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Many studies have shown that microbes, which share nearly identical 16S rRNA genes,

can have highly divergent genomes. Microbes from distinct parts of the ocean also exhibit

biogeographic patterning. Here we seek to better understand how certain microbes from

the same species have adapted for growth under local conditions. The phenotypic and

genomic heterogeneity of three strains of Colwellia psychrerythraea was investigated

in order to understand adaptions to local environments. Colwellia are psychrophilic

heterotrophic marine bacteria ubiquitous in cold marine ecosystems. We have recently

isolated two Colwellia strains: ND2E from the Eastern Mediterranean and GAB14E

from the Great Australian Bight. The 16S rRNA sequence of these two strains were

greater than 98.2% identical to the well-characterized C. psychrerythraea 34H, which

was isolated from arctic sediments. Salt tolerance, and carbon source utilization profiles

for these strains were determined using Biolog Phenotype MicoArrays. These strains

exhibited distinct salt tolerance, which was not associated with the salinity of sites of

isolation. The carbon source utilization profiles were distinct with less than half of the

tested carbon sources being metabolized by all three strains. Whole genome sequencing

revealed that the genomes of these three strains were quite diverse with some genomes

having up to 1600 strain-specific genes. Many genes involved in degrading strain-specific

carbon sources were identified. There appears to be a link between carbon source

utilization and location of isolation with distinctions observed between the Colwellia

isolate recovered from sediment compared to water column isolates.
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INTRODUCTION

Understanding the diversity and geographic distribution of microbes in the environment is an
important line of investigation inmicrobial ecology.Many recent studies have sought to understand
the extent of geographic constraints on microbial communities (Martiny et al., 2006; Brown et al.,
2012; Hanson et al., 2012; Malmstrom et al., 2013). It is believed that microbes are not limited
by dispersal and therefore should be ubiquitously distributed. A recent study used 16S rRNA
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deep sequencing to demonstrate that in the oceans there is a
persistent seed bank of ubiquitously distributed microbial taxa
(Gibbons et al., 2013). These taxa are found in most marine
samples and their abundance is determined by local factors and
environmental conditions. While similar microbial taxa may be
present throughout the world’s oceans, biogeographic patterning
may be seen in the genomic diversity of these globally distributed
taxa. As suggested by Becking (1934), the environment may
select for not only the relative abundance of taxa but also for
particular phenotypes able to thrive under local conditions.
There is a possibility that natural selective pressure may drive
microbial biogeography on a genomic level. Therefore, genomic
analysis may provide key insights into the potential for microbial
biogeography.

In addition to natural selection, neutral evolution may also
play a role in determining the local diversity of microbial
populations. A recent study modeled the role of neutral
evolution in dictating biogeographic patterns in microbes found
in the surface oceans (Hellweger et al., 2014). The authors
of this study concluded that biogeographic patterns do exist
in marine systems and suggested that microbes evolve faster
than the ocean can disperse them (Hellweger et al., 2014).
This conclusion would indicate that the same species from
different parts of the ocean ought to have distinct genomic
content. In this modeling study, natural selection was ignored
and the authors were able to demonstrate that neutral evolution
was sufficient to result in biogeographic patterns. A number
of studies have previously described the fact that members of
the same microbial species show dramatic genotypic diversity
(Konstantinidis and Tiedje, 2005; Hunt et al., 2008; Luo et al.,
2011; Caro-Quintero and Konstantinidis, 2012; Shapiro et al.,
2012). This diversity is believed to confer enhanced survival
under distinct environmental conditions and thus is the result of
natural selection (Cordero and Polz, 2014).

We were interested in identifying the extent to which genomic
differences among closely related strains could be related to
adaptation to their environment. To this end, we sought
to identify phenotypic and genotypic adaptations that might
confer enhanced survival under distinct conditions found in
the ecosystems studied. If the genomic differences observed in
these strains confer phenotypic differences that are related to
distinctions in environmental conditions, it may be that these
mutations arose as a result of environmental selection for a
particular phenotype. However, if the majority of differences
do not relate to the distinct environmental conditions, it may
be that their genomes have been predominantly shaped by
neutral evolution. To test this hypothesis, we investigated the
genomic diversity of Colwellia species isolated from distinct
marine locations.

