

²²²Rn and ²²⁰Rn levels of Mansa and Muktsar district of Punjab, India

Rohit Mehra*, Pargin Bangotra and Kirandeep Kaur

Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India

In this study ²²²Rn (Radon) measurement were performed in water and soil gas and also both ²²²Rn and ²²⁰Rn concentrations were determined in air of Mansa and Muktsar district of Punjab, India. The data then used for calculation of the annual effective dose for health risk assessment of public. Totally 35 locations have been selected for the measurements. All measurements (²²²Rn and ²²⁰Rn) were done with RAD7 detection system. The ²²²Rn concentration in the water of studied area varies from 0.4 ± 0.2 Bq I⁻¹ to 17 ± 2.8 Bq I⁻¹. The average value of ²²²Rn concentration in soil, ²²²Rn and ²²⁰Rn concentration is 13 µSv a⁻¹ and for indoor air samples is 2.3 mSv a⁻¹. It has been observed that ²²²Rn concentration in water has increased with depth of groundwater.

OPEN ACCESS

Edited by:

Anna Cook Jeng, Old Dominion University, USA

Reviewed by:

Mutlu Içhedef, Ege University Institute of Nuclear Sciences, Turkey Efstratios Vogiannis, Evangeliki Model School of Smyrna -Athens, Greece

*Correspondence:

Rohit Mehra, Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India mehrar@nitj.ac.in

Specialty section:

This article was submitted to Environmental Health, a section of the journal Frontiers in Environmental Science

> Received: 19 January 2015 Accepted: 24 April 2015 Published: 18 May 2015

Citation:

Mehra R, Bangotra P and Kaur K (2015) ²²²Rn and ²²⁰Rn levels of Mansa and Muktsar district of Punjab, India. Front. Environ. Sci. 3:37. doi: 10.3389/fenvs.2015.00037 Keywords: ²²²Rn (radon), ²²⁰Rn (thoron), ingestion, inhalation, annual effective dose, PAEC

Introduction

²²²Rn is a radioactive inert gas that is a decay product of radium in the naturally occurring uranium series. The measurement of ²²²Rn in the environment is of great interest due to its alpha emitting nature. A certain fraction of the ²²²Rn escapes into the air, where in the outdoors; it is quickly diluted and is of no further concern. However, in confined spaces such as homes and office buildings, ²²²Rn can accumulate to harmful levels. The main source of indoor ²²²Rn and ²²⁰Rn levels are the building material, soil and tap water. ²²²Rn monitoring in soil involves either measuring ²²²Rn in soil or measuring the ²²²Rn flux from a soil, but the former measurement is more easy and quick by using the active technique of ²²²Rn monitoring (Ruckerbauer and Winkler, 2001). ²²²Rn is responsible for about half of the radiation dose received by the general population (UNSCEAR, 1994). The inhalation of ²²²Rn and its progeny contributes more than 50% of the total dose from natural sources (UNSCEAR, 2000). A high value of the ²²²Rn concentration in the particular geological area can be health hazard and will be the cause of lung Cancer for the residents of that area (Sevc et al., 1976; Khan, 2000). The ²²²Rn from water contributes to the total inhalation risk associated with ²²²Rn in indoor air. The high values of ²²²Rn concentration in drinking water also lead to significant risk of stomach and gastrointestinal Cancer (Zhuo et al., 2001; Kendal and Smith, 2002).

As reported in earlier studies the concentration of Th, U, Pb, Cr, Ni, F and SO₄ are higher than the permissible limits in soil of South western Punjab (Kochhar et al., 2006; Mehra, 2009), so a study has been carried out in the Mansa and Muktsar area to make assessment of ²²²Rn exposure for screening purpose and for investigating the geographical variation of the ²²²Rn concentration as well as for the health-related hazards of the locality if any.The main objective of this work is to assess the indoor ²²²Rn and ²²⁰Rn Concentrations, soil gas concentration, ²²²Rn concentration in water and the average annual effective dose to the population.

