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Capital investment, next to the product demand, sales, and production costs, is one of the
key metrics commonly used for project evaluation and feasibility assessment. Estimating
the investment costs of a new product/process alternative during early-stage design is
a challenging task, which is especially relevant in biorefinery research where information
about new technologies and experience with new technologies is limited. A systematic
methodology for uncertainty analysis of cost data is proposed that employs: (a) boot-
strapping as a regression method when cost data are available; and, (b) the Monte Carlo
technique as an error propagation method based on expert input when cost data are not
available. Four well-known models for early-stage cost estimation are reviewed and ana-
lyzed using the methodology. The significance of uncertainties of cost data for early-stage
process design is highlighted using the synthesis and design of a biorefinery as a case
study. The impact of uncertainties in cost estimation on the identification of optimal pro-
cessing paths is indeed found to be profound. To tackle this challenge, a comprehensive
techno-economic risk analysis framework is presented to enable robust decision-making
under uncertainties. One of the results using order-of-magnitude estimates shows that
the production of diethyl ether and 1,3-butadiene are the most promising with the low-
est economic risks (among the alternatives considered) of 0.24 MM$/a and 4.6 MM$/a,
respectively.

Keywords: early-stage cost estimation, biorefinery, process synthesis and design, superstructure optimization,
MINLP, bioethanol-upgrading, uncertainty analysis

INTRODUCTION
Economic growth leads to the development of processes and activ-
ities that are highly energy dependent. The use of fossil fuels as the
main energy resource has many issues including long-term avail-
ability, supply security, and price volatility as well as environmental
impact and climate change effects. Biorefineries arise potentially
as a promising, clean, and renewable alternative to partly replace
fossil fuels for both production of energy and chemicals.

The design of a biorefinery is, however, a challenging task. First,
several different types of biomass feedstock, and many conver-
sion technologies, can be selected to match a range of products,
and therefore, a large number of potential processing paths are
available. Secondly, being based on biomass (natural feedstock),
the economic and environmental viability of these processes is
deeply dependent on local factors such as land use and availability,
weather conditions, national or regional subsidies, and regula-
tions. Thus, designing a biorefinery requires a detailed screening
among a set of potential configurations to identify the most suited
option that satisfies a wide set of conditions. A detailed evalua-
tion among process alternatives is required for a robust decision-
making and it demands a substantial amount of information (e.g.,
conversions and efficiencies), which is both time and resource
intensive. In order to overcome the aforementioned challenges, a
decision support toolbox including methods and tools for early-
stage process design and synthesis was developed in an earlier study
(Cheali et al., 2014). An important aspect of the methodology is

data collection and uncertainty assessment of the cost data used
for cost estimation in particular.

Cost estimation is one of the major challenges of chemical
and biochemical process design. The cost estimation (including
fixed and variable cost) during each stage of the project design
(concept screening, preliminary study, budget authorization, bud-
get control, and construction) is different since the quality and
quantity of the information available in the successive stages of
the project life cycle is different (Towler and Sinnott, 2013). The
Association of the Advancement of Cost Estimating International
(AACE International) classifies the capital cost estimation into five
classes, according to the level of accuracy and the purpose of the
estimation in specific parts of the project life cycle (Table 1).

CLASS 5, CONCEPT SCREENING (ORDER-OF-MAGNITUDE)
This class is based on the cost data and the capacity from similar
plants, and it is usually used for initial feasibility studies and for
screening purposes. Class 4, preliminary (study of feasibility). This
class mainly uses factors for the estimation, relying on so-called
factored estimation methods. This method is based on material
and energy balances as well as types and size of major equipment.
It is used to make a rough screening among the design alterna-
tives. Class 3, detailed design (budget authorization or definitive
estimate). The project control estimate method is based on the
approximate sizes of the major equipments; it is used for the autho-
rization of project funds. Class 2, contractor estimate (budget
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Cheali et al. Techno-economic risk analysis for process design

Table 1 | Cost estimate classification matrix for the process industries [adapted from Christensen and Dysert (2011)].

Estimate class Project deliverables Purpose of estimate Methodology (typical estimating method) Accuracy range (expected)a

Class 5 0–2% Concept screening Order-of-magnitude L: −20 to −50%

H: +30 to +100%

Class 4 1–15% Preliminary Equipment factored or parameter models L: −15 to −30%

H: +20 to +50%

Class 3 10–40% Budget authorization Detailed unit cost L: −10 to −20%

H: +10 to +30%

Class 2 30–75% Budget control Costs from the contractor L: −5 to −15%

H: +5 to +20%

Class 1 65–100% Construction Cost from the completed design and bidding L: −3 to −10%

H: +3 to +15%

aL corresponds to low range of estimation or underestimation; H corresponds to high range of estimation or overestimation.

control or detailed estimate). The quotation or contract estimate
is based on the front-end engineering design (FEED) including the
complete quotation of the equipment. This cost estimation is very
detailed and is generally used to make a fixed price contract and to
control the project cost. Class 1, construction (check estimates).
The bid or tender estimate is based on the completed design and
concluded negotiation on procurement.

