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Contemporaneous presence of both oxidized and reduced forms of electron carriers
is mandatory in efficient flux by plant electron transport cascades. This requirement
is considered as redox poising that involves the movement of electron from multiple
sites in respiratory and photosynthetic electron transport chains to molecular oxygen.
This flux triggers the formation of superoxide, consequently give rise to other reactive
oxygen species (ROS) under adverse environmental conditions like drought, high, or
low temperature, heavy metal stress etc. . . that plants owing during their life span.
Plant cells synthesize ascorbate, an additional hydrophilic redox buffer, which protect
the plants against oxidative challenge. Large pools of antioxidants also preside over the
redox homeostasis. Besides, tocopherol is a liposoluble redox buffer, which efficiently
scavenges the ROS like singlet oxygen. In addition, proteinaceous thiol members such
as thioredoxin, peroxiredoxin, and glutaredoxin, electron carriers and energy metabolism
mediators phosphorylated (NADP) and non-phosphorylated (NAD+) coenzyme forms
interact with ROS, metabolize and maintain redox homeostasis.
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INTRODUCTION
During cellular respiration, the accretion of molecular oxygen
(O2) in earth’s environment allows aerobic organisms to uti-
lize O2 as the terminal electron acceptor that gives a higher
amount of energy than fermentation (Dismukes et al., 2001).
O2 gives rise to prolific reactive excited states, like reactive
oxygen species (ROS) and their derivatives during normal
metabolic activity as a consequence of various environmental
perturbations (Scandalios, 2005). ROS is a product of cellular
metabolism; however, the balance between the generation and
removal of ROS is disturbed in cellular components of plants
under stress conditions (Karuppanapandian et al., 2011). ROS
like hydroxyl radical (OH·), superoxide radical (O·−

2 ), hydro-
gen peroxide (H2O2), hydroperoxyl radical (HO·

2), alkoxy rad-
ical (RO·), peroxy radical (ROO·), singlet oxygen (1O2) and
excited carbonyl (RO∗), are cytotoxic to plants (Vellosillo et al.,
2010). Attack of ROS may results in serious damage to cel-
lular components, DNA lesions and mutations and this fre-
quently leads to irretrievable metabolic dysfunction and cell death
(Karuppanapandian et al., 2011). ROS are scavenged by vari-
ous antioxidative defense systems under steady state conditions
(Navrot et al., 2007).

Overproduction of ROS in plants is induced by various envi-
ronmental perturbations like drought, heat, high light inten-
sity (HL), salinity, chilling, herbicides, heavy metals, pathogens,
wounding, ozone (O3), atmospheric pollutants, and pho-
tosensitizing toxins which causes oxidative cellular damage

(Karuppanapandian and Manoharan, 2008; Mafakheri et al.,
2010). Reduction of a single electron from O2 results in the pro-
duction of the superoxide radicals (O·−

2 ), which is quite reactive.
Consequently, it cannot cross biomembranes and may readily
dismutated to H2O2. O·−

2 also react with NO·, another very
dominant signaling free radical species that gives rise to per-
oxynitrite (OONO−). O·−

2 leads to the formation of HO·
2 by

protonation in aqueous solutions that can cross biomembranes
and subtract hydrogen atoms from polyunsaturated fatty acids
(PUFAs) and lipid hydroperoxides, therefore initiating lipid auto-
oxidation (Halliwell and Gutteridge, 2000). H2O2 is a relatively
long-lived molecule and moderately reactive, which can dissem-
inate short distances away from its production site. H2O2 causes
inactivation of enzymes by oxidizing their thiol groups. H2O2

enables it to diffuse the damage and also act as a messenger in the
stress signaling response and thus can travel freely across mem-
branes (Moller et al., 2007). It may also trigger the production
of OH·, the most reactive oxidant in the ROS family and also
considered as one of initiation radicals for lipid peroxidation, via
Haber-Weiss/Fenton reactions that utilize the suitable transition
metals, especially, iron (Fe) (Lee et al., 2007). The products of OH·
reactions may extract signaling responses and cells sequester the
catalytic metals to metallochaperones efficiently avoiding OH·,
though it does not have signaling function (Moller et al., 2007).
It can potentially react with all biomolecules like, proteins, lipids,
pigments and DNA and almost all constituent of cells. Excess pro-
duction of ROS leads to programmed cell death (PCD), as plant

www.frontiersin.org March 2015 | Volume 3 | Article 13 | 1

ENVIRONMENTAL SCIENCE

http://www.frontiersin.org/Environmental_Science/editorialboard
http://www.frontiersin.org/Environmental_Science/editorialboard
http://www.frontiersin.org/Environmental_Science/editorialboard
http://www.frontiersin.org/Environmental_Science/about
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org/journal/10.3389/fenvs.2015.00013/abstract
http://community.frontiersin.org/people/u/213919
http://community.frontiersin.org/people/u/171041
mailto:renubhardwaj82@gmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Toxicology/archive


Kapoor et al. Redox homeostasis managers against stress

cells are not capable to scavenge these ROS (Manoharan et al.,
2005).