Geology

The scattered outcrops of the Aravali-Delhi Subgroup occur at Tosham (Haryana) just south of the study area i.e., Mansa and Muktsar districts as shown in **Figure 1**. The soil in the study area falls in the arid and moisture regime. The soils associated with alluvial planes shows better indurations and mature development of soil profile. They are composed of different layers of clay, sticky clay and fine to coarse grained micaceous sandstone (Kochhar et al., 2006).

Experimental Setup

An active technique RAD-7 in different modes has been used to measure the ²²²Rn and ²²⁰Rn concentration in air, water and soil of 35 locations in vicinity of Mansa and Muktsar districts of Punjab, India.

²²²Rn and ²²⁰Rn Measurement in Air

The measurement of 222 Rn and 220 Rn concentration in indoor air has been taken using RAD7 air accessories for continues 48 h protocol. EPA test protocols have been used for operating the RAD7 in indoor air (USEPA, 1993). The doors and windows of the houses were closed for at least 12 h before the measurement of 222 Rn and 220 Rn in air. The detector has an ability to distinguish alpha particles from 218 Po and 214 Po with energies of 6.0 and 7.9 MeV. RAD7 can measure the 222 Rn concentration > 0.4 Bq m $^{-3}$ and < 750,000 Bq m $^{-3}$.

²²²Rn Measurement in Water

The sampling locations of studied area have been chosen with great care and an attempt has been made to cover most of the area of study region. The in situ measurement of water samples was made using RAD- H_2O accessories. The RAD- H_2O uses a standard pre-calibrated degassing system and preset protocols, built into the RAD-7 which gives direct reading of ²²²Rn concentration in water. A 250 ml vial has been used to collect the samples of water from various locations. A Wat– 250 protocol and grab mode with 5 min cycle and four recycles have been used to run the instrument for the estimation of ²²²Rn in Water. The water samples have been collected from each village by varying the depth of ground water, surface water and tap water.

Soil Gas Measurement

For analysis of ²²²Rn concentration in soil gas the measurements were done in same 35 locations and four measurements were done at each location. The pilot rod has been hammered into the ground to the depth required for sampling. Once the rod has been successfully driven to the required depth, the pilot rod has been removed for the penetration of drive rod along with probe more easily to sampling site. The drive rod has been positioned inside the probe and continuously hammered the rods together into the sampling site. When drive rod along with probe has come to be required depth then removed the drive rod from the sampling site and connects the probe with RAD7 soil accessories for sucking the soil gas

from deep soil. The soil gas sucked through the tube pipe into the measuring instrument for 5 min. The gab mode and sniff protocol were used for the soil gas sampling on the measuring instrument at each site. The measurement of $^{222}\rm Rn$ and $^{220}\rm Rn$

concentration in indoor air has been taken using RAD7 air accessories for continues 48 h protocol. EPA test protocols have been used for operating the RAD7 in indoor air (USEPA, 1993).

TABLE 1 Average ²²² Rn concentration data and annual effective dose of different water sources in Mansa and I	d Muktsar Districts of Punial
--	-------------------------------