The cost estimation has a significant impact on the project life
cycle as presented in Figure 1. At the early-stage, the possibility
to change the design (black full line) is the highest with the low-
est cost (black dashed line). Therefore, the main motivation for
investing in such a detailed analysis and treatment of cost data
uncertainties at the early-stage of process design is simply that
this stage has the highest impact on the overall project economics
and feasibility considering the typical life cycle of a project (to
move the red dashed line to the blue one). Hence, since increased
investment of time and resources is required by these analyses, it
will mean that the project cost will be high at the beginning of
the project life cycle. However, the advantage is that the improved
quality of decisions that is achieved thanks to these rather detailed
early-stage analysis efforts will translate to reduced project cost
during the later stages of the project life cycle.

In this contribution, we perform an in-depth analysis of the
issues and challenges related to performing cost data estimation,
and we develop methods and tools to properly address these issues
in order to provide a robust decision-making platform for process
synthesis and design. An assessment of the uncertainties of early-
stage cost estimation methods will be performed. In particular,
four standard models for cost estimation during the early-stage
were considered for the analysis, and will be explained in the
next section. Two different situations are considered for the uncer-
tainty characterization and the cost estimation methods: (i) when
historical cost data are available: the uncertainties of the cost esti-
mation were obtained from regression analysis using the bootstrap
regression technique. (ii) When cost data are not available: the
Monte Carlo technique in combination with expert review of
uncertainties is used.

The paper is organized as follows: (i) the methodology pro-
posed for uncertainty characterization and estimation is intro-
duced; (ii) the uncertainty estimation results are presented and
the comparison among early-stage cost estimation methods is

FIGURE 1 |The design effort and impact on the project development
[adopted fromTowler and Sinnott (2013)].

presented and discussed using bioethylene production as motivat-
ing example; and (iii) the impact of uncertainties in cost estimation
on process synthesis and design is analyzed and discussed.

MATERIALS AND METHODS
COST ESTIMATION METHODS
Estimating the manufacturing costs of a new product/process
during early-stage design can provide a good indication of the
project’s economic viability (Christensen and Dysert, 2011). Early
estimates generally used for conceptual screening have the pur-
pose of allowing businesses to assign the most suitable resources
and new/different alternatives (feedstock, technologies, or prod-
ucts) with respect to the defined specification. Anderson (2009)
reported the methods to estimate three main cost components
accordingly: (i) Variable cost. A good and insightful resource of rel-
evant information (prices and availability) about the raw materials,
and has a significant impact. If relevant information cannot be
found, the risk related to this lack of information should be quan-
tified using uncertainty analysis. The utility costs can be estimated
using a rule of thumb approach (e.g., 2% of capital investment).
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Cheali et al. Techno-economic risk analysis for process design

(ii) Capital investment. The capital investment can be estimated
using the order-of-magnitude or the Viola method, which requires
only information about capacity and capital investment for similar
existing technologies. If both the type and number of unit opera-
tions are known, the relative factor regarding each unit operation
is applied further to refine the results. The depreciation can be
estimated rapidly as well using the ratio of capital investment and
the product of project lifetime and production rate. (iii) Other
fixed costs (e.g., labor cost, maintenance). The factor-based rule of
thumb is used for estimating the other fixed costs. In addition to
the above, there are a variety of other estimation methods reported
in the literature (Petley, 1997). Those, that use the recorded capac-
ities and investment cost, are called exponent estimates. Those
that use factors to multiply equipment costs to generate an overall
investment cost are called factorial estimates. Those that use the
plant parameters and functional units known in the early-stage
design are called functional unit estimates. Those that use the pro-
duction profit to estimate the overall production cost are called
pay-back method. In this study, the four mentioned methods of
early-stage cost estimation are used. These methods require differ-
ent types of information, and therefore the results using different
cost estimation methods will be compared and discussed.

Model 1: order-of-magnitude estimates (production rate and
investment of the existing plant)
Exponent estimates are used in the early-stage design. The required
capital cost is estimated by scaling the known investment cost cor-
responding to the capacity of an existing manufacturing plant (Eq.
1). This requires no complete design information. The value of the
exponent (n) in Eq. 1 varies between 0.5 and 1 depending on the
type of manufacturing process, as explained in Table 2.

Model 1,

(
Capital cost of

the NEW plant, C2

)
=

(
Capital cost of

the OLD plant, C1

)
(

Capacity of
the OLD plant, S1

)exponent

×
(
Capacity of the NEW plant, S2

)(exponent, n);(
Capital cost of the OLD plant, C1

)(
Capacity of the OLD plant, S1

)(exponent, n)
= a (1)

It is important to note that when there are insufficient data
available, n= 0.6 can be used for a rough estimation. This case is
commonly referred as the six-tenths rule method. This approach
refers to the economy of scale, meaning that increasing capacity
of the plant decreases unit marginal production cost. The disad-
vantage of this method is the requirement of having information
available about the capacity and investment data of similar plants.
Therefore as well, this method can be particularly problematic for
new processes. This method has been further developed by esti-
mating the cost of the main equipment instead of the investment
of the entire plant (Garrett, 1989). Using this method for esti-
mating the cost during the R&D phase, the typical accuracy for
chemical processes has been found by Uppal and Gool (1992) to
be±40%. Of course, it could be better or worse depending on the
design criteria defined.

