regression (PCR) to predict the underlying
fundamental structure–property relationships.

CHEMOMETRIC TECHNIQUE
Chemometrics is the science of extracting chemically relevant
information by data-driven means and employs multivariate sta-
tistics, applied mathematics, and computer science (Wold, 1995).
The use of chemometric techniques such as PCA and PCR facilitate
data compression and model reduction to solve both descriptive
and predictive applications, respectively. Data compression and
model reduction are critical elements of multi-scale modeling.
Using PCA, a large number of correlated variables are transformed
into a smaller number of uncorrelated variables called principal
components (PCs) (Eriksson et al., 2006). The PCA projection to
a lower dimensional subspace gives:

X̂M×H = 1 · x̄T
h + TM×A · P

T
A×H (1)

where 1 · x̄T are the variable averages, which originated from the
pre-processing step (such as mean center and unit variance scale),
T is the score matrix, and PT is the transposed loading matrix.
In this way, the data matrix X, containing H highly correlated
descriptor variables is transformed into the score matrix, T, con-
taining only A (where, A<K ) mutually independent LVs for M
samples considered. Scores, t, whose weights are given by loadings,
p, are linear combinations of the original H variables, have bet-
ter properties (orthogonality) and also span the multidimensional
space of XM×H.

It may be important to pre-treat variables in order to trans-
form raw-data into a form suitable for analysis. Equally important
is to check and remove any outlier prior to the calibration of a
model. Hotelling’s T2, a multivariate generalization of Student’s
t -test, is a powerful measure of a multidimensional outlier (Jack-
son, 1991). The prediction of response variables (Y) from new
predictor variables (T) is obtained employing the PCR as:

ŶM×L = TM×A · B̂A×L (2)

,

1

H
T

M A M A h m

h

x× ×
=

= ∑Q T

ˆ
M L M A A L× × ×= ⋅Y T B

, ,

T

new M A New M L L A× × ×= ⋅T Y B

M H×X

ˆ T

M H M A A H× × ×= ⋅X T P

( )ψ =a a mam
q q

( ) ( )ψ ψΩ =am a a a am ref
q q

1=

= Ω∑
A

m am

a

AUP

Property Clustering Technique

Ø Standardize principal properties such that they

follow linear mixing rule (suitable in cluster domain).

Ø Property operators as function of standardized

principal properties.

Ø Dimensionless property operators follow linear

mixing rules and allow optimization based on lever-

arm analysis.

Ø AUP values of the formulated product and target

must match along with matching cluster targets.

Ø Clusters follow intra- and inter- stream conservation.
= Ωma ma mC AUP

Chemometric Technique

Ø Characterize molecular architecture of training set.

Ø PCA to achieve a qualitative analysis of the data.

Ø PCR to develop the calibration model.

Ø Transform physicochemical properties to principal

properties (latent variable domain). 

FIGURE 6 | An overview on the methodology for combining
chemometric and property clustering techniques.

where B̂[= (TT
· T)
−1
·TT
·Y] is the regression coefficient matrix.

Here, instead of the columns of Y are regressed onto the large
and highly correlated columns of X, in PCR, the columns of Y are
regressed onto the reduced and mutually independent LVs T.

In order to solve a design problem in a single domain, all of the
physico-chemical attributes/properties are converted to principal
properties (PP) by using the regression coefficients (B) from the
calibration model in Eq. (2) as:

TM×A = YM×L · B
−1
L×A where, B−1

L×A

=


(

B̂T
L×A · B̂A×L

)−1
B̂T

L×A , if L > A

B̂T
L×A

(
B̂A×L · B̂T

L×A

)−1
, if L < A

(3)

B−1 is the generalized inverse or pseudo-inverse of a matrix B̂.
In order to utilize the LVs in the property clustering algorithm,

it is important that the LV structures follow a linear mixing rule.
This can be achieved by standardizing the data structure to obtain
a new matrix, QM×A, containing standardized principal property,
qi, as shown in Figure 6.