S. no	Gps coordinates		Depth (m)	²²² Rn (Bq I ⁻¹)	T (°C)	Annual effective dose of adults (μ Sv a ⁻¹)			
	Latitude	Longitude				Stomach	Lung	Total	
1	30° 10′ 09.3″ N	75° 25′ 52.0″ E	27.4	17 ± 2.8	28.3	3.6	42.8	46.4	
2	30° 06' 3.2" N	75° 34′ 11.3″ E	15.2	4 ± 0.7	24.9	0.8	10.1	10.9	
3	30° 07' 06.1" N	75° 26' 01.8" E	13.7	7 ± 2.8	26.1	1.6	18.7	20.3	
4	30° 05′ 10.6″ N	75° 20′ 55″ E	7.6	4 ± 0.9	26.8	0.8	10.1	10.9	
5	30° 05′ 9.8″ N	75° 30' 3.7" E	18.2	1 ± 0.5	26.1	0.2	2.5	2.7	
6	29° 57′ 45.1″ N	75° 32′ 75″ E	27.4	5 ± 1.4	24.9	1.1	12.6	13.7	
7	29° 58′ 22″ N	75° 23' 04.3" E	10.7	2 ± 0.4	27.7	0.4	4.3	4.6	
8	29° 55′ 35.7″ N	75° 11′ 49.6″ E	10.6	4 ± 0.7	27.1	0.7	8.9	9.6	
9	29° 56′ 49.9″ N	75° 27′ 43.2″ E	12.1	6 ± 1.3	32.1	1.2	14.7	15.9	
10	29° 56′ 22″ N	75° 33′ 18.1″ E	TW*	3 ± 0.5	26.8	0.6	7.1	7.7	
11	29° 54′ 14.6″ N	75° 37' 31.5" E	27.4	3 ± 0.2	26.4	0.7	8.2	8.9	
12	29° 54′ 19.4″ N	75° 44′ 11.3″ E	21.3	4 ± 1.5	26.4	0.8	10.1	10.9	
13	29° 52′ 32.8″ N	75° 40' 48.6" E	13.7	4 ± 0.9	26.4	0.8	10.1	10.9	
	29° 52′ 89″ N	75° 40' 56.1" E	12.1	6 ± 1.1	29.1	1.3	15.9	17.2	
14	30° 03′ 42″ N	75° 33′ 34″ E	TW	2 ± 0.1	26.8	0.3	4.1	4.5	
15	29° 47′ 50″ N	75° 19′ 59″ E	9.1	5 ± 0.4	28.3	1.1	12.6	13.7	
	29° 47′ 41″ N	75° 19′ 56, , E	15.2	4 ± 0.9	27.9	0.8	9.0	9.7	
	29° 47′ 45″ N	75° 19′ 53, , E	36.6	3 ± 0.5	27	0.6	7.6	8.2	
	29° 47′ 48.4″ N	75° 19′ 58″ E	213.4	8 ± 2.4	27.2	1.8	21.1	22.9	
16	29° 46′ 4.64″ N	75° 18′ 11.4″ E	TW	1 ± 0.5	24.2	0.3	3.3	3.6	
17	30° 10' 208" N	74° 49′ 131″ E	24.3	3 ± 0.5	26.4	0.7	7.9	8.6	
	30° 10′ 435″ N	74° 49′ 705″ E	13.7	4 ± 0.2	26.8	0.8	10.1	10.9	
18	29° 40′ 11.5″ N	75° 19′ 10.3″ E	21.3	3 ± 0.8	24.3	0.5	6.4	6.9	
19	29° 38' 26.1" N	75° 16′ 42.3″ E	TW	0.4 ± 0.2	28.3	0.1	1.0	1.1	
20	30° 3′ 362″ N	74° 36′ 732″ E	10.6	8 ± 2.1	32.8	1.6	19.3	20.9	
21	30° 47′ 824″ N	74° 51′ 514″ E	25.9	12 ± 2.4	27.7	2.6	31.1	33.7	
22	30° 12′.001″ N	74° 29'.904" E	12.1	2 ± 0.6	27.7	0.5	6.0	6.5	
23	30° 24′ 26.8″ N	74° 31′ 52″ E	TW	1 ± 0.7	22.2	0.2	2.9	3.1	
24	30° 12′ 41.1″ N	74° 9′ 51.6″ E	17.0	2 ± 0.3	27.1	0.5	5.4	5.9	
25	30° 38′ 367″ N	74° 63' 963" E	15.2	6 ± 1.7	27.1	1.4	16.2	17.6	
	30° 22′ 920″ N	74° 63′ 618″ E	TW	2 ± 0.6	27.7	0.4	5.0	5.5	
26	30° 18′ 40.5″ N	75° 31′ 45.1″ E	21.3	14 ± 1.4	27.7	3.0	35.7	38.6	
	30° 18′ 23.9 ″ N	74° 23' 80" E	TW	2 ± 0.2	26.8	0.4	5.0	5.5	
27	30° 10′ 0.45″ N	74° 21′ 7.7″ E	TW	1 ± 0.4	23.5	0.2	2.4	2.6	
28	30° 10′ 54.5″ N	74° 30′ 8.7″ E	10.6	3 ± 0.8	32.5	0.7	8.2	8.9	
29	30° 12′.6.8″ N	74° 39′ 42″ E	7.6	4 ± 1.3	29.2	0.8	9.1	9.9	
30	30° 04' 32.3" N	75° 20 '38.2" E	10.6	2 ± 0.8	28.6	0.5	5.7	6.1	
31	30° 8′ 31.5″ N	74° 32′ 18.5″ E	7.6	4 ± 1.4	29.5	0.9	10.8	11.7	
32	30° 4′ 35″ N	74° 40′ 3.6″ E	12.1	5 ± 0.6	32	1.0	11.4	12.4	
33	30° 03′ 55.9″ N	74° 37′ 204″ E	12.1	4 ± 0.8	25.8	0.8	10.1	10.9	
	30° 03′ 80.2″ N	74° 37′ 52.4″ E	10.6	7 ± 1.2	27.4	1.5	17.4	18.9	
34	29° 58′ 39.4″ N	74° 30' 20.1" E	12.1	4 ± 1.5	32.8	0.9	10.8	11.7	
35	30° 056′ 603″ N	74° 61′ 221″ E	27.4	10 ± 3.6	33.2	2.2	26.1	28.3	
	30° 056′ 191″ N	74° 61.′ 443″ E	15.2	8 ± 1.2	27.7	1.7	20.2	21.8	