Colwellia species are psychrophilic heterotrophs found in
many cold marine environments including sea ice, polar
sediments, deep-sea trenches, and as symbionts of marine
animals (Nogi et al., 2004; Methé et al., 2005; Jung et al., 2006;
Zhang et al., 2008; Choi et al., 2010; Yu et al., 2011; Kim et al.,
2013). Colwellia have also been shown to degrade hydrocarbons
and were present at high abundance in the microbial community
that responded to the Deepwater Horizon oil spill (Baelum

et al., 2012; Redmond and Valentine, 2012; Dubinsky et al.,
2013; Gutierrez et al., 2013; Mason et al., 2014). Sequences from
Colwellia sp. have also been recovered frommarinemetagenomes
(Kennedy et al., 2008). In the current study, we isolated
representatives of Colwellia psychrerythraea from two deep-sea
basins: Eastern Mediterranean and the Great Australian Bight.
These strains were compared to a well-characterized strain of
C. psychrerythraea—strain 34H—previously isolated from arctic
sediments (Huston et al., 2000; Methé et al., 2005).

C. psychrerythraea is a model psychrophilic heterotroph and
much of our understanding of the adaptations for microbial
growth in cold environments comes from studies performed
on C. psychrerythraea 34H (Junge et al., 2003; Methé et al.,
2005; Casanueva et al., 2010; Yamauchi et al., 2012). In the
present study, phenotypic comparison was performed using the
Biolog high-throughput Phenotype MicroArray system to assess
carbon source utilization and salt tolerance. We also sequenced
the genomes of the two recently isolated strains and compared
them with the genome of strain 34H. A better understanding
of phenotypic and genomic heterogeneity of these ubiquitous
psychrophiles and the sources of heterogeneity will add to our
understanding of how genetic changes can impact diversity of
psychrophilic microbes and lead to biogeographic patterning. An
understanding of biogeographic patterning will help to clarify
the drivers of microbial biodiversity in oceans. Furthermore,
Colwellia spp. are known to be responders to various oil spills.
Therefore, differences in phenotype and genotypes of closely
related Colwellia strains from different deep sea basins may have
implications in terms of their response to potential oil spills.

MATERIALS AND METHODS

Isolation and Growth
C. psychrerythraea 34H was previously isolated from Arctic
marine sediments (Huston et al., 2000). In this study, strain
34H was routinely cultured in marine broth at temperatures
between 4 and 14◦C. C. psychrerythraea ND2E was isolated from
a water sample collected from the Eastern Mediterranean Sea at
a depth of 495m and a temperature of 13.8◦C. C. psychrerythraea
GAB14E was isolated from a water sample from the Great
Australian Bight collected at a depth of 1472m and a temperature
of 2.7◦C. Isolates were obtained by plating raw seawater on
ONR7a (Dyksterhouse et al., 1995) agar plates supplemented with
peptone (1 g/L) and 100 ppm of local crude oil. Colonies were
observed after a week of incubation at near in situ temperatures
(ND2E at 14◦C and GAB14E at 4◦C). Isolated colonies were
struck onto the same medium and transferred into liquid ONR7a
supplemented with peptone and 100 ppm of oil. Following
isolation, cultures were routinely grown in marine broth at 14◦C.

DNA Extraction and 16S rRNA Gene
Sequencing
DNA was extracted from strains ND2E and GAB14E collected
at mid log phase using the UltraClean Microbial DNA Isolation
Kit (MO BIO Laboratories, Carlsbad, CA). The 16S rRNA gene
was amplified using bacterial primers 27f and 1492r. Amplicon
were sequenced using an ABI 3730. The taxonomy of isolates was
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determined using the RDP classifier (Wang et al., 2007) on the
nearly full-length 16S rRNA gene sequences.