CONCEPT OF REDOX HOMEOSTASIS
Contemporaneous presence of both oxidized and reduced forms
of electron carriers are required by competent flux through elec-
tron transport cascades of plant. In photosynthetic and respira-
tory electron transport chains, the requirement of regular flux of
electrons to molecular oxygen from multiple sites is known as
redox poising. Despite specific oxidases catalyze the specialized
water producing reactions. Primary product of this flux is super-
oxide and other ROS are produced consequently. Superoxide
or H2O2 are generated by various enzyme systems. Due to the
reactive nature of these intermediates they are able to act as
signaling molecules; therefore their accumulation must be reg-
ulated. Accumulation of ROS is resoluted by the antioxidative
system, which further balance the metabolism of organism by
maintaining the proteins and other cellular components in an
active state (Foyer et al., 2005). Large pools of these antioxi-
dants govern the redox homeostasis, which absorb the reductants
and oxidants. ROS signaling pathways are generated by homeo-
static regulation that is achieved by antioxidant redox buffering.
Antioxidants determine the lifetime and the specificity of the ROS
signal. Generation of superoxide, H2O2 and even singlet oxygen
are coped by plant cells (Wagner et al., 2004). Moreover, due to
signaled induction of other defense systems, plants adapt very
well for the depletion of antioxidants. Cytoplasmic thiols in the
reduced state are balanced in the plants because of the low thiol-
disulfide redox potential, which is imposed by the thiol buffer,
glutathione. Though, plant cells make an additional hydrophilic
redox buffer namely ascorbate (vitamin C), which provides strong
protection against oxidative damage. However, plants also syn-
thesize tocopherols (vitamin E) that perform as key liposoluble
redox buffers. Tocopherol is considered as an effective scavenger
of other ROS including singlet oxygen species and in this case
the reduced scavenging form is regenerated by ascorbate (Foyer
et al., 2005). Moreover, it raises the array of efficient superoxide
scavenging as the tocopherol redox couple acts as affirmative mid-
point potential than that of the ascorbate pool. In plant cells, the
capability of glutathione, tocopherol and ascorbate pools to act
as redox buffers is one of significant attributes. Low activities of
ascorbate peroxidase and catalase in plants show less harsh symp-
toms of stress than those plants which lack either one of these
enzymes (Rizhsky et al., 2002). For example, tocopherol-deficient
Arabidopsis vte mutant seedlings possess large amounts of lipid
peroxides, whereas mature plants show slightly abnormal pheno-
type (Kanwischer et al., 2005). It is estimated that DNA repair and
rapid protein turnover is enhanced to recompense for improved
oxidation or loss of antioxidants.

ROLE OF REDOX-HOMEOSTASIS MANAGERS AGAINST
VARIOUS ABIOTIC STRESSES
ASCORBATE
Ascorbate (L- Ascorbic Acid/Vitamin C/AsA), a water soluble
antioxidant of universal distribution in higher plants, has been
studied for its biosynthesis, localization and presence within plant
cells, metabolic involvement and biochemistry with respect to

other antioxidants (Khan et al., 2011; Szarka et al., 2012; Gallie,
2013; Lisko et al., 2014; Venkatesh and Park, 2014; Foyer, 2015).
AsA is concentrated in photosynthetic tissues, meristematic tis-
sues, flowers, young fruits, root tips etc. . . (Gest et al., 2013). The
AsA biosynthetic pathway considers D-mannose and L- galac-
tose as primary substrates through various enzymatic reactions
(Müller-Moulé, 2008). In addition to this being the main scheme
of ascorbate generation (Smirnoff-Wheeler pathway), three other
pathways namely the L-gulose (Gul) shunt, the D-galacturonate
(GalU) pathway, and the myo-inositol (MI) route have also been
identified in plants (Venkatesh and Park, 2014). AsA is generated
on the inner mitochondrial membrane; and further transported
to different cellular components including the apoplast for con-
sumption, degeneration, and recycling (Green and Fry, 2005)
(Figure 1). Its transport within the plant system is mediated by
facilitated diffusion or active transport systems (Ishikawa et al.,
2006). Since this is such a ubiquitous antioxidant present in
plant system, it plays a wide array of roles such as scaveng-
ing of deleterious ROS produced during all sorts of abiotic and
biotic stress (Teixeira et al., 2004), central role in photosynthe-
sis (Smirnoff, 1996), as a major participant in detoxification
mechanisms focused in chloroplasts such as the water-water
cycle—WWC or the Mehler peroxidase reaction (Neubauer and
Yamamoto, 1992) and the xanthophyll cycle (Yabuta et al., 2007).

The hydrogen peroxide and superoxide radicals generated in
this reaction are reduced to water by AsA in the presence of ascor-
bate peroxidase (APX). MDA is a by-product released in this
reaction and is further converted to ascorbate either by reduced
ferredoxin of PSI (photosystem I) or by MDHA reductase using
NADH or NADPH as electron donor (Sano et al., 2005). AsA
has also been identified as an alternative electron donor of PSII;
thereby retarding the photo inactivation and ROS activity in the
thylakoid and providing protection to the entire photosynthetic
machinery (Tóth et al., 2011; Gururani et al., 2012). In addi-
tion to all this, AsA participates in the regeneration of vitamin
E and acts as a substrate for synthesis of important organic acids
such as; L-glyceric, L-oxalic acids, L-tartaric, and L-threonic acid
(Debolt et al., 2007). AsA however plays the most important