TW* = Tap Water.

Theoretical Formalism

The ingestion, inhalation and annual effective dose have been calculated by Equations (1) and (2) (UNSCEAR, 2000).

$$E_{WIg}(\mathrm{mSva}^{-1}) = \mathrm{C}_{RnW} \times \mathrm{C}_{\mathrm{w}} \times (\mathrm{EDC})$$
(1)

Where E_{WIg} is the effective dose for ingestion, C_{RnW} is ²²²Rn concentration in water (kBq m⁻³) and C_w is weighted estimate of water consumption (60 la⁻¹), respectively and *EDC* is the effective dose coefficient for ingestion 3.5 nSv Bq⁻¹.

$$E_{WIh}(\mathrm{mSva}^{-1}) = C_{RnW} \times R_{aW} \times F(\mathrm{Rn}) \times \mathrm{O} \times (\mathrm{DCFR}) \quad (2)$$

where E_{WIh} is the effective dose for inhalation, R_{aW} is the ratio of ²²²Rn in air to ²²²Rn in tap water (10⁻⁴), F(Rn) is the equilibrium factor (0.4) between ²²²Rn and its decay products, *O* is the average indoor occupancy time per person (7000 h y⁻¹) and *DCFR* is the dose conversion factor for ²²²Rn exposure 9 nSv h⁻¹ (Bq m⁻³)⁻¹. The average annual effective dose for indoor ²²²Rn is calculated by Equations (3) and (4) using parameters introduced in report by UNSCEAR (2008).

$$AEDR(mSva^{-1}) = {}^{222}Rn_{air} \times F(Rn) \times O \times (DCFR)$$
(3)

Where *AEDR* (mSva⁻¹) is annual the effective dose for ²²²Rn, ²²²Rn_{*air*} is the indoor ²²²Rn concentration (Bq m⁻³) and remaining factors have been explained above.

$$AEDT(mSva^{-1}) = {}^{220}Rn_{air} \times F(Th) \times O \times (DCFT)$$
(4)

Where AEDT(mSva⁻¹) is the annual effective dose for ²²⁰Rn, ²²⁰Rn_{air} is the indoor ²²⁰Rn concentration (Bq m⁻³), *DCFR* is the dose conversion factor for ²²²Rn exposure 40 nSv h⁻¹(Bq m⁻³)⁻¹ and F(Th) is the equilibrium factor (0.1) between ²²⁰Rn and its decay products UNSCEAR (2008).