Phenotype Microarray for Phenotypic
Characterization
Carbon source utilization profiles were generated by the Biolog
Phenotype MicroArray (PM) technology. Cells were grown to
late log phase in marine broth, and resuspended in minimal
medium (ONR7a) lacking carbon source (Dyksterhouse et al.,
1995). Resuspended cells were inoculated into ONR7a lacking a
carbon source at a 10% inoculum concentration and inoculated
onto PM01A and PM02A panels with 1X dye H (Biolog,
Hayward, CA). Plates were incubated aerobically in a humidified
chamber at 14◦C for 14 days in duplicate. PM 09 panel was
prepared as above in ONR7a amended with 1 g/L peptone.
Positive carbon source metabolism was hand scored based
a redox reaction where the development of a purple color
indicates reduction of a tetrazolium salt named dye H to
its formazan endproduct. Dye reduction therefore, represents
positive metabolism. No color development was considered
the inability to metabolize the substrate. Color development
for the PM09 panel was scored by measuring absorbance at
560 nm.

Genome Sequencing, Assembly, and
Annotation
Genome libraries were prepared using the Nextera XT DNA
Preparation Kit (Illumina, San Diego, CA) following the standard

workflow. Genomes were sequenced on the Illumina MiSeq
TM

using a 600-cycle v3 Reagent Kit with 300 bp paired-end
reads. Genome sequencing of C. psychrerythraea ND2E and
GAB14E generated 4,796,093 and 4,469,340 paired-end reads for
ND2E and GAB14E respectively. Quality-based trimming was
performed using Trimmomatic with the following parameters:
SLIDINGWINDOW:4:15 MINLEN:36 (Bolger et al., 2014).
After quality filtering 4,152,069 and 4,029,602 paired-end reads
remained for C. psychrerythraeaND2E and GAB14E respectively
resulting in 3.35 and 3.36 Gbp of sequence data for strain ND2E
and GAB14E respectively. The average read length after quality
filtering was 218 and 229 for ND2E and GAB14E respectively.
We applied several assembly methods as described previously
(Utturkar et al., 2014) and assembly with optimal statistics were
selected as the best draft genome sequences. The genome of
C. psychrerythraea ND2E was assembled using SPAdes version
3.1 (Nurk et al., 2013) into 57 large (≥ 500 bp) contigs, with
a total genome size of 5.2 Mb. The N50 contig size for strain
ND2E was 297,116 bp with the largest contig being 643,864
bp. The genome of C. psychrerythraea GAB14E was assembled
using ABySS version 1.5.1 (Simpson et al., 2009) into 77 large
(> 500 bp) contigs, with a total genome size of 5.7 Mb. The N50

contig size for strain GAB14E was 218,121 bp with the largest
contig being 489,615 bp. The genome of C. psychrerythraea 34H
was previously sequenced and assembled into one contig (Methé
et al., 2005).

Genes were identified using the Prodigal algorithm (Hyatt
et al., 2010) as part of the Oak Ridge National Laboratory

genome annotation pipeline. The predicted CDSs were
translated and used to search the National Center for
Biotechnology Information (NCBI) nonredundant database,
UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro
databases. Non-coding genes and other features were predicted
using tRNAscan-SE (Lowe and Eddy, 1997), AND RNAMMer
(Lagesen et al., 2007).

Comparative Genomics
Average nucleotide identity (ANI) was determined using Jspecies
(Richter and Rossello-Mora, 2009). The genes shared between
taxa were determined using an all vs. all BLASTP. Proteins
that were greater than 50% identity over the length of the
gene were considered to be homologs. Pan-genome trees were
constructed using CMG biotools (Vesth et al., 2013). Strain-
specific gene families were identified using the subset function
in CMG biotools. The strain-specific genes were classified in the
KEGG categories using the BlastKOALA (Kanehisa et al., 2015).
BLAST atlas were constructed using CIRCOS (Krzywinski et al.,
2009).

Accession Numbers
The genomes of ND2E and GAB14E were deposited in Genbank.
ND2E Accession number JQED00000000. The accession
number for GAB14E is JQEC00000000. Raw sequence data
is available through NCBI Sequence Read Archive (SRA)
database under accession SRP045527 (ND2E) and SRP045528
(GAB14E).