PROPERTY CLUSTERING TECHNIQUE
Properties are not conserved entities and mixing of properties is
not necessarily linear. Property clustering technique utilizes con-
served quantities called clusters that are tailored to ensure intra-
and inter-stream conservation, thus enabling the use of additive
rules. The clusters are obtained by mapping property relationships
into a low dimensional domain, thus allowing for visualization
of the problem (Shelley and El-Halwagi, 2000). The clustering
approach utilizes property operators, ψ , which must follow lin-
ear mixing rules, although the property operators itself may be
non-linear. In Eq. (4), the property is described by a general linear
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mixing rule:

ψj

(
yj
)

Mix =

n∑
i=1

xi ·ψj

(
yj
)

i (4)

where, xi is the fractional contribution of component i, yj is the
jth property.

For instance, specific volume can be used as the property oper-
ator to describe density since mixing of density does not meet the
linear criteria imposed by Eq. (4). Because the non-linearities are
hidden in the property operators, the problem formulation and its
solution are simplified by the use of such variable transformation.

Since the properties may have various functional forms and
units, the operators are normalized into a dimensionless form by
dividing by an arbitrary reference operator and then summarized
to yield an Augmented Property Index (AUP) as:

�ji =
ψj

(
yj
)

i

ψj

(
yj
)

ref

, AUPi =

p∑
j=1

�ji (5)

A cluster is then defined by dividing the non-dimensionalized
property by the AUP, as:

Cji =
�ji

AU Pi
, where

k∑
i=1

Cji = 1 (6)

The cluster points can then be mapped onto the ternary diagram
by the coordinate transformations from ternary to Cartesian using
the Pythagorian theorem. Details are explained somewhere else
(Shelley and El-Halwagi, 2000; Eden et al., 2004).

Figure 6 is a schematic diagram that summarizes the steps of
combining chemometric and property clustering techniques to
facilitate the variable transformation, model calibration, property
integration, and problem visualization in reduced space.

CHARACTERIZATION-BASED GROUP CONTRIBUTION METHOD
Almost all CAMD frameworks have used GC based property pre-
diction methods to evaluate the generated compound with respect
to a specified set of desired properties (Harper et al., 1999; Marrero
and Gani, 2001; Gani, 2004; Eljack et al., 2008). Group contri-
bution methods (GCM) are powerful product/molecular design
tools,which allow predicting physical properties of molecules from
the structural information alone (Joback and Reid, 1987; Constan-
tinou and Gani, 1994; Marrero and Gani, 2001). An additive three
level GC property estimation model, which estimates the prop-
erty of a compound as a linear combination of the appropriate
descriptor contributions is as follows:

f (x)︸︷︷︸
Property Function

=

1st Order︷ ︸︸ ︷∑
i

NiCi +

2nd Order︷ ︸︸ ︷∑
j

Mj Dj +

3rd Order︷ ︸︸ ︷∑
k

Ok Ek︸ ︷︷ ︸
Group Contribution Terms

(7)

where, Ni, Mj, and Ok are the number of first-, second-, and
third-order groups of types i, j, and k, respectively. However, any

application of GC relies on the availability of groups to describe
the structure as well as tables giving the contributions of each
group, and there are many attributes, which cannot be estimated by
GCM. For instance, cetane number is an important performance
indicator for biodiesel, but GCM parameters are not available to
describe this fuel attribute. Furthermore, not all possible atomic
arrangements and structures can be represented in GCM.

The cGC method (cGCM) utilizes the principal property para-
meters to capture molecular architecture information provided
by characterization data, thereby alleviating the need for avail-
able conventional regression-based property parameters used in
GCM (Hada et al., 2011; Solvason, 2011). Since the multivariate
projection-based regression retains better memory of the structure
of the training set data to predict molecules with similar properties
and structures, cGCM often exhibit rich attribute-property rela-
tionships than traditional GCM. Moreover, cGCM captures the
effects of molecular architecture on the product’s properties and
attributes. The CAMD achieved using cGCM is termed cCAMD.