The daughter concentration of ²²²Rn and ²²⁰Rn in terms of Potential Alpha Energy Concentration (PAEC) in mWL has been calculated using Equation (5).

$$Rn_{air} \text{ or } {}^{220}Rn_{air} = \frac{PAEC (WL) \times 3700}{F (Rn) \text{ or } F (Th)}$$
(5)

Results and Discussion

Table 1 summarizes the results of measurement of ²²²Rn concentration in collected water samples of 35 villages. The ²²²Rn concentration in water samples of studied area varies from 0.4 ± 0.2 Bq l⁻¹ to 16.7 ± 2.8 Bq l⁻¹ with an average value of 4.7 Bq l⁻¹, which is lower than the recommended value of USEPA (1991). The USEPA recommended the maximum contamination level (MCL) for ²²²Rn concentration in water as 11 Bql⁻¹ (USEPA, 1991). The measured values of ²²²Rn in water of studied area are well within the safe limit of 4–40 Bq l⁻¹ (UNSCEAR, 2008).

The ²²²Rn concentration in water is lower as compared to higher value of uranium content in the nearby region of the studied area (Kochhar et al., 2006). It may be because of

the solubility of ²²²Rn in water is relatively low and with its short radio-active half life much of it will decay before it has opportunity of release from the ground water. When ²²²Rncontaining groundwater reaches the surface by natural or manmade forces, the ²²²Rn will inevitably be out gassed into the atmosphere. In some villages, the samples of ground water have been collected from different depth of ground water and tap water. It has been observed that ²²²Rn concentration in water has increased with depth of groundwater (Figure 2). The level of ²²²Rn concentration in tab water has been found to be lower than the level of ²²²Rn concentration in ground water. Tab water is actually stored ground water and ²²²Rn gas escapes out when it stored. This may be due to the surface water typically containing very low concentrations of 222 Rn, with activities below 4 Bg l⁻¹ (Hopke et al., 2000). However, concentrations of ²²²Rn in ground water may be high, depending on the aquifer or hydrogeology of the region. In most of the cases the ground water concentration is higher than the tap water. The increase in the value of ²²²Rn concentration in water with depth has been reported by many researchers as given in Table 2.

The ²²²Rn in the drinking water is the main source of the radiation doses for stomach (Ingestion dose) and lungs (Inhalation dose). The ingestion and inhalation doses in the studied area vary from 0.1 μ Sva⁻¹ to 3.6 μ Sv a⁻¹ and 1.0 μ Sva⁻¹ to 42.8 μ Sv a⁻¹ and are less the worldwide average annual of Inhalation (1.26 mSv a⁻¹) and Ingestion (0.29 mSv a⁻¹) recommended by UNSCEAR (2008). The total average annual effective dose for ²²²Rn in water is 13 μ Sva⁻¹. The annual effective dose of 0.1 mSv a⁻¹ is the safe limit of drinking water from three radioisotopes viz. ²²²Rn, ³H, and ⁴⁰K recommended by European Commission and world health organization (European Commission, 1998; WHO, 2004).

It can be seen from **Table 3** that the average Value of indoor 222 Rn and 220 Rn concentration in the vicinity of these districts are 47 ± 21 Bq m⁻³ and 39 ± 19 Bq m⁻³, respectively. These values are within the range of intervention level (200–300 Bq m⁻³) recommended by International commission on Radiological