RESULTS AND DISCUSSION

Environmental Conditions of Sampling
Sites Vary Greatly
Three Colwellia strains were isolated from distant oceanographic
basins (Figure 1). C. psychrerythraea 34H was previously isolated
from sediment collected in the Arctic (Huston et al., 2000).
Strain ND2E was isolated as part of this study from deep-sea
water from the Mediterranean Sea. GAB14E was isolated as
part of this study from deep-sea water from the Indian Ocean
in the Great Australian Bight. The environmental conditions
of the locations from which these C. psychrerythraea strains
were isolated were distinct (Table 1). The temperature and
salinity of these waters are all very different. The temperature
in the sediments from which C. psychrerythraea 34H was
isolated was 0.7◦C. Alternately, strain GAB14E was isolated
from deep-sea water that was 2.7◦C, and ND2E was isolated
from deep-sea water that was 13.8◦C. Salinity was also very
different at each of these sampling locations. The salinity at
the site of sampling for strain 34H was not reported, but
the salinity of the seawater from which GAB14E was isolated
was 35.1 psu, whereas ND2E was isolated from waters with
a salinity of 38.9 psu. While a number of environmental
variables were measured at the sampling locations for GAB14E
and ND2E (Supplemental Table 1), only temperature was
reported for the sampling location from which 34H was
derived. These differences in environmental conditions may
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FIGURE 1 | Map of sampling locations for strains 34H, ND2E, and GAB14E. Locations are shown as circles and the strain that originated from that location is

indicated by text.

TABLE 1 | Environmental conditions for sampling locations for three C. psychrerythraea.

Strain Coordinates Sample type Depth (m) In situ temperature (◦C) In situ salinity (psu) Reference

34H 79.716667, −16.233333 Surface sediment 305 0.7 NR Huston et al., 2004

ND2E 31.9716, 30.1387 Deep sea water 503 13.9 38.9 This study

GAB14E −34.545556, 130.666389 Deep sea water 1472 2.7 35.1 This study

select for distinct populations capable of surviving in those
conditions.

In addition to differences in temperature and salinity these
environments are distinct in terms of the types of available
carbon. Strain 34H was isolated from arctic sediments typically
with high organic carbon content as is the case in many sediment
environments (Jiao et al., 2010). GAB14E and ND2E were both
derived from deep water environments. Strain ND2Ewas isolated
from a sample of ultraoligotrophic Eastern Mediterranean Deep
water from a depth of 495m directly above the North Alexandria
Mud Volcano (Feseker et al., 2010). Mud volcanoes are capable
of injecting both methane as well as other carbon sources into
the overlaying seawater (Loncke et al., 2004; Mastalerz et al.,
2009). GAB14E was derived from a sample collected at 1472 m,
which should contain carbon that is quite difficult for microbes to
degrade (recalcitrant) (Jiao et al., 2010). The available carbon at
this depth has been subjected to microbial degradation through
the water column resulting in the most labile carbon being
degrader at more shallow depths. These differences in available
carbon sources may have selected for distinct profiles of carbon
source utilization for each strain.

The microbial community was profiled in these samples using
16S rRNA sequencing (Eastern Mediterranean, Techtmann et al.,
2015 and GAB, unpublished data). These Colwellia isolates were
present in both samples, albeit at low levels. ND2E was 0.005% of
recovered reads from the sample from the EasternMediterranean
and GAB14E was present at 0.02% of the community from
the Great Australian Bight sample. No community analysis
was done at the sampling location of 34H, it is therefore not

possible to know the abundance of 34H in the environment.
These abundances indicate that while these strains are present
in these three environments, they are minor components of the
community under the ambient conditions.

These Three Strains Show Differential Salt
Tolerance and Distinct Carbon Source
Utilization
In an effort to understand differential adaptation to local
conditions, the physiological response of these strains was
measured under different temperatures, salt concentrations, and
carbon sources. All three strains showed a temperature optimum
of 8◦C (Figure 2), which is in line with the previously reported
growth parameters for 34H (Methé et al., 2005). Despite the
common optimal temperature, the growth parameters were
significantly different between these strains. For example, there
were significant differences in growth rate at 4◦C for each strain
(Figure 2, Supplemental Table 2). ND2E showed the highest
growth rate at 4◦C followed by GAB14E, with 34H having the
slowest growth rate. This is contrary to expectation that strains
isolated from environments with colder temperatures would have
faster growth rates under colder temperatures. Instead, what is
observed is that strain ND2E is able to grow better under a
broad range of temperatures whereas 34H is more restricted in
temperature range.