FIGURE 1 | Ascorbate metabolism in plants.
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role of guarding cells and organelles against oxidative damage by
eliminating ROS which are produced by aerobic metabolic pro-
cesses such as photosynthesis and respiration or by environmental
stresses like salt, drought, cold, and excess light; hence becoming
an imperative molecule for overall plant health and well-being.
Although there are many experimental and factual evidences
from various mutant and transgenic studies for the same, here
we discuss the relevant ones with special reference to abiotic
stresses. Elevated AsA levels and induction of cytosolic APX have
been reported in plants subjected to high light oxidative stress
(Yabuta et al., 2007). Many cytosolic and chloroplast centered
APX genes have been identified in Arabidopsis spp, Oryza spp
,Lycopersican spp. etc. . . (Koussevitzky et al., 2008; Najami et al.,
2008; Lazzarotto et al., 2011; Pang et al., 2011). Similarly, plants
under water deficit stress also over produce ascorbate to counter
fall of physiological parameters and plant survival (Dolatabadian
et al., 2009). Sesame seeds coated with AsA–PEG were subjected
to drought stress and surprisingly, recorded for a good germi-
nation percentage and index, dry weight and seedling length
(Tabatabaei and Naghibalghora, 2013). Another stress countered
by AsA is the ozone stress resulting from industrial activities
causing extensive leaf damage, fallen stomatal conductance and
photosynthesis rates in plants (Sanmartin et al., 2003). The ROS
accumulation caused due to ozone entering the apoplastic and
symplastic components through stomata leads to severe damage
to the photosynthetic machinery (Cho et al., 2011). Apoplastic
AsA forms the primal barrier against this stress by direct reac-
tion with free radicals formed by ozone (Chen and Gallie, 2005).
Ozone resistant plant species showed enhanced apoplastic ascor-
bate levels (Feng et al., 2010). Exogenously applied AsA prevented
chances of foliar injury and checked loss of photosynthetic activ-
ity caused by ozone stress (Zheng et al., 2000; Maddison et al.,
2002). Similarly, plants with over expressing DHAR genes also
showed an increased ozone tolerance and higher level of photo-
synthetic activity (Chen and Gallie, 2005). ROS generated due
to high/low temperature is also well balanced by AsA metabolic
responses in many transgenic plants such as potato, tomato, rice,
etc. . . (Tang et al., 2006; Sato et al., 2011). Increased tolerance to
temperature stress was also observed in transgenic tobacco plants
over expressing the thylakoid-bound APX gene from tomato
(Sun et al., 2010). During chilling and heat stresses, the photo-
chemical/oxidative efficiency of PSII in the transgenic lines was
observed to be higher than that of non-transformed/wild-type
plants (Wang et al., 2011), Arabidopsis spp. despite showing a

small increase in Asc content, over expressed rice DHAR gene
and showed more salt tolerance (Ushimaru et al., 2006). Tomato
seedlings over expressing a chloroplast-targeted tomato MDHAR
gene reduced membrane damage and resulted in a higher net
photosynthetic rate, higher maximal PSII photochemical effi-
ciency and increased fresh weight when subjected to low or high
temperatures (Li et al., 2010). The role of AsA in countering
metal stress is well confirmed by transgenic and mutant studies.
AsA and related enzymes such as DHAR have been expressed by
genes from Arabidopsis in tobacco for inducing greater tolerance
to aluminum and thus resulting in elevated AsA concentration in
roots after exposure to Al toxicity (Yin et al., 2010). Similarly, co-
expression of a Cu-Zn SOD and APX gene lead to an enhanced
tolerance to metal and salt stress localized within the chloroplast
of tobacco transgene constructs (Lee et al., 2007; Le Martret et al.,
2011), indicating that the beneficial effect of increasing DHAR
expression can be used in a combinatorial approach with other
enzymes involved in oxidative stress. The adverse effects of Cu
toxicity treatments on root and shoot growth was partially allevi-
ated by the treatment of test plants with AsA, thiamine (vitamin
B1) and salicylic acid (Al-Hakimi and Hamada, 2011).

GLUTATHIONE
Glutathione (GSH), a low molecular weight thiol (γ-
glutamylcysteinylglycine) is one of the most important
metabolites of the living systems (Gill and Tuteja, 2010;
Noctor et al., 2012). It has a vital role in sulfur metabolism and
translocation (Hell, 1997). It is also reported to play a significant
role in cellular metabolism and as a reductant in scavenging of
radicals in intracellular environment (Gill and Tuteja, 2010).
GSH also functions as reactive nucleophiles which help in detoxi-
fication of toxins of electrophilic nature. It is also reported to have
signaling function which responds to changes in extracellular
environment and is known for its role in regulation of gene
expression (Sanchez-Fernandez et al., 1997). It is also involved in
synthesis of phytochelatins in which it acts a precursor and aids
in binding heavy metals (Grill et al., 1989).