Country	State/Districts	222 Rnin air (Bq m $^{-3}$)	C _{RnW}		222 Rn conc. in soil (kBq m $^{-3}$)	Ref.	
			Depth	(Bq I ⁻¹)	-		
USA		29.0–422	Ground water	34.2 kBq m ⁻³	12.5-280	Colmenero Sujo et al., 2004	
			Tap water	27.3 kBq m ⁻³		King and Minissale, 1994	
China		222.2-230.4	10 m	24	2.0-14	Sun et al., 2004	
		12.0-41.0	10–30 m	34		Xinwei, 2006	
			>30 m	56		Zuoyuan et al., 2002	
Kenya	Nairobi	170.3 ± 39.6	Water works	1.8 ± 0.3		Mustapha et al., 2002	
			Well water	29.0 ± 6.0			
			Spring	53.1 ± 2.5			
			River	6.5 ± 0.7			
Brazil		30.2–315	Ground water	0.95–36.00		Marques et al., 2004	
			Public water	2.35		Magalhaes et al., 2003	
			Tap water	0.39–0.45			
Pakistan	Islamabad	43.26–97.04		25.90–158	17.34–75.52	Ali et al., 2010	
	Muree	18.48-42.08		1.64–10.2	0.61-3.89		
India	Uttrakhand/						
	Budhakedar	8 ± 1 to 79 ± 5	Ground water	510 ± 10.0	1.10 ± 0.2 to 31.8 \pm 1	Prasad et al., 2008	
	Eastern doon valley	28.4-63.7	Hand pump (6–51.9 m)	44.8		Choubey et al., 2003	
			Tube well (7.6–156 m)	52.45			
India	Punjab/		Tap water	1.95	3.2-17.2	Present investigation	
	Mansa/Muktsar	47 ± 21	7–20 m	4.5			
			>21 m	7.41			

TABLE 2	The comparison of mean	222 Rn concentrations in indoor air	, water, and soil of	gas samples from different countries.
---------	------------------------	-------------------------------------	----------------------	---------------------------------------

TABLE 3 | Statistical Parameters of ²²²Rn and ²²⁰Rn concentration in indoor air samples, ²²²Rn concentration in soil samples.

Parameters	²²⁰ Rn in air (Bq m ⁻³)	²²⁰ Rn (mWL)	AEDT (mSv a ⁻¹)	²²² Rn in air (Bq m ⁻³)	²²² Rn (mWL)	AEDR (mSv a ⁻¹)	Total dose	Ratio	²²² Rn in soil (kBq m ⁻³)
Min	11.7	0.32	0.33	17.1	1.8	0.4	0.81	0.06	3.2
Max	84.3	2.28	2.36	95.7	10.3	2.4	4.02	0.46	17.2
Average	39 ± 19	1.05	1.09	47 ± 21	5 ± 2	1.2	2.33	0.22	8 ± 3
GM	34.2	0.92	0.96	44.7	4.8	1.1	2.1	0.19	7.1
Median	34.7	0.94	0.97	44.8	4.84	1.1	1.99	0.19	7.3
t-test	33.3 – 45.2	-		48.9 - 54.9	-	-	-	-	6.8 – 8.7

Protection (ICRP, 2009). The present average indoor ²²²Rn values are lower in comparison to the values reported in USA, China, Brazil, Kenya and Uttrakhand region of India but greater than Muree region of Pakistan as reported in **Table 2**.

The ratio of PAEC of ²²⁰Rn to that of ²²²Rn is in the range of 0.06–0.46. Stranden and Dixon have reported measurements on a variety of underground mines and enclosures in Norway and UK (Dixon et al., 1985; Stranden, 1985). The estimated ratios of PAEC (²²⁰Rn)/PAEC (²²²Rn) are usually within the range of 0.1–1.0. The *AEDR* (mSv a⁻¹) and *AEDT* (mSv a⁻¹) in the studied

area are varied from 0.4 mSv a⁻¹ to 2.4 mSv a⁻¹ and 0.3 mSv a⁻¹ to 2.3 mSv a⁻¹, respectively. In all the villages studied, the average *AEDR* (mSv a⁻¹) was 1.24 mSva⁻¹ which is slightly less than the worldwide average annual dose (1.26 mSv a⁻¹) recommended by UNSCEAR (2008). The ²²²Rn concentration in soil of studied area has been varied from 3.2 kBq m⁻³ to 17.2 kBq m⁻³. **Figure 3** shows the correlation coefficient for measured ²²²Rn concentration in air (*Rn_{air}*) and soil (*Rn_{soil}*). It has been found that a positive correlation (*R*² = 0.57) exits between ²²²Rn concentration in air and soil gas. The value of

²²²Rn concentration in soil is lower than the values reported in USA, Islamabad region of Pakistan and almost equivalent to china as given in **Table 2**. Using student's t-distribution with 95% confidence limit as shown in Equation (6).