The principal property (Tnew) of any new compound based
on cGCM can be calculate from characterization data (Xnew) of
new compound and the loading values (P) obtained from PCA on
training set molecules represented by Eq. (1):

TM×A = XM×K · PK×A (8)

The physical property (Ynew) of the compound can then be
estimated using the regression coefficient from Eq. (2).

ŶM×L = TM×A · B̂A×L (9)

Principal properties can be mapped from principal property space
to cluster space utilizing property clustering technique as described
in Section “Property Clustering Technique” and Figure 6.

REVERSE PROBLEM FORMULATION IN CAMD
A powerful chemical product design framework is achieved by
integrating LV methods within property cluster domain and by
decomposing design problem into two reverse problems. The first
reverse problem identifies product quality/performance require-
ments and second identifies substructural molecular building
blocks. Figure 7 shows the two required solutions of CAMD
systematically and efficiently.

FIGURE 7 | Forward and reverse problems in computer-aided
molecular design.
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MOLECULAR DESIGN OF BIODIESEL ADDITIVES
Since cetane number, cold flow, kinematic viscosity, and oxida-
tion stability are critical properties for the operation of a fuel in
a diesel engine; Knothe (2008) proposed a three-dimensional plot
of the cetane number, melting point, and kinematic viscosity to
describe the optimum properties to meet the ASTM D6751 fuel
requirements. Although cetane number is a fuel attribute; not a
fundamental property, it will, however, be referred as a property in
this paper to be consistent with the other properties. Figure 8 visu-
ally represents this required biodiesel property space by volume of
the shaded rectangular box (Knothe, 2008).

For the purpose of this case study, Table 3 represents the range
of target fuel property specifications for biodiesel. Values in Table 3
are much more stringent property constraint criteria and would
lead to a smaller box than the one defined in Figure 8. Here,
kinematic viscosity of 6.0 mm2/s at 40°C is the maximum limit in
ASTM D6751 (Table 2).

TYPES OF ADDITIVES
Different additives that are commercially available to improve
diesel fuel performance are selected as the training set molecules
(Suppes et al., 2001; Ribeiro et al., 2007). Antioxidant additives
can help to slow the degradation process and improve fuel stabil-
ity. Cold-flow enhancers can improve the cold-flow properties to

FIGURE 8 | Plot of the minimum and maximum values for cetane
number, melting point, and kinematic viscosity to meet the
specifications for bio-fuel and its blend (Knothe, 2008).

Table 3 | Biodiesel target properties.

Fuel property

Tm (C) η (mm2/s) at 40°C CN

Lower limit −60 4.51 47

Upper limit −20 6.00 65

solve the low-temperature operability problem. Cetane improvers
can help improve ignition properties thereby reducing NOx emis-
sion. Table 4 shows some of the available additives in the literature
used as training set in this formulation study.

ADDITIVE PROPERTY ESTIMATION
Since many additives are proprietary products, their physical–
chemical properties are not readily available and therefore, exper-
imental data such as melting point temperature, viscosity, and
cetane number are difficult to find. Therefore, for the commer-
cially available additive compounds, these properties are estimated
using structural information alone. The estimated values are later
used as the measured values for property model calibration. How-
ever, the property values used in the calibration would normally
be measured in an industrial setup.

Melting temperature
The normal melting point temperature (T m, K ) values were esti-
mated using a GC expression (Constantinou and Gani, 1994;
Marrero and Gani, 2001):

exp

(
Tm

tmo

)
=

1st Order︷ ︸︸ ︷∑
i

NiTm1i +

2nd Order︷ ︸︸ ︷∑
j

Mj Tm2j +

3rd Order︷ ︸︸ ︷∑
k

Ok Tm3k (10)

where, Ni, Mj, and Ok are the number of first-, second-, and
third-order groups of types i, j and k, respectively.