Table 2 |The range of exponents typically used in the exponent based

cost estimation methods (Towler and Sinnott, 2013).

Exponent, n Type of manufacturing process

0.8–0.9 A lot of mechanical work or gas compression (i.e.,

methanol, paper pulping)

0.7 Typical petrochemical processes

0.4–0.5 Small-scale highly instrumented processes (i.e., specialty

chemical or pharmaceuticals)

0.6 Averaged across the whole chemical industry

Model 2: Bridgewater’s methods (production rate, number of
functional units, and conversion fraction)
Factorial estimates were first introduced by Lang (1947) to esti-
mate the investment cost by multiplying the equipment costs with
a factor (Eq. 2).

C = f × E (2)

where C is the capital cost, $; f is the factor (3.10 for solid pro-
cessing; 3.63 for combined solid and fluid processing; and 4.74
for fluid processing); E is the equipment cost, $). The equipment
costs can be determined from the quotations of vendors, from pub-
lished data or by estimation using design information. The overall
factors can be divided into different categories, i.e., for founda-
tions, supports, insulation, installation, piping and contractors,
and engineering expenses. Cran (1981) suggested using a univer-
sal factor of 3.45 instead of classifying the plants into three types as
shown above. Miller (1965) reported that the factors depend on the
size of the equipment, the material of construction, and the operat-
ing pressure resulting in the effect on the average cost of each piece
of equipment in the process. The factorial method has been devel-
oped by many authors. However, this is a complicated method
considering that there are many types of components of several
manufacturers related to each process (process type, equipment,
functional units, capacity, piping, and instrumentation). More-
over, the companies generally develop their own values taking into
account their specific requirements resulting in a wide range of
the factors.

Alternatively, when the cost data for a similar process are not
available, then, the order-of-magnitude estimate can be used with
some modifications by employing the different plant sections or
functional units. For example, experienced engineers provide a
quick guideline for many petrochemical processes by consider-
ing that 20% of the investment is for the reactor and 80% is for
the distillation and product separation. This alternate approach,
called Functional unit estimates uses the process parameters and
the functional units during the early-stage design to predict the
investment cost instead of using the equipment cost and fac-
tors as in the Factorial estimates method. The method has been
derived by a statistical analysis of existing plants for determining
the sequence of significant process steps (functional units). The
method was introduced by Wessel (1953) who used the number
of processing steps to calculate the labor costs. The functional
units separate the process into these processing steps where the

www.frontiersin.org February 2015 | Volume 3 | Article 3 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Process_and_Energy_Systems_Engineering/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cheali et al. Techno-economic risk analysis for process design

Uncertainty charaterization of 

cost data

a. Bootstrap regression 

technique
b. Monte Carlo 

technique 

Data 

available

Historical data of similar 

plant/technology

Appropriate uncertainty range from 

expert judgment

Uncertainties in 

cost estimation

No
Yes

FIGURE 2 |The simplified framework of uncertainty analysis for
early-stage cost estimation.

material compositions are significantly changed, for instance, a
reaction or separation. The equipment cost (E) Eq. 2 of Factorial
estimates, is replaced by the number of functional units (U N ) as
presented in Eq. 3.

C = F × (IEC) = F ×

(
UN ×

[
Q

10

]0.6

× 30000

)
(3)

where C is the capital cost in 1954 ($); F is the Chilton factor
to allow for piping, instrumentation, facilities, engineering, con-
struction, and capacity; IEC is installed equipment cost ($); Q is
the capacity (tons per year).

Bridgewater’s method (Bridgewater and Mumford, 1979) has
been developed and applied for early capital cost estimation using
(capacity/overall conversion) as the capacity together with the
functional units as presented in Eq. 4 and the recently developed
models in Eq. 5, which are used as Model 2 for the analysis in this
study.

C = k × UN ×

[
Q

s

]x

(4)

Model 2,

Q ≥ 60000 : C = 4320× UN ×

[
Q

s

]0.675

;

Q < 60000 : C = 380000× UN ×

[
Q

s

]0.3

(5)

where C is the capital cost in 1992 (£); Q is the capacity (tons per
year); k is a constant; x is an exponent. However, determining the
value for the number of functional units UN is a major challenge
of this method due to the inconsistency of the definition of the
functional units.

Step 1: Problem formulation

Step 2: Superstructure definition

Step 3: Data collection, modeling 

and verification

Step 4: Uncertainty characterization

(Figure 3)

Step 5: Formulation, and solution of 

the optimization problem

5a. deterministic solution

5b. stochastic solution

Step 6: Risk quantification

FIGURE 3 |The highlighted step (Step 4) is expanded as presented in
the methodology section (see Materials and Methods).