The salinity of the environments from which these strains
were isolated also varied with ND2E coming from the high
salinity Mediterranean whereas GAB14E and 34H were derived
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FIGURE 2 | Growth rate vs. temperature. Strains were grown in marine

broth at different temperatures. Growth rate was calculated for each

temperature and strain and growth rate was plotted as function of temperature

for each strain. Error bars represent the standard error for three biological

replicates. Strain 34H is shown in blue, ND2E is shown in black, and GAB14E

is shown in gray.

from environments with salinities that were similar to other
oceanic contexts. To test the hypothesis that strains isolated from
high saline environments would have an increased tolerance
for salt, we used the PM panel PM09 to test a variety of
salt stressors. These strains exhibited differential response to
salt stress (Figure 3A). For example, strain GAB14E was able
to tolerate up to 1% higher concentration of sodium chloride
compared to the other two strains. Additionally, 34H was able
to grow at 4% urea, whereas GAB14E was only able to grow at 3%
urea and ND2E was inhibited above 2% urea. The phenotypes
resulting from the salt tolerance screen do not correlate to what
was expected based on the organisms native environment. It is
possible that the differences in the bulk salinity of the sampling
locations are at much finer scale than the 1% differences tested in
these experiments.

To investigate the carbon source utilization profiles for each
of these strains, PM panels PM01A and PM02A were used to test
metabolism of 190 carbon-based substrates. These three strains
showed positive results indicative of metabolism and possible
growth on 25 of the 190 carbon sources tested (Figure 3B). 34H
was able to grow on 16 of the 190 carbon sources. ND2E was able
to grow on 18 of the 190 substrates. GAB14E was able to grow
on 20 of the 190 substrates. Eleven of the carbon sources could
be utilized by all three strains. The eleven shared substrates were
spread between the three major groups of compounds tested—
amino acids (four substrates), carbohydrates (six substrates),
and carboxylates (one substrate). ND2E and GAB14E had 15
substrates in common, whereas ND2E had only 13 common
substrates with 34H. 34H and GAB14E shared 12 common
substrates. GAB14E was able to metabolize four substrates that
the other two strains could not. Strain 34H had two strain-specific
substrates, and ND2E only had one strain-specific substrate.

The 25 substrates that were metabolized were spread between
amino acids (nine substrates), carbohydrates (11 substrates)
and carboxylates (five substrates) (Figure 3B). Within these

categories, there was strain-to-strain variation. For example,
GAB14Ewas able to grow using the widest range of disaccharides,
whereas 34H could only metabolize one of the disaccharides
tested. Conversely, 34H could metabolize four of the 12
oligosaccharides tested, and GAB14E could only metabolize two
of the 12 oligosaccharides. Additionally, 34H was only able to
grow on two of the carboxylates tested (β-Hydroxybutyric Acid
and d-Amino Valeric Acid).

Only 11 substrates were shared between the three isolates,
indicating that the carbon source utilization profiles are quite
divergent. An understanding of the common substrates sheds
light onto the set of compounds that many Colwellia spp. are
able to metabolize. Many of these shared substrates are also
used by other species within the Colwellia, which are able to
use a large number of polymers including many oligosaccharides
(Choi et al., 2010). While the majority of the common
substrates are carbohydrates, a number of amino acids could be
metabolized. These amino acids may serve as both carbon and
nitrogen sources for Colwellia. These finding further expands
our understanding of Colwellia species by confirming that all
known Colwellia species are heterotrophs able to metabolize an
array of carbohydrates and amino acids. There is however, a large
differences in the carbon sources able to be utilized by each strain.