Viscosity
The dynamic viscosity (η, mPa.s) values at 300 K were estimated
using the GC plus (GC+) method. GC+ combines the GC method
and the atom-connectivity indices (CI) method (Conte et al.,
2008).

ln(η) =

1st Order︷ ︸︸ ︷∑
i

Niη1i +

2nd Order︷ ︸︸ ︷∑
j

Mjη2j +

3rd Order︷ ︸︸ ︷∑
k

Okη3k︸ ︷︷ ︸
GC Terms

+ F
(
η∗
)︸ ︷︷ ︸

CI Terms

(11)

where, F(η*) is a function of viscosity for all missing GC
groups/fragments.

F
(
η∗
)
=

K∑
k=1

nk F(η)k + d (12)

where, F(η)k is a function of the viscosity contribution for
a missing GC group/fragment, k; K is the number of miss-
ing groups/fragments; n is the number of times a missing
group/fragment appears in the molecule; and d is a constant
(Conte et al., 2008).

F (η) =
∑

i

aiAi + b
(
υχ0)
+ 2c

(
υχ1) (13)

where, Ai represents the occurrences of the ith atom in the mol-
ecular structure; ai is the contribution of atom i; and b and c
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Table 4 | Commercially available diesel additives and their estimated properties.

Type Compound exp(Tm/Tmo) ln(η) CN

Oxidative stability improvers Butylated hydroxytoluene (BHT) 10.11 0.465 76.04

t -butylhydroquinone (TBHQ) 13.26 0.465 48.59

Isopropyl alcohol (IPA) 4.114 0.465 1.847

Pyrogallol (PY) 18.79 0.465 14.79

Methyl tert-butyl ether (MTBE) 3.484 0.465 16.19

Cold flow improvers Polymethyl methacrylate (PMMA) 3.035 −1.062 15.19

Ethylene glycol methyl ether acrylate (EGMEA) 4.299 −0.517 7.289

Cetane number improvers Di–tert-butyl peroxide (DTBP) 3.138 −3.376 36.23

Methyl oleate (MO) 7.002 2.177 44.47

Ethylene glycol (EG) 6.497 3.154 −5.623

Oleic acid (OA) 12.47 3.134 31.82

Stearic acid (SA) 11.84 3.924 62.24

are adjustable parameters. The zero-order (atomic) connectivity
index (υχ0) and the first-order (bond) connectivity index (υχ1)
are defined by Hall and Kier (2001).

υχ0
=

L∑
i=1

(
1√
δυi

)
υχ1
=

M∑
i=1

 1√
βk

i

 where,βk
= δυi δ

υ
j (14)

where, L is the number of atoms in the hydrogen suppressed graph,
M is the number of bonds in the graph, and βk are the bond
indices defined by atomic indices δυ [the values can be found in
Conte et al. (2008)]. The kinematic viscosity can be converted into
dynamic viscosity through the density.

Cetane number
The correlation used for estimation of the cetane number of
additives is from Lapuerta et al. (2009).

CN = −21.157+
(
7.965− 1.785Ndb + 0.235N 2

db

)
Nc − 0.099N 2

c
(15)

where, N db is the number of double bonds and Nc is the number
of carbon atoms in the molecule. Table 4 tabulates the estimated
properties for different type of additives considered.

CHARACTERIZATION OF THE ADDITIVE MOLECULES
Infrared spectroscopy based characterization was used to deter-
mine the chemical constituents or molecular structures of the
additive training set that describe the orientation, constituents,
and alignment of these molecules. Using the NIST Webbook
(Stein, 2010), the complete IR spectral region (4,000–400) cm−1

for 12 additives including antioxidants, cetane enhancers, and
cold-flow improvers were obtained. Ideally, both IR and NIR data
would be available for the training set to provide better predictions,
but unfortunately the availability of NIR data for the components
of interest is severely limited.