Biosynthesis of GSH occurs in two step process. In
first reaction, L-glutamate and L-cysteine are converted
to γ-glutamylcysteine (γ-EC) with the help of enzyme γ-
glutamylcysteine synthase (γ-ECS). γ-EC is further converted
to GSH by addition of glycine by enzyme glutathione synthase
(Figure 2). Both these reactions are carried in the presence of
ATP (Meister, 1988). Inside the cell, GSH is localized usually

FIGURE 2 | Schematic representation of GSH biosynthesis. Cys, L-cysteine; Glu, L-glutamate; γ-Glu-Cys, γ-glutamylcysteine; γ-EC synthase,
γ-glutamylcysteine synthase.
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in cytoplasm, endoplasmic reticulum, vacuoles, mitochondria,
chloroplasts and peroxisomes (Mittler and Zilinskas, 1992;
Jimenez et al., 1998). In cellular environment, glutathione is
mainly present in reduced state. Hence, oxidized form of glu-
tathione (GSSG) is present in very low proportions. Therefore,
under optimum conditions, a high GSH:GSSG ratio is main-
tained (Mhamdi et al., 2010; Noctor et al., 2011). In stressed
conditions, GSH along with ascorbate (AsA) plays a central role
in scavenging of ROS.

Many studies have indicated a correlation between levels of
H2O2 and glutathione (Noctor et al., 2012). H2O2 metabolism
via GSH involves three types of peroxidases which are ascor-
bate peroxidase (APOX), peroxiredoxin (PRX) and glutathione-
S-transferases (GSTs). APOX is a class I heme based peroxidase
and is specific to H2O2. It is involved in AsA-GSH radical scav-
enging pathway that uses NADPH to reduce H2O2 via AsA-GSH
pools (Noctor et al., 2012). In this process, APOX reduces H2O2

to H2O and AsA acts as a reductant which changes to monode-
hydroascobate (MDHA). MDHA is unstable and is converted to
AsA in the presence of enzyme monodehydroascobate reductase
(MDHAR) and NADPH. MDHA can also lead to the formation
of dehydroascobate (DHA) which further gets reduced to AsA
with the help of the enzyme dehydroascobate reductase (DHAR)
(Winkler, 1992). The reductant is this case is GSH which gets
oxidized to GSSG thereby indicating that GSH has an impera-
tive role in maintaining AsA pool in the cellular environment
(Noctor et al., 1998). GSSG is reduced back to GSH by glutathione
reductase (GR) in presence of NADPH.

The second type of peroxidases i.e., peroxiredoxins (PRX) are
thiol peroxidases which can reduce H2O2 as well as other perox-
ides thereby indicating their low specificity to H2O2 (Dietz, 2003;
Tripathi et al., 2009). PRXs are of four types and out of these, PRX
II uses GSH as a reductant while other three either use thiore-
doxin (TRX) or NADPH-thioredoxin reductase (NTR) (Pulido
et al., 2010). Glutathione peroxidases (GPX) are also included in
PRXs as they TRX-dependent peroxiredoxins (Iqbal et al., 2006;
Navrot et al., 2006). In plants, GPXs are less likely to be involved
in peroxide mediated oxidation of GSH and it is suggested that
peroxidation could be carried out by GST (Wagner et al., 2002;
Dixon et al., 2009). Many GSTs found in plants have been shown
to possess GPX like activity. Type I and type III class of GSTs
have been identified in many plants and have been reported to
actively respond to oxidative stress (Dixon et al., 1998). Some
other enzymes such as methionine sulphoxide reductase (MSR)
are also reported to carry out ROS-stimulated oxidation of GSH
(Tarrago et al., 2009). Hence, reduction of H2O2 and other perox-
ides by GSH occurs by both AsA-GSH radical scavenging pathway
and AsA independent pathway (Figure 3).

One of the important roles of GSH is synthesis of phy-
tochelatins. These are organic ligands that have the ability to
bind heavy metals and then these metal complexes are trans-
ported to vacuole (Cobbett and Goldsbrough, 2002). Enzyme
phytochelatin synthase (PCS) catalyzes the formation of phy-
tochelatins either from GSH or homologous bithiols (Ha et al.,
1999; Vatamaniuk et al., 1999). During increased concentra-
tions of heavy metals, γ-glutamylcysteine moiety from one GSH
molecule and glutamic acid from another GSH molecule are

condensed by PCS thereby releasing glycine as residue and form-
ing phytochelatin molecule which are then able to form metal
complexes (Clemens, 2006). Hence, GSH and related enzymes
play a crucial role in maintaining the homeostasis of cellular envi-
ronment and protect the plant system from adverse effects of
various stresses.