Model 3: pay-back method (production rate, raw material, and
product price)
Apart from the general methods mentioned above, using the profit
and production cost can also be applied for a rough cost estima-
tion. The pay-back method (Eq. 6) estimates the plant cost by
assuming that the company would be paid back within 3–5 years
(average is 4 years, the first factor) of pay-back period, for a rough
estimate of the plant cost. The net profit is then estimated by
assuming that the raw materials costs represent 80–90% of the
total annualized cost (TAC), resulting in the second factor of 1.2.
It is important to note that this method is normally used under
the assumption that the specific project will generate a reasonable
return.

Model 3,

Plant cost = 4×
(
product sales− 1.2× raw material cost

)
(6)

Model 4: total cost of production method (production rate, raw
material, and product price)
Total cost of production (TCOP) is simpler than the pay-back
method using the raw material cost for estimating the annualized
production cost. This method (Eq. 7) is normally applied for a
large-scale production (>500,000 pieces per year). This method is
a rule of thumb method assuming that the annualized capital cost
is one-fifth of the total annualized production cost (including raw
material cost, utility cost, and annualized capital cost).
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Cheali et al. Techno-economic risk analysis for process design

Table 3 | Historical data for order-of-magnitude cost estimation (Towler and Sinnott, 2013).

No. Licensor Technology Capital cost

(MM$/a)

a=C1/S1
n S2 (tpd) S2 (MMlb/a) n Conversion

1 Generic Ethane cracking 620 9.57 1300* 1045* 0.6 0.8

2 UOP/INEOS UOP/hydro MTO 559 8.63 0.8

3 Generic LN cracker 1063 16.41 0.3

4 Generic Ethane/propane cracking 510 7.88 0.45

5 Generic Gas oil cracker 1109 17.12 0.25

*Averaged capacity of NEW plant assumed for an illustration in the motivating example section.

Table 4 |The input parameter for cost estimation using Model 1.

Model Parameter Mean SD

Model 1: Cnew plant= aSnew plant
n a 11.92 4.47

n 0.60 0

Model 4,

Plant cost = project life cycle
(
year

)
×

TCOP

5
;

TCOP = 2× raw material cost (7)

The methods reviewed above have been applied to many
cases and provide a good guideline during the decision-making
processes. However, when extrapolating to fundamentally dif-
ferent plants and processes, the accuracy of their estimation
becomes challenged due to uncertainties in their assump-
tions/factors/parameter values.

UNCERTAINTY CHARACTERIZATION AND ESTIMATION OF COST DATA
In this step, the uncertainties involved in cost estimation are
reviewed and analyzed. To this end, two different methods are
presented dealing with two distinct situations: (a) cost data avail-
able: in this case, cost data are reported from prior experiences
with plant construction and operations. In this case, the challenge
is to estimate the parameters of the cost estimation model using
the data and then to quantify the accuracy of the estimation using
regression analysis; (b) cost data not available: this case refers to
situations where new technology is developed, and hence there are
no prior experiences or the technology in question is not mature.
For this situation, the uncertainties can be characterized by using
an expert judgment and peer review procedure (Sin et al., 2009).
Once uncertainties have been defined, then the Monte Carlo tech-
nique can be used to propagate these uncertainties in the analysis.
For the aforementioned purpose, a framework for characterizing
the uncertainties of early-stage cost estimation is proposed and
presented in Figure 2.

Bootstrap regression for parameter estimation
Bootstrap regression (Efron, 1979) is a method for assigning mea-
sures of accuracy (defined in terms of bias, variance, confidence
intervals, etc.) to sample estimates. This technique allows estima-
tion of the sampling distribution of almost any statistic using only
very simple methods.

This method can be divided into three main steps: (i) Parameter
estimation; (ii) Generation of synthetic data (bootstrap sampling);
and (iii) Evaluation of the distribution of theta. The bootstrap the-
ory is briefly explained in the following using a simple non-linear
model (yi= fi (θ)+ εi) as an example.

Parameter estimation. The actual data set D(0), “measures” a set
of parameters θtrue. These true parameters are statistically real-
ized as a measured data set D(0). The data set D(0) is known as
the experimenter. The experimenter fits a model to the data by

a minimization (i.e., using least squares;
_

θ : minθ

∥∥y − f (θ)
∥∥2

)
or other techniques and obtains measured, fitted values for the
parameters, θ(0).

Generate synthetic data (bootstrap sampling). In this step, the
actual data set D(0) is then used to generate a number of syn-
thetic data sets (Ds

(1), Ds
(2), . . . , Ds

(Ns)) using bootstrap sampling,
i.e., random sampling with replacement technique. Ns indicate the
total number of samples generated. Therefore, based on the given

non-linear example, the bootstrap defines
_

F = mass 1
Ns as the

sample probability distribution of
_
ε = (yi − fi(θ̂)). Then, for the

given
_

F and
_
ε , the bootstrap sample is y∗i = fi(θ̂) + ε∗i where ε∗i

is obtained using random sampling with replacement from the

residuals
_
ε .