$$m \pm \frac{t_{0.975}(\sigma)}{\sqrt{n-1}}$$
 (6)

Where σ is the standard deviation, m is arithmetic mean and (*n* - 1) is degree of freedom. The calculated 95% confidence limits for

References

- Ali, N., Khan, E. U., Akhter, P., Khan, F., and Waheed, A. (2010). Estimation of mean annual effective dose through radon concentration in the water and indoor air of Islamabad and Murree. *Radiat. Prot. Dosim.* 141, 183–191. doi: 10.1093/rpd/ncq160
- Choubey, V. M., Bartarya, S. K., Negi, M. S., and Ramola, R. C. (2003). Measurement of Radon and thoron concentration in atmosphere and drinking water of eastern doon valley, India. *Indoor Built Environ.* 12, 191–196. doi: 10.1177/1420326X03012003007
- Colmenero Sujo, L., Montero Cabrera, M. E., Villalba, L., Rentería Villalobos, M., Torres Moye, E., García León, M., et al. (2004). Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentration and dose assessment in the city of Aldama, Chiuahua, Mexico. J. Environ. Radioact. 77, 205–219. doi: 10.1016/j.jenvrad.2004. 03.008
- Dixon, D. W., James, A. C., Strong, J. C., and Wrixon, A. D. (1985). A Review of all Sources of Exposure to Natural Radiation in UK Mines. Radiation Safety in Mining. Toronto, ON: Canadian Nuclear Association.
- European Commission. (1998). On the Quality of Water Intended for Human Consumption. Official Journal of the European Commission. Directive 98/83/EC, Official J L 330.
- Hopke, P. K., Borak, T. B., Doull, J., Cleaver, J. E., Eckerman, K. F., Gundersen, L. C. S., et al. (2000). Health risks due to radon in drinking water. *Environ. Sci. Technol.* 34, 921–926.
- ICRP (International Commission on Radiological Protection). (2009). International Commission on Radiological Protection Statement on Radon. ICRP Ref. 00/902/09.

 222 Rn and 220 Rn in indoor air is 33.3–4.2 Bq m $^{-3}$ and 48.9–54.9 Bq m $^{-3}$, respectively. The calculated 95% confidence limits for 222 Rn in soil and water are 6.8–8.7 kBq m $^{-3}$ and 3.8–5.6 Bq l $^{-1}$, respectively.

Conclusion

It has been seen that ²²²Rn concentration in water samples are well below the recommended value. The total average annual effective dose for ²²²Rn in water is lower than reference level (0.1 mSv a⁻¹) recommended by EC and WHO organization (European Commission, 1998; WHO, 2004). It is observed that there is a positive correlation between ²²²Rn concentration in air and soil, so the soil of the study area has significant contribution to the indoor ²²²Rn concentration. The average Indoor values of ²²²Rn and ²²⁰Rn concentration in the studied areas are greater than the world average value of 40 Bq m^{-3} (UNSCEAR, 2000), but the values are in general within the range of recommended action level 200–300 Bq m⁻³ (ICRP, 2009). The estimated ratios of PAEC (²²⁰Rn)/PAEC (²²²Rn) are usually within the range of 0.1-1.0. The average annual effective dose in indoor air received by the residents of the study area is lower than the recommended action level of 1.26 mSv a^{-1} (UNSCEAR, 2008).

Acknowledgments

The authors are grateful to the Director of NIT, Jalandhar for their necessary support and facility in carrying out the experimental work and Special thanks to BRNS for their financial support under project 2011/36/28 BRNS.