Figure 9 is IR spectra of the diesel additive molecules tabulated
in Table 4 that serve as the descriptors of their molecular archi-
tecture. The IR spectra were translated to discrete variables by
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FIGURE 9 | Infrared spectra of diesel additive molecules.

a process of digitization. In this process, each spectrum is frag-
mented into small equal fragments (2 cm−1 resolution) along
the wavelength axis resulting with 1801 frequencies (descriptor
variables).

ADDITIVE IR DATA ANALYSIS
The PC scores were used to describe the variation in the mul-
tivariate characterization data with a minimum of variables to
elucidate the underlying structure of the data. PCs captured the
most variation possible in the smallest number of dimensions
and consolidate multiple property effects into single, underlying
LVs, which are devoid of collinearity. The first three PCs that cap-
tured about 70% of the total variance of the standardized IR data
(Figure 10) were selected. This way, the data matrix X, contain-
ing 1801 highly correlated descriptor variables is transformed into
three mutually independent LVs.

Ideally, the optimum numbers of PCs are selected using the
cross-validation techniques such as leave-one-out. However, to
demonstrate the advantages of visualization of the problem and
its solution in a reduced cluster space (ternary diagram), only three
PCs that result in three PPs are selected. If an algebraic method is
used, optimum number of PCs must be selected.

www.frontiersin.org June 2014 | Volume 2 | Article 20 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Process_and_Energy_Systems_Engineering/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hada et al. Molecular design of bio-fuel additives

E
ig

e
n

v
a

lu
e

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10

Number of Components

FIGURE 10 | Scree plot for PCA on additive IR data.

LATENT VARIABLE MODEL DEVELOPMENT
Non-linear regression models that describe response variables Y
(the fuel properties) subjected to the descriptor variables X (IR
data) values are obtained using the three PCs using PCR. Here,
the use of PCA for variable reduction followed by multiple regres-
sion for calibration model development could be considered as a
non-linear PCR (NPCR). NPCR resulted in second order regres-
sion models for melting point (Eq. 16) and kinematic viscosity
(Eq. 17), whereas, a third-order regression model was developed
for cetane number (Eq. 18). The generalized forms of these LV
property models are as follows:

exp

(
Tm

Tmo

)
= β0 +

3∑
i=1

βi ti +

3∑
i<j

3∑
j>i

βij ti tj (16)

ln (η) = β0 +

3∑
i=1

βi ti +

3∑
i<j

3∑
j>i

βij ti tj (17)

CN = β0 +

3∑
i=1

βiPCi +

3∑
i=1

βii t
2
i +

3∑
i<j

3∑
j>i

3∑
k>j

βijk ti tj tk

(18)

The left hand sides (LHS) of the above models are forced to have
a particular form such that the respective properties follow linear
additive rules as described by the general GC model equation (Eq.
7). The property operators, ψ , are described by the LHS terms in
Eqs (16) through (18). Table 5 tabulates the regression coefficients
for the LV models represented by Eqs (16) through (18). The ref-
erence values for property operators in Eqs (16) through (18) are
0.06,−0.02, and−0.05, respectively.

Following the steps illustrated in Figure 6, all the physical
properties (pi) were converted to PPs (ti) in order to solve the
design problem in a single reduced space. The PPs (ti) values are
then converted to standardized PPs (qi) as described in Section

Table 5 | Model coefficients using PCR.

Properties expT m/T mo ln(η) CN

β0 8.1702 0.8132 65.89

β1 0.0793 −0.0005 −0.2833

β2 −0.1758 −0.0545 −0.0195

β3 −0.0401 0.0021 −1.3906

β12 0.0048 0.0033 –

β13 0.0063 −0.0024 –

β23 0.0144 −0.0015 –

β11 – – −0.0491

β22 – – 0.3826

β33 – – −0.0632

β123 – – 0.0038

R2 0.816 0.764 0.790

R2
adj 0.595 0.480 0.422

Table 6 | Biodiesel target standardized principal properties.