Evaluate distribution of theta. For each data set, the same esti-
mation procedure using least square method is performed giving
a set of estimated parameters (θs

(1), θs
(2), . . .). The distribution of

estimated values for each parameters (θs
(1), θs

(2) ) is plotted (e.g.,
histogram) for graphical analysis as well as for calculating the mean
and standard deviation for each estimated parameter.

Monte Carlo technique
Uncertainty analysis using the Monte Carlo technique can be
divided into four steps: (i) Input uncertainty characterization; (ii)
Sampling; (iii) Model evaluations; and (iv) Output uncertainty
analysis.

Input uncertainty. Based on historical data, experiences and real-
ization, and the parameters, which are inconsistent, are generally
selected as uncertain data. The parameters are then characterized
by choosing a distribution function such as a uniform or normal
distribution.
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Cheali et al. Techno-economic risk analysis for process design

Table 5 |The input parameters for three cost estimation models.

Model Parameter Mean Min Max Mean Min Max

(−50 to −20%) (+30 to +100%)

Model 2: c =
(

4320× UN ×
[

Q
s

]0.675
)
× uncertainty factor

Model 3: c = (4× (product sales− 1.2× RM cost))× uncertainty factor Uncertainty factor 1 0.5 0.8 1 1.3 2

Model 4: c =
(
project life cycle (year)×

(
2× raw material cost

5

))
× uncertainty factor

Table 6 |The comparison of early-stage cost estimation for an ethylene production plant of 1300 tpd.

Model 1 Ranges of expert judgment Model 2 Model 3 Model 4

(MM$) SD (MM$) SD (MM$) SD (MM$) SD

Capital cost estimation 772.5 289.4 −50 to −20% 143 19 2156 288 185 25

+30 to +100% 363 45 5427 671 470 57

Sampling. The domain of uncertainty defined previously is sam-
pled to generate a list of possible future scenarios, with equal
probability of realization. In order to facilitate this task, and assure
the quality of the sampling procedure (in terms of coverage of the
uncertain space) the approach integrates a Latin Hypercube Sam-
pling (LHS) based sampling technique with the rank correlation
control method proposed by Iman and Conover (1982), in order
to reflect the correlation between the uncertain parameters in the
generated future scenarios.

Model evaluations. The generated Monte Carlo samples are then
used as discretization points to approximate the probability inte-
gral, appearing in the objective function of optimization under
uncertainty problems. The relationship between samples and out-
puts is established using a linear regression. In this regression, the
parameter βjk is the standardized regression coefficient (SRC) of
the parameter j on output k; if βjk has a negative sign, it means
that a parameter j has a negative influence on the output k; if
βjk has a positive sign it indicates that a parameter has a positive
influence on the output k; a high value of βjk means a high impact
on the output k. The sum of squares of the SRCs is equal to one(∑M

j=1 β2
jk = 1

)
.

Output uncertainty. The results are then analyzed by using a
non-parametric distribution function such as a cumulative dis-
tribution function (CDF), and frequentist statistics such as mean,
variance, and percentile analysis, etc.

MOTIVATING EXAMPLE – ESTIMATION OF UNCERTAINTY IN
COST DATA
Ethylene is an important and widely used intermediate in the
chemical industries. The production of ethylene is used as a case
study to highlight the uncertainties involved in cost estimation
methods following the systematic methodology shown in Figure 3.
The example consists of two parts: (i) bootstrap parameter esti-
mation; (ii) Monte Carlo technique with an expert judgment of
uncertainties.

BOOTSTRAP REGRESSION FOR PARAMETER ESTIMATION
Table 3 presents the capacity and investment cost of the exist-
ing plant, which can be used for estimating the capital invest-
ment using the order-of-magnitude method (Eq. 1). This infor-
mation is reported annually by SRI Consulting, Chem Sys-
tems, NREL, or NETL. As presented in Table 3, there are five
data points available, and the bootstrapping method is therefore
applied.

Consequently, these data (Table 3) are regressed and charac-
terized as the input parameters presented in Table 4. As shown in
Table 4, the standard deviation is significant, and therefore, the
parameter a is considered to be an uncertain parameter.

EARLY-STAGE COST ESTIMATION – MONTE CARLO TECHNIQUE
When data of similar plants are unavailable, the suggestion from
an expert can be used. In this section, the Monte Carlo sim-
ulation with expert judgment is used for uncertainty analysis
on the cost estimation. Table 5 presents the input uncertain
data for cost estimation methods, which are defined using the
uncertainty factor with respect to the cost estimation accuracy
in Class 5 (Table 1). To avoid any inaccuracy in the correla-
tion between the parameters (the production rate, overall con-
version, and the number of functional units), the uncertainty
factor value, representing the uncertainties of the estimated capi-
tal cost, is used. The input data in Table 5 consist of two sections
regarding two ranges of expert judgment: (i) lower range (under-
estimate), −50 to −20%; (ii) higher range (overestimate), +30
to+100%.