- Kendal, G. M., and Smith, T. J. (2002). Dose to organs and tissues from radon and its decay products. J. Radiol. Prot. 22, 389–406. doi: 10.1088/0952-4746/22/4/304.
- Khan, A. J. (2000). A study of indoor radon levels in Indian dwellings, influencing factors and lung cancer risks. *Radiat. Meas.* 32, 87–92. doi: 10.1016/S1350-4487(99)00275-9
- King, C. Y., and Minissale, A. (1994). Seasonal variability of soil-gas radon concentration in central California. *Radiat. Meas.* 23, 683–692. doi: 10.1016/1350-4487(94)90004-3
- Kochhar, N., Gill, G. S., Tuli, N., Dadwal, V., and Balaram, V. (2006). Chemical quality of ground water in relation to incidence of cancer in parts of SW Punjab, India. Asian J. Water Environ. Pollut. 4, 107–112.
- Magalhaes, M. H., Amaral, E. C. S., Sachett, I., and Rochedo, E. R. R. (2003). Radon-222 in Brazil: an outline of indoor and outdoor measurements. J. Environ. Radioactiv. 67, 131–143. doi: 10.1016/S0265-931X(02)00175-3
- Marques, A. L., Dos Santos, W., and Geraldo, L. P. (2004). Direct measurement of Radon activity in water from natural sources using nuclear track detector. *Appl. Radiat. Isotopes* 60, 801–804. doi: 10.1016/j.apradiso.2004.01.015
- Mehra, R. (2009). Use of gamma ray spectroscopy measurements for assessment of the average effective dose from the analysis of ²²⁶Ra, ²³²Th, and ⁴⁰ K in soil samples. *Indoor Built Environ*. 18, 270–275. doi: 10.1177/1420326X09104140
- Mustapha, A. O., Patel, J. P., and Rathore, I. V. S. (2002). Preliminary report on radon concentration in drinking water and indoor air in Kenya. *Environ. Geochem. Health* 24, 387–396. doi: 10.1023/A:1020550103471
- Prasad, G., Prasad, Y., Gusain, G. S., and Romala, R. C. (2008). Measurement of radon and thoron levels in soil, water and indoor atmosphere of Budhakedar in Garhwal Himalaya, India. *Radiat. Meas.* 43, 375–379. doi: 10.1016/j.radmeas.2008.04.050

- Ruckerbauer, F., and Winkler, R. (2001). Radon concentration in soil gas: a comparison of methods. *Appl. Radiat. Isotopes* 55, 273–280. doi: 10.1016/S0969-8043(00)00389-4
- Sevc, J., Kunz, E., and Placek, V. (1976). Lung cancer in uranium miners and long term exposure to radon daughter products. *Health Phys.* 30, 433–437.
- Stranden, E. (1985). Thoron Daughter to Radon Daughter Ratio in Mines. Occupational Radiation Safety in Mining, Toronto, ON: Canadian Nuclear Association.
- Sun, K., Guo, Q., and Jianping, C. (2004). The effect of some soil characteristics on soil radon concentration and radon exhalation from soil surface. *J. Nuclear Sci. Technol.* 41, 1113–1117. doi: 10.1080/18811248.2004. 9726337
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (1994). *Ionizing radiation: Sources and Biological Effects*.
- UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation). (2000). *Exposure Due to Natural Radiation Sources*.
- UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation). (2008). Sources and Effects of Ionizing Radiation.
- USEPA (1991). National Primary Drinking Water Regulations for Radionuclides. Governmental Printing Office.
- USEPA (1993). Indoor Radon and Radon Decay Product Measurement Device Protocols. Office of Air and Radiation.

- WHO (World Health Organization). (2004). Guidelines for Drinking water Quality, 3rd Edn.
- Xinwei, L. (2006). Analysis of radon concentration in drinking water in Baoji (China) and the associated health effects. *Radiat. Prot. Dosim.* 121, 452–455. doi: 10.1093/rpd/ncl048
- Zhuo, W., Iida, T., and Yang, X. (2001). Occurrence of ²²²Rn,²²⁶Ra,²²⁸Ra and U in groundwater in Fujain province. *Chin. J. Environ. Radioact.* 53, 111–120. doi: 10.1016/S0265-931X(00)00108-9
- Zuoyuan, W., Lubin, J. H., Wang, L., Zhang, S., Boice, J. D., Cui, H., et al. (2002). Residential Radon and Lung Cancer risk in a high- exposure area of Gansu province, China. Am. J. Epidemiol. 155, 554–564. doi: 10.1093/aje/155.6.554

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Mehra, Bangotra and Kaur. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.