TOCOPHEROL
Tocopherol is found ubiquitously in the plant kingdom and
occurs in all the plant parts. It plays a key role in signal transduc-
tion pathways and in the gene expression regulation in different
processes such as plant defense and export of photoassimilates
(Falk and Munne-Bosch, 2010). It acts as a key lipid soluble
redox buffer. It is an important scavenger of singlet oxygen species
and also scavenges other ROS (Foyer et al., 2005). Tocopherol
role is important under the conditions of severe stress (Havaux
et al., 2005) and when stress conditions are not severe, other
antioxidants play their protective roles. Tocopherol antioxidant
activity depends on its ability of donation of its phenolic hydro-
gen to free radicals. The α-tocopherol has the highest antiox-
idant activity of all the tocopherol types, the δ-tocopherol has
the lowest and the β- and γ-tocopherols has the intermediate
activity (Kamal-Eldin and Appelqvist, 1996; Evans et al., 2002).
Tocopherol amount is tightly controlled in the photosynthetic
membranes to properly regulate the membrane stability. Role of
tocopherol in preventing lipid peroxidation has been noticed in
many reports. Lipid peroxyl radicals, which are involved in the
propagation of lipid peroxidation, are scavenged by tocopherol
(Liebler, 1993). It regulates the expression of genes involved in
lipid peroxidation (Sattler et al., 2006). Tocopherol deficiency led
to an enhancement in the lipid peroxidation in the transgenic
tobacco leaves (Abbasi et al., 2009). It was estimated that the
one molecule of tocopherol by using resonance energy transfer
could degrade 120 singlet oxygen molecules (Fahrenholzt et al.,
1974). Hydroperoxydienone intermediates this reaction, which
further gives rise to tocopherol quinone and tocopherol quinol
epoxides (Murkovic et al., 1997; Kobayashi and Dellapenna,
2008). Oxidized tocopherol can be recycled back to its reduced
form. α-tocopherol quinone has been shown to convert back
to α-tocopherol in Arabidopsis thaliana chloroplasts (Kobayashi
and Dellapenna, 2008). Interaction between carotenoids and
α-tocopherol also plays significant role during photooxidative
stress in plants. Their interaction was shown to protect the
photosystem—II of Chlamydomonas reinhardtii from the dam-
age of singlet oxygen species under herbicides stress (Trebst et al.,
2002). In the membranes, tocopherol can form complexes with
polyunsaturated fatty acid (PUFA). OH• oxidizes PUFA and form
lipid peroxyl radical from superoxide. Tocopherol gives rise to the
formation of lipid hydroperoxide from lipid peroxyl radicals. It is
efficient in breaking the chain reactions of free radicals of PUFA
produced by lipid peroxidation (Havaux et al., 2005).

Tocopherol works cooperatively with the other antioxidants
such as glutathione, ascorbate, carotenoids etc. . . and helps in
the maintenance of appropriate redox state inside the chloroplast
under various adverse environmental conditions (Munne-Bosch,
2005). Low molecular weight antioxidants such as tocopherol,
glutathione, and ascorbate form a triad and provide protection
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FIGURE 3 | Role of GSH in maintaining H2O2 homeostasis via APOX, peroxiredoxins and GST.

against abiotic stresses (Szarka et al., 2012). The increase in the
amount of these antioxidants can be achieved in two ways i.e., by
increasing their biosynthesis or by increasing their biological effi-
cacy by increasing their redox recycling. Their interdependency
plays an important role during the electron transfer step inside
a cell (Ahmad et al., 2010; Gill and Tuteja, 2010). The increase
in the α-tocopherol occurred with the increase in the ascorbate
content under the conditions of Cu stress (Collin et al., 2008).
Simultaneous loss of glutathione and α-tocopherol more severely
affected the photosynthetic apparatus stability and efficiency in
A. thaliana plants (Kanwischer et al., 2005). Coordinated action
of these three antioxidants helps in the maintenance of the redox
homeostasis in a more efficient way.

THIOREDOXIN
Thioredoxins are small (12–14 kDa) and low molecular mass
proteins, which are involved in cell redox regulation and are
ubiquitously present in all organisms from prokaryotes to eukary-
otes (Schurmann and Jacquot, 2000). These were firstly discov-
ered in Escherichia coli as an electron donor for ribonucleotide

reductase, an enzyme required for DNA synthesis (Moore, 1967).
There are two distinct families (family I and II) of thiore-
doxin which are distinguished on the basis of their amino acid
sequences. Family I includes proteins that consist of one dis-
tinct thioredoxin domain, whereas family II is composed of
proteins with one or more thioredoxin domains coupled to
additional domains (Gelhaye et al., 2004). Plants contain a com-
prehensive thioredoxin system and it is divided into six major
groups: thioredoxin f, h, m, o, x, and y on the basis of their
sequence and are localized in chloroplast, mitochondria, cytosol
and even in the nucleus. Among these thioredoxin m, x, and y are
related to prokaryotic thioredoxin and f, h, and o are specific to
eukaryotic organisms (Gelhaye et al., 2005; Collet and Messens,
2010).

Thioredoxin plays important role in plants as they are involved
in multiple processes, such as photorespiration, lipid metabolism,
membrane transport, hormone metabolism, and ATP synthe-
sis (Balmer et al., 2004). They also play important role against
various environmental stresses and also protects proteins from
oxidative aggregation and inactivation (Holmgren, 1995). A

www.frontiersin.org March 2015 | Volume 3 | Article 13 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Toxicology/archive


Kapoor et al. Redox homeostasis managers against stress

Thioredoxin “h” is required during nodule development to
reduce the ROS level in soybean roots (Lee et al., 2005).

Role of mitochondrial thioredoxin PsTrxo1 was reported in
providing tolerance against the salt stress (Marti et al., 2011).
Plants respond against salinity stress by increasing the mito-
chondrial thioredoxin activity and protect the mitochondria
from oxidative stress by stimulating the activities of antioxidative
enzymes. Thioredoxin “h” promote the mobilization of carbon
and nitrogen of the endosperm early in grain germination (Wong
et al., 2002; Shahpiri et al., 2009). Abiotic stresses elevate thiore-
doxins either on the gene level or on protein level. Data on
proteomics study showed that thioredoxins genes were upregu-
lated in rice under Cu stress (Song et al., 2013). Genomic study
of rice, revealed the significant differences in the gene expres-
sion of thioredoxin under biotic and abiotic stress conditions
(Nuruzzaman et al., 2012).