Principal property

q1 q2 q3

Lower limit 0.174 −0.054 −0.088

Upper limit 0.191 −0.043 −0.065

“Chemometric Technique” and Figure 6. The minimum and max-
imum standardized PPs that correspond to physical properties in
Table 3 are in Table 6.

In order to ensure that the target property space is properly
explored, a feasibility region on the ternary diagram was evaluated.
The feasibility region was mapped from the three-dimensional vol-
ume (Figure 8) to a two-dimensional area in ternary space utilizing
the property clustering technique (illustrated in Figure 6). The fea-
sibility region was evaluated by the six unique points described by
Eq. (19).(
�min

1 ,�min
2 ,�max

3

) (
�min

1 ,�max
2 ,�max

3

) (
�min

1 ,�max
2 ,�min

3

)
(
�max

1 ,�max
2 ,�min

3

) (
�max

1 ,�min
2 ,�max

3

) (
�max

1 ,�min
2 ,�min

3

)
(19)

where� is the normalized principal property operator. Figure 11
shows the biodiesel target feasibility region described by Table 6
and Eq. (19). In Figure 11, the crude biodiesel along with the petro-
diesel property values are also mapped onto the cluster space as
shown. Here, the properties of a crude biodiesel feedstock were
picked arbitrarily such that it does not meet the fuel specification
target properties defined in Table 6. The standardized principal
property values are tabulated in Table 7.

EVALUATION OF DESIRED ADDITIVE FEASIBILITY REGION
An infinite number of possible additives may exist that could be
mixed with crude biodiesel. However, it is difficult to narrow down
the feasible additive candidates that result the final mixture prod-
ucts meet the target biodiesel properties. Since the property cluster
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Table 7 | Crude biodiesel properties.

Principal property

q1 q2 q3

Crude biodiesel 0.142 −0.0480 −0.0820
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FIGURE 12 | Desired additive design feasibility region in cluster space.

Table 8 | Biodiesel additive standardized principal property feasibility

region.

Principal property

q1 q2 q3

Lower limit 0.519 −0.076 −0.138

Upper limit 0.174 0.000 0.000

formulation enables linear mixing and lever arm analysis of the
PPs, it is straightforward to identify the feasibility region for the
additives. The region bounded by the black dash lines (shaded
area) in Figure 12 represents the entire principal property search
space for the additive molecules. The corresponding principal
property ranges are presented in Table 8. The additive feasibil-
ity region will serve as the property target region in the additive
molecular design algorithm.

ENUMERATION OF DESIRED ADDITIVE MOLECULES
The characterization-based molecular groups/fragments are lin-
early combined to formulate a molecule. The property of the for-
mulated molecule is determined by the individual contributions
of each molecular group that make-up the molecule. Twenty-three
molecular groups (N = 23) were selected from the additive train-
ing set. Some of the groups are the fundamental building blocks
present in every additive molecule and represents first-order con-
tributions while the rest are larger groups and represents higher
level of contributions. These selected molecular groups are con-
sidered to be a set of basic groups, which represent the chemical
make-up of the training set and are listed in Table 9. The IR
descriptor data (X matrix) for the molecular fragments tabulated
in Table 9 were compiled from Socrates (2004). The principal
property contributions of each group are evaluated using the load-
ing matrix (PT) obtained from the PCA of the training set data
as described by Eq. (8). The standardized score values (qi) are
calculated as described previously. The results are tabulated in
Table 9.

A combinatorial property model like a GCM based algorithm
using Visual Basics for Application (VBA) code was used to enu-
merate all potential molecules from the characterization-based
groups in Table 9 that satisfied the target property constraints
described in Table 8. Using the group based property model,
molecular groups, or fragments are added together analogous to
inter-stream conservation. A maximum number of similar groups,
Ng= 2, was selected such that progressive combinations of sim-
ilar groups are added until the maximum is reached. Then, the
enumerated candidate molecules were screened for structural con-
straints to ensure that a stable, connected molecule was formed.
One such structural constraint is to check the number of unused
bonds in a generated molecule, i.e., the free bond number (FBN )
(Eljack et al., 2008).