Since the relative concentration of each of the tested carbon
sources in these environments is not known, it is difficult
to extrapolate the selective advantage that metabolism of
a particular carbon source confers. However, these isolates
are derived from distinct environments with differing carbon
qualities. Previous studies have shown that enzymes involved in
polysaccharide metabolism are more active and able to degrade
a broader range of substrates in sediments compared to the
water column (Teske et al., 2011). ND2E was isolated from
water directly above the active North Alex Mud Volcano, which
releases gas and fluids into the overlying seawater (Feseker et al.,
2010). This process may expose the microbial community at
this site to carbon sources found in the sediments and sub-
sea floor. The microbial community from this same sample
was highly enriched in an unclassified group of Flavobacteria
(Techtmann et al., 2015) that have been shown to be involved
in polymer degradation and growth off of high molecular
weight organic matter (Fernandez-Gomez et al., 2013). This
could indicate that the microbes in this environment have been
exposed to high levels of polysaccharides typically found in
sediments. It is these findings that would suggest that 34H
would be more adept at degrading oligosaccharides and ND2E
would have the next highest potential. This is what is observed
with the phenotypes, as 34H is able to utilize four different
oligosaccharides, followed by ND2E, which can metabolize three
distinct oligosaccharides. GAB14E is only able to use two
oligosaccharides.

Genetic Heterogeneity between These
Closely Related Strains
Genome analysis is able to provide key insights into the
genotypic diversity and biogeographic patterns of microbes.
The genomes of these three species were sequenced to better

Frontiers in Environmental Science | www.frontiersin.org 5 May 2016 | Volume 4 | Article 33

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Techtmann et al. Diversity within the Colwellia psychrerythraea Species

understand the genetic diversity of Colwellia and clarify the core
and accessory genomes of these strains. The original genome
assembly of strain 34H was closed into a single contig. ND2E
was assembled into 57 large contigs (> 500 bp). The genome
of GAB14E was assembled into 77 contigs (Supplemental Table
3). The three genomes were of different sizes with ND2E
being the smallest at 5.2 Mb, followed by 34H at 5.4 Mb.
GAB14E was the largest at 5.7 Mb (Supplemental Table 3).

The G+C content was very similar between the three strains
at 38% ± 0.05. The number of predicted protein-coding genes
follows the genome size with GAB14E having the most (4691)
followed by 34H (4510) and ND2E (4381). Between 69.1 and
72.1% of the genes in these three genomes were annotated as
having a function. More than two thirds of the predicted genes
in these genomes were assigned to a cluster of orthologous
genes (COG).

FIGURE 3 | Phenotypic characterization of three C. psychrerythraea isolates. (A) Salt tolerance. The boxes on the outer circle represent each of the 90 salt

concentrations tested. Colors represent groups of salts. Boxes in circles two, three, and four represent salt concentrations that allowed for measurable metabolism

(OD560 > 0.5). Colors in circles two, three and four correspond to the isolate. Green corresponds to 34H, blue corresponds to ND2E and red corresponds to

GAB14E. The inner circle represents the salt groupings with labels. (B) Venn Diagram showing the number of shared carbon sources between the isolates. Detailed

description of the carbon sources able to support metabolism of each isolate. The boxes on the outer circle represent each of the 190 carbon sources tested. Colors

represent carbon source class and are detailed in the inner circle. Boxes in circles two, three, and four represent a carbon source that could support growth of an

isolate. Colors in circles two, three, and four correspond to the isolate. Black corresponds to 34H, gray corresponds to ND2E and purple corresponds to GAB14E.

The inner circle represents the carbon source groupings with labels.

FIGURE 4 | Genomic Comparison. (A) Venn Diagram showing shared protein families between the three strains. (B) Whole genome tree based on relative

manhattan distances of similarities of genes families. Bootstrap values of greater than 50% are shown at the nodes of the branches.

Frontiers in Environmental Science | www.frontiersin.org 6 May 2016 | Volume 4 | Article 33

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Techtmann et al. Diversity within the Colwellia psychrerythraea Species

Despite the differences observed in phenotypes between
these three strains, they did not exhibit a trend in terms of
phenotypes presumed to confer selective advantage under the in
situ conditions. Comparison of these genomes was performed
in order to understand how divergent these genomes were. To
examine genomic difference among these strains on a whole
genome level, the average nucleotide identity (ANI) for each
was compared to C. psychrerythraea 34H (Supplemental Table 3).
ND2E had an ANI of 84.5% compared to 34H, whereas GAB14E
had an ANI of 79.8% compared to 34H. While all three isolates
have 16S rRNA genes that are greater than 98.2% identical,
the average nucleotide identity is quite different. Interestingly,
the two strains with the highest identity on the 16S rRNA
gene level are the most distant when comparing the whole
genomes; the 16S rRNA gene identity for 34H and GAB14E is
99.2%, but the average nucleotide identity for these two strains
is 79.8%.