Thioredoxins play fundamental role in plant tolerance of
oxidative stress. They are involved in combating the oxidative
damage by transferring reducing power to reductases for the
detoxification of lipid hydroperoxides and thus repairing the oxi-
dized proteins (Santos and Rey, 2006). They scavenge the ROS
by modulating the antioxidative enzymes and also involved in
oxidative stress associated signaling pathway through the control
of glutathione peroxidase (Vivancos et al., 2005). Further Serrato
et al. (2004) reported a role of NADPH thioredoxin reductase
(NTR) in plant protection against oxidative stress. Deficiency of
NTR caused growth inhibition and hypersensitivity in reponse to
salinity stress, whereas NTRC knock-out mutant in Arabidopsis
expressed the role of thioredoxins against salt stress. Thus, thiore-
doxins protect the plants from oxidative damage and indicate that
thioredoxins involves in antioxidative defense system.

PEROXIREDOXINS
Peroxiredoxins (Prxs) are a group of antioxidative enzymes
including catalase, superoxide dismutase, ascorbate peroxidase,
and glutathione peroxidase. These were found firstly in barley
plants when genes Hv-1-CysPrx and Hv-2-CysPrx were cloned
from the plant (Stacy et al., 1996). Later on it was cloned in
various other plants such as Arabidopsis, Oryza sativa, Riccia flui-
tans, Spinacia oleracea, Populus spp., Nicotiana tabacum and Secale
cereal. Prxs show alike structure with basic protein and a thiore-
doxin fold, and have molecular mass ranging from 17 to 22 kDa.
On the basis of sequence similarity and catalytic mechanisms Prx
proteins are classified into four categories- (a) 1-Cys Prx, (b) Prx
II, (c) 2-Cys Prx and (d) PrxQ (Rouhier and Jacquot, 2002, 2005;
Dietz, 2003).

Abiotic stresses (drought stress, salinity stress, heavy metals
etc. . . ) are the prime threat found these days to the plants due
to changing climate and industrial revolution. During abiotic
stress, ROS production increases and represents a fundamen-
tal problem for the regular metabolism of plants. PrxQ, a type
of peroxiredoxins have been identified in photosynthetic cells,
and was noted to be participating in protection of plants against
ROS (Foyer and Noctor, 2005). Decrease in chlorophyll in PrxQ
knockout of A. thaliana was observed, suggesting its role in pro-
tection of photosynthetic enzymes (Lamkemeyer et al., 2006).
The expression profile of four Prx genes were observed under

various stresses such as NaCl, NaHCO3, PEG, CdCl2, and abscisic
acid in roots, stems and leaves of Tamarix hispida. Enhanced
expression of all the ThPrx was reported under both NaCl and
NaHCO3. Temporal and spatial specificity expression patterns
were observed under PEG and CdCl2 stress. ABA treatment has
showed different expression of ThPrxs, and it point that these
Prxs are involved in the ABA signaling pathway (Gao et al., 2012).
Genes have been identified and characterized by Vidigal et al.
(2013) encoding for Prxs in Vitis vinifera using quantitative real
time PCR under irradiance, heat and water stress. Seven vvprx
genes were identified, out of which two were more responsive
toward water stress, followed by heat stress and without major
change under high irradiance. The vvprxII-2, a recognized PrxII
was most responsive toward the heat stress. It was targeted in
the chloroplasts and thought to be correlated with abscisic acid-
dependent thermotolerance. Similarly, vvprxIIF was identified
and targeted to mitochondria and was responsive to water stress
and supposed to involve in drought tolerance through H2O2 sig-
naling. Guan et al. (2014) tried to investigate the protective role
of PrxQ during abiotic stress in Eustoma grandiflorum Shinn. The
capacity of biosynthesis of PrxQ was increased in plant by using
the overexpression of the PrxQ gene (SsPrxQ) from Suaeda salsa.
This SsPrxQ gene was expressed in E. grandiflorum. Enhanced
antioxidant activity and thioredoxin dependent peroxidase activ-
ity was shown by rPrx proteins. Improved tolerance to salt and
high light intensity was also noticed due to overexpression of
SsPrxQ. It has been reported that in Chinese cabbage under heat
shock and oxidative stress, 2-Cys Prx change its protein struc-
ture from a low molecular weight to high molecular weight (Kim
et al., 2009). Enhanced tolerance to methyl viologen-mediated
oxidative stress and high temperature was observed by the over-
expression of At2-cys Prx in potato (Solanum tuberosum) (Kim
et al., 2011). It has been observed by Jing et al. (2006) that
tolerance to the salt and cold stress improves with the overex-
pression of PrxQ from S. salsa in A. thaliana. Overexpression
of PrxQ in transgenic maize indicated the increased stress tol-
erance against oxidative stress and fungal diseases (Kiba et al.,
2005). Similarly, overexpression of an Arabidopsis 2-Cys Prx in
transgenic tall fescue (Festuca arundinacea) showed more resis-
tance against heat and methyl viologen stress in comparison to
control plants. In these plants, less electrolyte leakage and thio-
barbituric acid-reactive substances (TBARS) were also observed
(Kim et al., 2010). A gene VrPrx which encodes for the 2-Cys
Prx has been isolated from the mungbean and studied for the
antioxidant activity in vitro. Overexpression of VrPrx in trans-
genic Arabidopsis showed enhanced antioxidant activities and
photosynthetic efficiency under abiotic stress (Cho et al., 2012).