FBN =

 Ng∑
g=1

ng · FBNg

− 2 ·

 Ng∑
g=1

ng − 1

− 2 ·NRings (20)
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Table 9 | Molecular groups and their standardized principal property

contributions.

S.N. Molecular group Principal property

q1 q2 q3

1 Methine groups, -CH- - 0.04 0.459 0.005

2 Methylene groups, -CH2- −0.05 −0.12 0.003

3 Methyl groups, -CH3 −0.04 0.156 −0.025

4 Tetramethyl groups, -C(CH3)3 0.025 0.359 0.061

5 Aliphatic methoxy groups, -O-CH3 −0.03 −0.66 0.061

6 Vinyl group, -CH=CH2 0.125 −0.43 0.106

7 Vinylidene group, CH2=C- - −0.04 0.339 0.002

8 cis-vinylene group, -CH=CH- −0.18 −0.17 0.084

9 trans-vinylene group, -CH=CH- −0.17 −0.18 0.091

10 Hydroxyl group, -OH −0.02 −0.37 −0.229

11 Primary alcohol group, -CH2OH 0.093 −0.21 −0.086

12 Secondary alcohol group, - -CHOH 0.09 0.275 −0.056

13 Alilphatic ether group, -O- 0.15 −0.27 0.072

14 Alkyl peroxide group, -O-O- 0.211 −0.34 0.134

15 Saturated aliphatic ester group,

-CO-O-

0.247 0.328 0.155

16 Saturated aliphatic methyl ester

group, -CO-O-CH3

0.184 0.404 0.172

17 Saturated aliphatic ethyl ester group,

-CO-O-CH2CH3

0.162 0.5 0.139

18 Acrylate ester group, CH2=CH-CO-O- 0.13 0.179 0.14

19 Methacrylate ester group,

CH2=C(CH3)-CO-O-

0.111 0.547 0.105

20 o-Alkyl phenol group (with H-bonding) 0.006 0.455 −0.042

21 p-Alkyl phenol group (with H-bonding) 0.007 0.42 −0.042

22 Monosubstituted benzenes −0.1 −0.27 0.081

23 1,2,4-trisubstituted benzene 0.055 −0.42 0.069

where, ng is the number of occurrences of group g, Ng is the total
number of first-order groups, FBNg is the unique FBN associated
with group g, and N Ring is the number of rings in the formula-
tion. For an electronically complete molecular formulation, the
FBN must be equal to zero. A FBN of zero indicates that the elec-
tron valency shells of all atoms in the molecule have been satisfied,
which, in most cases, indicates one of the minimum energy con-
figurations of the atoms in the molecule. The candidate molecular
structures identified from the IR spectroscopic characterization
data, that fall within the feasibility region for the additive prop-
erties in Figure 12 and satisfy all the constraints, are presented in

Table 10 | Results from characterization-based molecular design.

I.D. Candidate molecules T m (K) η (mm2/s) CN

CM1 CH2
O

O CH3

CH2

(Isopropenyl acrylate)

203 0.400 3.63

CM2

CH2

O

O

CH3

OH

(Hydroxyethyl acrylate)

261 1.04 3.04

CM3
CH3

O

O

CH3

(Ethyl acetate)

172 0.72 2.92

CM4

CH3

OH

(4-methyl phenol)

306 9.68 7.07

Table 10. The feasible candidate molecules are mapped onto the
cluster space and are shown in Figure 13.