The three strains shared 2595 gene families (Figures 4A,B).
Strains ND2E and 34H were most closely related, sharing 3296
gene families. Strains 34H and GAB14E have 2723 gene families
in common. ND2E and GAB14E have 2709 gene families shared
between the two strains. GAB14E had the largest accessory
genome, with 1671 gene families only found in GAB14E. 34H
had 1249 strain-specific gene families and ND2E has 814 strain-
specific gene families.

To understand the functional significance of these large
accessory genomes, representatives of these strain-specific gene
families were categorized using KEGG categories (Table 2). The
majority of these strain-specific genes were unclassified and were
annotated as hypothetical proteins. The strain-specific genes
that could be assigned to a KEGG category were spread across
different categories. For example, strain 34H has 24 strain-
specific genes involved in carbohydrate metabolism, 24 strain-
specific genes involved in amino acidmetabolism, and to 18 genes
involved in membrane transport. Strain ND2E has eight strain-
specific genes involved in replication and repair compared to only
three and two in 34H and GAB14E, respectively. Furthermore,
strain GAB14E has 19 strain-specific genes involved in signal
transduction and nine strain-specific genes involved in cell
motility. One notable difference is in the number of strain-
specific genes classified as involved in amino acid metabolism.
GAB14E had 39 strain-specific genes classified as involved in
amino acid metabolism compared to 11 and 24 in ND2E
and 34H respectively. For the most part, these strain-specific
gene families were classified within similar KEGG categories.
This could indicate that these strain-specific genes might
encode for similar functional capacity and thus fulfill similar
roles.

Differences in Genomic Content Encode
Different Functional Capacity
Despite the fact that many of the gene families that are specific to
one organism and fall into similar categories, differences within
these categories may in part explain some of the phenotypic
differences. For example, both 34H and GAB14E are able
to grow using putrescene as a sole carbon source, whereas

TABLE 2 | KEGG categories for strain-specific genes from each of the

three isolates.

KEGG categories 34H ND2E GAB14E

Metabolism 171 119 199

Global and overview maps 76 50 97

Carbohydrate metabolism 24 23 22

Energy metabolism 10 3 6

Lipid metabolism 2 4 6

Nucleotide metabolism 2 6 5

Amino acid metabolism 24 11 39

Metabolism of other amino acids 7 3 5

Glycan biosynthesis and metabolism 6 5 7

Metabolism of cofactors and vitamins 8 4 4

Metabolism of terpenoids and polyketides 2 1 1

Biosynthesis of other secondary metabolites 1 0 3

Xenobiotics biodegradation and metabolism 9 9 4

Genetic Information Processing 7 8 5

Transcription 0 0 0

Translation 2 0 1

Folding, sorting and degradation 2 0 2

Replication and repair 3 8 2

Environmental Information Processing 28 14 34

Membrane transport 18 3 15

Signal transduction 10 11 19

Cellular Processes 4 5 13

Transport and catabolism 3 1 1

Cell motility 1 2 9

Cell growth and death 0 2 3

Organismal Systems 2 1 8

Human Diseases 8 19 6

Unclassified 1029 661 1333

ND2E is not. Putrescene has been shown to be a ubiquitous
chemical in the marine environment and can be used by marine
microbes as both a carbon and nitrogen source (Höfle, 1984).
Spermidine/Putrescine transporters are encoded in the accessory
genomes of the 34H and GAB14E and are absent from the ND2E
genome. This finding would indicate that the distinctions in the
accessory genome contribute to the phenotypic diversity. This
finding also suggests that the different gene complement can in
part explain the functional differences observed. Furthermore,
GAB14E is able to utilize both trehalose and maltose, whereas
34H and ND2E are not. The accessory genome of GAB14E
encodes a maltose binding protein and a trehalose transporter.
These differences in transporters appear to be important for
trehalose and maltose metabolism. Trehalose has the potential to
be a cryoprotectant for cells and biomolecules (Kikawada et al.,
2007; DeMaayer et al., 2014). Therefore, the presence of trehalose
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FIGURE 5 | BLAST atlas comparing homologous genes. (Outer ring) 34H positive strand genes are shown in black. (Second ring) 34H negative strand genes are