GLUTAREDOXIN
Glutaredoxins (GRX) are omnipresent proteins of approximately
100 amino-acid residues (Fernandes et al., 2005). Glutaredoxins
act as redox enzymes to catalyze the reduction of disulfides
by using reduced glutathione (GSH) as a cofactor (Holmgren,
1988, 1989; Holmgren and Gleason, 1988). Glutaredoxins get
oxidized by substrates, and are reduced non-enzymatically by
glutathione. There is no explicit oxidoreductase to reduce glutare-
doxins therefore; oxidation of glutathione is required to reduce
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the glutaredoxins. The oxidized glutathione is then renewed by
GR and these mechanisms collectively make up the glutathione
system (Holmgren and Fernandes, 2004). The line of function of
glutaredoxin is analogous to thioredoxin. GRX holds an active
center disulfide bond. According to their redox-active center,
they are subgrouped in six classes of the CSY[C/S]-, CGFS-,
CC-type, and three groups with additional domain of unknown
function. The CC-type GRXs are only found in higher plants
(Nilsson and Foloppe, 2004). In A. thaliana, about 30 GRX iso-
forms are discovered whereas 48 are discovered in O. sativa L.
(Rouhier et al., 2008). GRX operates in antioxidant defense by
reducing dehydroascorbate, peroxiredoxins, and methionine sul-
foxide reductase. The glutathione/glutaredoxin system is one of
the important cellular factors that have been implicated in the
regulation of redox homeostasis (Grant, 2001).

GRX can be engineered to attain enhanced oxidative stress
tolerance in plants and using the transgenic plants to inves-
tigate redox-controlled processes in temperature stress toler-
ance. Transgenic expression of fern Pteris vittata glutaredoxin
PvGrx5 in A. thaliana increases plant tolerance to high temper-
ature stress and reduces oxidative damage to proteins (Sundaram
and Rathinasabapathi, 2010). It is observed that homozygous
lines expressing PvGRX5 possess considerably better tolerance to
high temperature stress than the vector control and wild-type,
and this is related to leaf glutaredoxin specific activities. Cheng
et al. (2011) reported that Arabidopsis monothiol glutaredoxin,
AtGRXS17, is critical for temperature-dependent postembryonic
growth and development via modulating auxin response. Further,
AtGRXS17 has played role in anti-oxidative stress and thermo-
tolerance in both yeast and plants (Wu et al., 2012). Ectopic
expression of Arabidopsis glutaredoxin AtGRXS17 increases
thermotolerance in tomato. Ectopic expression of AtGRXS17
in tomato plants reduces photo-oxidation of chlorophyll and
decrease oxidative injury of cell membrane systems under heat
stress (Wu et al., 2012).

A glutaredoxin gene SlGRX1 regulates plant responses to
oxidative, drought and salt stresses in tomato (Guo et al., 2010).
A novel cDNA fragment (SlGRX1) from tomato was isolated and
characterized. This fragment encoded a protein containing the
consensus GRX family domain with a CGFS active site. SlGRX1
was articulated in all places in tomato including root, stem, leaf,
and flower. The expression of SlGRX1 could be induced by oxida-
tive, drought, and salt stresses. Enhancement in sensitivity to
oxidative and salt stresses with reduced relative chlorophyll con-
tent, and decreased tolerance to drought stress with decreased
relative water content were observed after applying virus-induced
gene silencing of SlGRX1 in tomato. Quite the opposite, resis-
tance of plants to oxidative, drought, and salt stresses increased
considerably by over-expression of SlGRX1 in Arabidopsis plants.
The study clearly suggested that the glutaredoxin gene SlGRX1
plays an important role in regulating abiotic tolerance against
oxidative, drought, and salt stresses. GRXs also attribute to the
high tolerance of in Caulobacter crescentus to heavy metals specif-
ically cadmium and chromate (Hu et al., 2005). A GRX of the
fern P. vittata PvGRX5 is involved in arsenic tolerance (Sundaram
and Rathinasabapathi, 2010). It acts as a sensor of oxidative stress
mediated by H2O2 (Song et al., 2002).Glutaredoxin GRXS13

plays a key role in protection against photo-oxidative stress in
Arabidopsis as its expression reduces the photo-oxidative stress
generated free radicals (Laporte et al., 2012).