RESULTS
The results of the different cost estimation methods are presented
and compared in Table 6. Clearly, the estimation results obtained
from different models yields significant differences. This motivat-
ing example confirms the significant impact on the selection of the
methods for early-stage cost estimation. This impact on process
synthesis and design will be analyzed and discussed in the next
section.
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FIGURE 4 |The superstructure of the biorefinery network extended with bioethanol based derivatives. Biomass feedstock (1–2); thermochemical
conversion (4–22); biochemical conversion platform (23–82); ethanol-derivatives conversion (83–94); and bioproducts (95–122; FT-products, bioethanol,
ethanol-derivatives, and electricity).

PROCESS SYNTHESIS AND DESIGN OF BIOREFINERY:
IMPACT OF UNCERTAINTIES IN COST ESTIMATION ON THE
DECISION MAKING
Process synthesis and design of a biorefinery during the early-
stage has been developed earlier (Cheali et al., 2014) by applying
a systematic framework for synthesis and design of process-
ing networks. The capital investment is one of the key factors
considered for techno-economic evaluation of alternatives. The
framework (Figure 3) consists of six steps, which are briefly
recalled here.

Step 1: Problem formulation (i.e., problem definition, superstruc-
ture definition, data collection, model selection, and validation).

Step 2: Superstructure definition.
Step 3: Data collection, modeling, and verification.

The problem in this study has been defined earlier. The biore-
finery design networks resulting from earlier work are used here,
and therefore, the development of the superstructure and the data
collection/management were not repeated. However, it is necessary
to present the superstructure (Figure 4). The objective function
defined in this study was to maximize the operating profit (product
sales – operating cost – annualized capital cost).

Step 4: Uncertainty characterization. In this step, the methodol-
ogy presented earlier in Section “Materials and Methods” was
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applied to characterize the early-stage cost estimation. Since
there is very little information on the existing plant producing
bioethanol derivatives, the bootstrapping regression model could
not be applied. The Monte Carlo approach with LHS was therefore
applied instead.

Prior to any further analysis, it is important to note that there is
only an overestimation scenario (+30 to+100%) that is presented
in this context because it has a negative impact on the operating
profit of the project. An underestimation scenario is presented in
the Supplementary Material.

The input uncertainty for early-stage cost estimation is pre-
sented in Table 7. The parameters of each cost estimation method
were selected as uncertain data, and they were characterized as a
uniform distribution (mean/min/max) for two ranges of expert
judgment with respect to the accuracy range presented in Table 1.
The input uncertainties from Table 7 were then sampled for 200
scenarios.

Step 5: Formulation and solution of the optimization problem.
5a. Deterministic problem. The deterministic optimization prob-
lem is solved in this step. The result of this step is the deterministic
solution of the optimal processing path, i.e., one optimal process-
ing path on the basis of mean values representing the input data
(Table 7). The top-five ranking of maximum operating profit is
presented in Tables 8–11.

The results presented in Tables 8–11 show that there are slight
differences in the results with respect to the identification of the
optimal processing paths. Diethyl ether is predicted to be the most
profitable using Model 1, Model 2, and Model 4 for estimating cap-
ital cost. On the other hand, 1,3-butadiene is predicted as being
the most favorable product when using Model 3. Overall, the pro-
duction of diethyl ether, 1,3-butadiene, and butanol are in the
top-three ranking for every scenario.

5b. Uncertainty mapping. Instead of using a certain (mean) value
as input data, the sampling results (200 samples generated in Step
4) from the uncertainty domain were used as the input data for
the deterministic problem resulting in 200 optimal solutions.

The results (Table 12) are: (i) the probability distribution of the
objective value; and (ii) the frequency of selection of the optimal
processing path candidates under the generated uncertain samples.
These identify the promising processing paths given the considered
uncertainties.

The results show that using Model 1, there were no changes
of the optimal processing path compared to the deterministic
solution. On the contrary, using Model 3, the production of 1,3-
butadiene was more favorable confirming the results in Step 5a.
Overall, the production of diethyl ether and 1,3-butadiene were
reported to be the most favorable and profitable. The results in
this step confirm the robustness of the deterministic solutions in
Step 5a.

Step 6: Risk quantification. The results from Step 5a and Step 5b
presented previously show that the production of diethyl ether
and 1,3-butadiene are the most profitable/promising. Therefore,
these two productions were further analyzed. In this step, EBITDA
is converted (Eq. 8) into internal rate of return (IRR), which is an
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Table 8 |Top-five ranking of the optimal solutions using Model 1 (+30 to +100%) for capital cost estimation (max EBITDA of producing ethanol

derivatives).

Rank

no.

Process intervals selection Objective

value [EBITDA

(MM$/year)]

Products Production

(tpd)

TAC

(MM $/year)

Capex

(MM $/year)

1 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, diethyl ether production

246 Diethyl ether 345 83.42 23.62

2 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, 1,3-butadiene production

238 1,3-Butadiene 292 90.2 29.35

3 Wood, ammonia explosion, spyzyme enzyme hydrolysis from

AFEX, butanol production by Clostridium beijerinckii gas

stripping by CO2 and H2, distillation, butanol production

180 Butanol 118 75 15

4 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, ethanol production

133 Ethanol 590 81.3 22

5 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, ethylene oxide production

121 Ethylene oxide 544 143 25.7

Table 9 |Top-five ranking of the optimal solutions using Model 2 (+30 to +100%) for capital cost estimation (max EBITDA of producing ethanol

derivatives).