shown in orange (Third ring) Genes in ND2E with greater than 50% nucleotide identity to a gene in 34H are shown as blue lines. Darker blue lines are genes with

higher identity to the gene in 34H and lighter blue lines have are less identical to the gene in 34H. (Fourth ring) ND2E Contigs are depicted as blue blocks. (Fifth ring)

Genes in GAB14E with greater than 50% nucleotide identity to a gene in 34H are shown as red lines. Darker red lines are genes with higher identity to the gene in 34H

and lighter red lines have are less identical to the gene in 34H. (Sixth ring) GAB14E Contigs are depicted as blue blocks. (Seventh ring) Putative genomic islands as

predicted by island viewer. Genomic islands shown in red have been previously described (Collins and Deming, 2013). The genomic islands shown in blue

corresponds to one of the two previously described filamentous phage (Methé et al., 2005). One of the previously described filamentous phage that was not predicted

to be a genomic island is shown in green.

transport functionality in GAB14Emay not only confer enhanced
carbon utilization but may also allow GAB14E to use trehalose to
cope with cold conditions encountered in the deep ocean.

Large Regions of the 34H Genome Are Not
Shared with the Other Two Strains
To understand the mechanisms behind the observed genomic
heterogeneity, every gene from strains ND2E and GAB14E
were examined by BLAST analysis using the 34H genome
as a reference. Homologous genes (>50% identity) were
plotted against the 34H chromosome to identify regions of
the 34H chromosome without homologous genes in either
of the genomes of the two new isolates (Figure 5). Several
large stretches of the 34H genome were shown to have no
homologous genes in the other two strains. In some cases
the lack of homology is due to gaps in the draft genomes.
Some of these regions with gaps in homology between
the three strains are found in the middle of the contigs

in the draft sequences and flanked by regions with high
homology.

To determine if these gaps in homology are due to horizontal
gene transfers (HGT), we used Island Viewer to identify putative
genomic islands in strain 34H. Genomic islands are regions of
the genome whose sequence composition is divergent from the
overall genome averages. These genomic islands may be the
result of horizontal transfer of genes from unrelated organisms.
Island Viewer predicted nine genomic islands in the 34H
genome. Many of these genomic islands include a number
of transposases as well as some phage-related genes. These
genomic islands vary in size from 4 to 50 kb. A couple of
the regions with few homologous genes correspond to some
of the predicted genomic islands, suggesting that these gaps
in homology correspond to regions putatively obtained via
horizontal gene transfer after 34H diverged from ND2E and
GAB14E. These findings indicate that horizontal gene transfer
has contributed to the genomic diversity of these strains. While
it has been suggested that horizontal transfer can be the result of
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neutral evolution (Gogarten and Townsend, 2005), recent studies
have concluded that neutral evolution is not sufficient to explain
the frequency of HGT events in many genomes (Soucy et al.,
2015).

CONCLUSION

These genomes show large differences in genomic and
phenotypic diversity. This can be traced back to large segments
of the genome that appear to be acquired by horizontal gene
transfer. While there is some evidence that genes have been
acquired and confer increased functionality and in turn potential
selective advantage, the majority of differences do not appear
to be related to adaptation to different environmental lifestyles.
This suggests that a mixture of natural selection and neutral
evolution have contributed to the divergence of these organisms
and the great genetic and phenotypic diversity present within
this species. This study examined one isolate of a Colwellia sp.
recovered from three different locations. Further work involving
analysis of many Colwellia isolates recovered from the same
location is required to better understand Colwellia populations
in the world’s oceans in order to better quantify the core
genome. This would further identify how distinct populations

have adapted for growth under differeing environmental
conditions.
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