In addition, solubility parameters can be used as a simple
method to predict and calculate the dissolving power of the above
candidate additive molecules in biodiesel as a further screening cri-
terion. As a general rule, two substances with close solubility para-
meters (δ) should be mutually soluble (Krevelen and Nijenhuis,
2009). In the thermodynamics of solution, the Hansen solubility
parameters related to dispersion force (δd), polar interaction (δp),
and hydrogen bond interaction (δh) have been conveniently used
to estimate the solubility or miscibility between two compounds.
These parameters can be estimated from additive GCs (Kreve-
len and Nijenhuis, 2009). The total Hansen solubility parameter
(equivalent to Hildebrand solubility parameter) can be expressed
as:

δ=

√
δ2d +δ

2
p +δ

2
h (21)

Table 11 tabulates the solubility parameters and molar volumes
of the additives and a common fatty acid methyl ester (FAME).
Since linoleic acid (C18:2) represents a major constituent in the
fatty acid profile (Table 1), it is used to check the solubility of the
candidate additive molecules in methyl ester (biodiesel). Additives
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FIGURE 13 | Cluster diagram for biodiesel blending problem.

Table 11 | Additive solubility in FAME at 25°C.

I.D. δd δp δh δ Vm Feasible

MPa1/2 MPa1/2 MPa1/2 MPa1/2 cm3/mol

CM1 13.75 3.59 7.16 15.91 136.68 Yes

CM2 12.44 5.12 14.05 19.45 107.35 No

CM3 10.97 3.59 7.16 13.58 97.80 Yes

CM4 19.55 4.77 13.78 24.39 105.37 No

FAME 15.7 1.46 4.57 16.43 335.36 –

with lower a solubility parameter than FAME were considered mis-
cible in most proportions with FAME (δ≤ 16 MPa1/2). Based on
this criterion, the candidates CM1 and CM3 satisfied the screening
criteria and were considered feasible solutions.

From Table 11, it can be inferred that among the Hansen
parameters, the high dispersion parameter values (δd) have the
major attractive factor for FAME and the additive molecules
involved in the process of solubilization. These interactions arise
from induced dipoles and their strength is related to the polar-
izabilities of the molecules (dipole moment of FAME, CM1,
and CM3 molecules are primarily from the dipole moment of
the carbonyl group). The polar parameter (δp) and the hydro-
gen bonding parameter (δh) of FAME, CM1, and CM3 are
comparatively low.

Furthermore, density functional theory (DFT) calculations
were performed for the CM1 and CM3 additive molecules to
optimize their geometry. Using the B3LYP method with the
6311++G(3df,3dp) basis set the lowest energy conformer for
each molecule is presented in Figure 14. The estimated dipolar
moments of CM1, CM3, and FAME are 1.54, 2.11, and 4.51, respec-
tively. This is in agreement with the polar parameters obtained
with Hansen’s theory (Table 11). The difference between dipole

FIGURE 14 | Spatial representation of candidate additive molecules
according to B3LYP/6311++G(3df,3dp) calculations: (A) isopropenyl
acrylate (CM1), and (B) ethyl acetate (CM3).

moments (|µFAME–µAdditive|) is at a minimum for CM1, which
corresponds to the better affinity between CM1 and FAME and
to the highest solubility limits of this additive. Consequently,
we can conclude that both the polarity and spatial configura-
tions of feasible additive molecules are involved in the process
of solubilization.

It should be noted that the limited amount of data and sup-
porting characterization information available in the training
set (and thus the molecular fragments available for molecular
design) impacts the chemical stability/feasibility of the mole-
cules that are generated in this step. Additional training set data
can improve the quality of the predictions and thus increase the
application range but would not require a different optimization
methodology.

CONCLUSION
Multivariate characterization techniques such as IR combined
with decomposition techniques like PCA and PCR can be used
to describe a set of representative molecules and to find the
underlying LV models that describe the molecule’s properties.
Data-driven modeling and optimization strategies combined with
property clustering techniques and cGC methods in a RPF can
be effectively used to identify novel additives molecules with
tailored properties. In addition, the use of visualization tools
such as the property clustering technique facilitated the formu-
lation of the problem and as part of its solution algorithms in
a lower dimensional space when three properties could define
the problem. The approach differs from conventional techniques
because it is non-iterative, avoids the combinatorial explosion
when multiple components are involved, and avoids the diffi-
culty of formulating and solving the mixed integer non-linear
programs.
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