Rank

no.

Process intervals selection Objective

value [EBITDA

(MM$/year)]

Products Production

(tpd)

TAC

(MM $/year)

Capex

(MM $/year)

1 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, diethyl ether production

241 Diethyl ether 345 88 29.6

2 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, 1,3-butadiene production

240 1,3-Butadiene 292 87.4 27.44

3 Wood, ammonia explosion, spyzyme enzyme hydrolysis from

AFEX, butanol production by Clostridium beijerinckii gas

stripping by CO2 and H2, distillation, butanol production

180 Butanol 118 75 15

4 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, ethylacetate production

164 Ethylacetate 371 90 30.6

5 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, ethylene oxide production

139 Ethylene oxide 544 123 30.7

appropriate economic indicator for project evaluation. Figures 5
and 6 present the cumulative distribution of the % IRR related to
diethyl ether and 1,3-butadiene production, respectively.

Risk analysis was also performed and analyzed based on the
production of diethyl ether and 1,3-butadiene. Risk is defined as
the probability (failed to achieve the target) times the consequence
(the deviation from the target). In this study, the target is the IRR,
which is estimated based on the certain value (mean) of the input

parameter used for capital cost estimation. Table 13 presents the
risks quantified based on the two production processes (diethyl
ether and 1,3-butadiene), four cost estimation models, and the
referenced estimation (no uncertainty considered).

As presented in Table 13, the risks quantified for diethyl
ether production are lower compared to 1,3-butadiene produc-
tion except for the case where Model 3 was used. The reason for
this is that the price of diethyl ether is lower resulting in a lower

www.frontiersin.org February 2015 | Volume 3 | Article 3 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Process_and_Energy_Systems_Engineering/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cheali et al. Techno-economic risk analysis for process design

Table 10 |Top-five ranking of the optimal solutions using Model 3 (+30 to +100%) for capital cost estimation (max EBITDA of producing ethanol

derivatives).

Rank

no.

Process intervals selection Objective

value [EBITDA

(MM$/year)]

Products Production

(tpd)

TAC

(MM $/year)

Capex

(MM $/year)

1 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, 1,3-butadiene production

183 1,3-Butadiene 292 133 84

2 Wood, ammonia explosion, spyzyme enzyme hydrolysis from

AFEX, butanol production by Clostridium beijerinckii gas

stripping by CO2 and H2, distillation, butanol production

180 Butanol 118 75 15

3 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, diethyl ether production

179 Diethyl ether 345 150 93

4 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, ethanol production

133 Ethanol 590 81.3 22

5 Wood, Entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, ethylacetate production

127 Ethylacetate 371 129 67.6

Table 11 |Top-five ranking of the optimal solutions using Model 4 (+30 to +100%) for capital cost estimation (max. EBITDA of producing ethanol

derivatives).

Rank

no.

Process intervals selection Objective

value [EBITDA

(MM$/year)]

Products Production

(tpd)

TAC

(MM $/year)

Capex

(MM $/year)

1 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, 1,3-butadiene production

239 1,3-Butadiene 292 94.6 28

2 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, diethyl ether production

238 Diethyl ether 345 93.5 31.3

3 Wood, ammonia explosion, spyzyme enzyme hydrolysis from

AFEX, butanol production by Clostridium beijerinckii gas

stripping by CO2 and H2, distillation, butanol production

180 Butanol 118 75 15

4 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, ethylacetate production

161 Ethylacetate 371 95 33

5 Wood, entrained-flow gasifier, steam reforming, scrubber, acid

gas removal using amine, alcohol synthesis, mol. sieve,

distillation, ethylene oxide production

136 Ethylene oxide 544 129 33

operating profit and IRR. Moreover, Model 3 resulted in a signif-
icantly lower IRR compared to the results from the other models.
Therefore, Model 3 should be considered as invalid.

DISCUSSION
The comparison results show that different cost estimation meth-
ods lead to different results. This is because of the differences in
the assumptions and the types of data used for the estimation.

Therefore, the selection of the proper cost estimation method is
critical.

Moreover, the results show that the uncertainty impact of cost
estimation on the optimal processing paths is significant in the case
study considered for the analysis. Hence,we conclude here that cost
analysis cannot be based on a deterministic approach, but should
be done using a probabilistic approach in which uncertainties are
accounted for. Moreover, the Model 3 is found not to be preferable
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Table 12 | Uncertainty mapping and analysis: frequency of selection with respect to 200 input uncertainty scenarios.

Model Range of

expert judgment

Operating

profit (MM$/a)

Annualized capital

cost (MM$/a)

Frequency of selection

(MM$) SD (MM$) SD Diethyl ether

production

1,3-Butadiene

production

1 +30 to +100% 246.6 0.24 22.92 0.24 200/200 –

2 242 0.8 29.6 1 145/200 55/200

3 196.6 9.4 86 7.9 36/200 164/200

4 236.6 1.37 31 1.2 176/200 24/200

FIGURE 5 | Diethyl ether production: the empirical cumulative distribution function (ECDF) of the IRR estimated from four estimation models.