NAD/NAD(P)
Nicotinamide adenine dinucleotide (NAD) and its derivative
nicotinamide adenine dinucleotide phosphate (NADP) are pyri-
dine nucleotide coenzymes that act as cardinal metabolites
involved in plant cellular redox homeostasis (Hashida et al.,
2009). They occur ubiquitously in all living cells (Noctor et al.,
2006). These coenzymes occur as redox couples, NAD+/NADP+
are oxidized forms and there counter reduced forms are
NADH/NADPH. The ratio of oxidized to reduced form i.e.,
NAD(P)+/NAD(P)H is known as redox state of a cell and
is important signal connecting metabolic state of cell and
its gene expression (Schafer and Buettner, 2001; Jambunathan
et al., 2010). NADH plays central role as electron shuttle
between TCA cycle and mitochondrial electron transport chain.
NADP+/NADPH acts as important energy storage and trans-
ferring molecule in light and dark photosynthetic reactions.
NADH and NADPH also act as reducing equivalents in vari-
ous catabolic and anabolic processes like nucleic acid and lipid
synthesis (Potters et al., 2010). Besides their role as cofactors in
energy producing and other metabolic reaction they play key
role in redox signaling associated with stress and development by
modulating both ROS generation and ROS scavanging (Noctor
et al., 2006; Hashida et al., 2009). ROS scavenging is also partly
maintained by ascorbate-glutathione cycle and NADP(H) main-
tains redox flux in this cycle (Noctor et al., 2006). NAD also
regulates cellular processes like calcium signaling via NAD derived
cyclic ADP-ribose and transcription and microtubule metabolism
via deacetylation and/or mono/poly(ADP-ribosy)lation (Hashida
et al., 2009).

As, NAD(H) and NADP(H) play discrete physiological roles,
maintenance of balance between NAD(H)/NADP(H) is essential
for cell survival under normal and stress conditions (Takahara
et al., 2010). NADP is generated by adenosine triphosphate (ATP)
dependent phosphorylation of NAD catalyzed by NAD kinases
(NADK). Decline in levels of pyridine nucleotide as caused under
stress induces NAPK which in turn increases NADP(H) levels at
expense of NAD(H) (Grose et al., 2006). In Arabidopsis, oxida-
tive stress caused by stressed environmental conditions induces
expression of NADK1 and NADK3 gene (Berrin et al., 2005; Chai
et al., 2005).

Biotic and abiotic stresses cause oxidative stress in plants
due to over accumulation of ROS. Oxidative stress may cause
damage to organelles, lower antioxidant levels, oxidize pro-
teins, DNA nicking, and ultimately leading to cell death. Among
various defense responses against ROS is plants is poly(ADP-
ribosyl)ation (PAR) reaction (Ishikawa et al., 2009). PAR is a
post-translational protein modification catalyzed by poly(ADP-
Rib)polymerase (PARP) utilizing NAD+ and ATP. PARP cat-
alyzes addition of branched polymers of ADP-Rib on a target
protein synthesizing a protein-bound poly(ADP-ribose). These
PARP proteins confers resistance to oxidative stress by regu-
lating important cellular processes such as DNA synthesis and
repair, chromatin synthesis, cell death, and stress responses to
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genotoxic stress (Noctor et al., 2006; Ogawa et al., 2009). One of
the early responses toward DNA damage caused due to oxidative
stress is activation of PARP (Ame et al., 1999). Plant possesses
two PARP genes; parp1 and parp2 are induced under oxida-
tive stress (Block et al., 2005). Level of PARP induced in plants
under stress is directly proportional to severity of stress (Ha and
Snyder, 1999). Since these defense responses like PAR over con-
sumes NAD(P), they lead to depletion of NAD concentration.
Inhibition of PARP alleviates NAD depletion and ATP consump-
tion diminishing cell death and enhanced tolerance to abiotic
stresses (Noctor et al., 2006). Silencing of PARP in Arabidopsis
and oil seed produced lines that were resistant to broad spectrum
of abiotic stresses due to reduce NAD+ consumption and alter-
ation in abscisic levels (Block et al., 2005; Vanderauwera et al.,
2007).

Nudix (nucleoside diphosphates linked to some moiety X)
hydrolases, hydrolyse nucleoside diphosphate derivates. They act
house-cleaning enzymes and play role in maintains PAR and
NAD(H) homeostasis (Ge and Xia, 2008). Twenty nine hydro-
lases have been identified in A. thaliana (Kraszewska, 2008).
In A. thaliana overexpression of AtNUDX2 enhanced tolerance
toward oxidative stress by hydrolyzation of ADP-ribose thereby
maintaining NAD+ and ATP levels (Ogawa et al., 2009). Similarly
AtNUDT7 is found to play an important role in maintain-
ing redox homeostasis by regulating balance between NADH
and NAD+ via modulating PAR reaction. Thus, it regulates
defense/stress signaling and cell death pathways under oxida-
tive stress (Ishikawa et al., 2009; Jambunathan et al., 2010).
In conclusion, NAD/NADP are involved in several signaling
pathways that are colligative with stress tolerance and defense
reactions.

CONCLUSION
Aerobic life possesses a worldwide characteristics of redox signal
transduction honed through evolution to poise information from
metabolism and the environment. Information regarding plant
health, principally in terms of strength for defense is fulfilled by
both oxidants and antioxidants signaling. Between plant cell stress
perception and physiological responses, antioxidants play signifi-
cant role as a signaling compounds as they also possess a vibrant
metabolic interface. Redox homeostasis managers set thresholds
for apoplastic and cytoplasmic signaling also act as intermediary
of the intracellular redox potential.
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