FIGURE 6 | 1,3-Butadiene production: the empirical cumulative distribution function (ECDF) of the IRR estimated from four estimation models.
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Table 13 | Risk analysis of the production of diethyl ether and 1,3-butadiene.

Model Diethyl ether production 1,3-Butadiene production

Referenced

estimation (%)

Estimated IRR (%),

Figure 5

Quantified

risk (MM$/a)

Referenced

estimation

Estimated IRR (%),

Figure 6

Quantified

risk (MM$/a)

1 26.2 25.6±0.31 0.24 22.7 19.1±0.91 4.9

2 24.2 20.6±0.89 0.02 25.2 21.7±0.7 6.4

3 8.9 −0.2±1.98 20.3 8 2.6±2.1 13.9

4 20.1 16.5±0.95 3.63 23.6 15.9±0.9 8.7

because the results are inconsistent compared to the other models.
The underlying reason is attributed to the fact that the Model 3
is an indirect method that requires too much input information
including the assumption of pay-back period, product sales, and
raw material cost. Hence, Model 3 is more vulnerable to input
uncertainties. On the contrary, the Model 4 – another indirect
method, uses only one assumption (raw material cost) and pro-
vides more consistent results with the cost estimation obtained
from direct methods, i.e., the Model 1 and Model 2.

In this study, IRR and EBITDA were used as economic indica-
tors according to industrial practice (Towler and Sinnott, 2013).
The results are expected to be the same as using net present
value (NPV) due to the direct relation between IRR and NPV
as presented in Eq. 8 (Towler and Sinnott, 2013).

NPV = 0− capital investment +
EBITDA

(1+ IRR)1 +
EBITDA

(1+ IRR)2

+ · · · +
EBITDA

(1+ IRR)19 +
EBITDA

(1+ IRR)20 (8)

In engineering companies, the cost estimation is usually refined
in each successive phase of the project. For example, in the detailed
engineering phase, the cost estimation will be made based on the
vendor information about pipes, tanks, etc. resulting in more accu-
rate estimates compared to the rough estimation obtained at the
early project stage using simple methods (the Model 1, 2, 3, and 4
as presented here). Hence as a future scope for further improving
the accuracy of early-stage cost models, it is recommended to cali-
brate the model parameters against more accurate cost estimation
models.

Overall the results in this study support the argument that while
the early-stage assessment of the main cost components (capital
investment and operating costs) is an approximation, these estima-
tion results can still be useful for comparing and screening among
alternatives (Anderson, 2009). Therefore, if the assumptions are
reasonable, the process alternatives that are clearly economically
infeasible can be identified early and removed from further analysis
in subsequent project design stages.

CONCLUSION
An assessment of uncertainties in early-stage cost estimation of
process synthesis and design of a biorefinery was studied and
discussed. A systematic framework was applied consisting of a
superstructure optimization based approach under uncertainty
integrated with the proposed uncertainty characterization frame-
work supporting the different types of data available (i.e., historical

data from existing plants, an expert judgment). The comparison
results from the case study on the process synthesis and design of
the biorefinery problem showed that the results are different when
using different cost estimation models. The Model 3 is found not
to be favorable in this study because the results are inconsistent
with the other models. Moreover, using the same methods includ-
ing the uncertainties resulted in a significant impact on changing
the selection of the processing paths. Therefore, the selection of
early-stage cost estimation method is critical. Furthermore, the
cost analysis cannot be based on a deterministic approach but
should be evaluated by means of a probabilistic approach in which
uncertainties are accounted for. It was found that the production
of diethyl ether and 1,3-butadiene are the most economically prof-
itable. These analyses provide useful information supporting the
future development of biorefineries.

NOMENCLATURE
Indexes

i Components

Parameters
a Constant used in order-of-magnitude method,

is defined as CAPITAL COST of OLD plant
divided by CAPACITY of OLD plant, with the
exponent

n Exponent used in order-of-magnitude method
f Factor for estimating capital cost for factorial

estimate
E Equipment cost
IEC Installed equipment cost
UN No. of functional units
s Overall conversion
x Exponent used in Bridgewater’s method

Variables
C Capital cost
Q Production rate
S Plant capacity used for order-of-magnitude

method
D Data set
Ns Number of bootstrap samples
_

F Sample probability distribution
ε Measurement error
ykk Selection of process intervals (binary)
wj,kk Selection of a piece of the piecewise

linearization (linear)
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NPV Net present value
Cn Cash flow in year
Cn Molar concentration of main product
Ncp Number of co-products
MLI Mass loss index (ratio of total mass of

undesired products to total mass of main and
co-products)

∆Tbp The smallest absolute difference between the
boiling point of the main product and the
others

TS Total score for sustainability assessment
IR Index ratio for sustainability assessment

Abbreviations
EBITDA Earnings before incoming taxes, depreciation

and amortization
RM Raw material
TCOP Total cost of production
IRR Internal rate of return

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fenrg.2015.00003/
abstract
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