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Soil salinity undermines global agriculture by reducing crop yield and impairing soil

quality. Irrigation management can help control salinity levels within the soil root-zone.

To best manage water and soil resources, accurate regional-scale inventories of soil

salinity are needed. The past decade has seen several successful applications of soil

salinity remote sensing. Two salinity remote sensing approaches exist: direct assessment

based on analysis of surface soil reflectance (the most popular approach) and indirect

assessment of root-zone (e.g., 0–1 m) soil salinity based on analysis of crop canopy

reflectance. In this perspective paper, we call on researchers and funding agencies to

pay greater attention to the indirect approach because it is better suited for surveying

agriculturally important lands. A joint effort between agricultural producers, irrigation

specialists, environmental scientists, and policy makers is needed to better manage

saline agricultural soils, especially because of projected future water scarcity in arid and

semi-arid irrigated areas. The remote sensing community should focus on providing the

best tools for mapping and monitoring salinity in such areas, which are of vital relevance

to global food production.
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INTRODUCTION

Soil salinity is a major threat to crop production and sustainable agriculture (FAO and ITPS,
2015). Salinity can cause reduced plant growth, reduced yields, and in severe cases, crop failure.
In irrigated agriculture, especially in arid and semi-arid areas, the buildup of salts in the soil profile
is driven by evapotranspiration processes that remove water from soil pores while leaving salts
behind. Accumulation of salts can be avoided by applying excess irrigation water, such that salts are
leached below the root-zone (Letey et al., 2011). Unfortunately, water shortages and droughts in
arid and semi-arid areas are likely to become more frequent and severe in the future (Barnett et al.,
2008; Cayan et al., 2010), thus increasing soil salinity threats. Monitoring soil salinity at regional
and state levels is essential for identifying and understanding drivers and trends in soil salinity, and
for developing mitigation strategies and management plans.

Current estimates are that nearly one billion ha of land are salt-affected. Globally, about 20% of
the ∼300 million ha of irrigated farmland is estimated to be affected by salinity. More than half of
all salt-affected irrigated agricultural lands are found in four countries (China, India, Pakistan, and
United States; FAO and ITPS, 2015). However, farmland data at the level of individual countries is
sparse and of dubious quality (Lobell, 2010).

The number of publications focusing on soil salinity assessment with remote sensing has
increased considerably in the past decade. According to Thompson Reuters’ Web of Science, the
annual average number of scientific publications with the combined topics of “remote sensing” and
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“soil salinity” increased from 9.7 through 1996–2005, to 33.9
through 2006–2015. The literature includes both “field scale” and
“regional scale” applications. Salinity remote sensing has been
used successfully at the field scale (e.g., Goldshleger et al., 2013),
although proximal electromagnetic survey measurements are a
much more established technology in that problem domain (see
Corwin et al., 2012). The focus of the current perspective paper
is the regional scale (102–105 km2), where remote sensing of
soil salinity is problematic because salinity spatial variability is
influenced by a number of multi-scale agronomic, hydrological,
pedogenic, topographical, meteorological, anthropogenic, and
edaphic factors. Generally, two remote sensing approaches have
been used to map soil salinity at regional scale. The most
established approach uses spatial analyses of surface (bare-)
soil reflectance. The other obtains an indirect assessment of
soil salinity through analysis of crop canopy reflectance. Since
crops and crop reflectance are affected by salinity conditions
throughout the root-zone (e.g., 0–1m), the latter indirect
approach in essence senses the salinity of the entire root-
zone. Research on canopy reflectance analysis for regional scale
salinity mapping started showing promising results only in
the last 10 years and has not produced many peer-reviewed
publications. We call on fellow researchers and funding agencies
to prioritize the indirect approach because of its greater relevance
to agriculture. This paper provides an overview of the (direct)
surface salinity and (indirect) root-zone salinity assessment
approaches, a short review of milestone papers on root-zone
salinity assessment, a description of the limitations of each
approach, and suggests directions for future opportunities.

SURFACE SOIL SALINITY

Surface soil salinity applications have been explored extensively,
as reviewed by Metternicht and Zinck (2003), Ben-Dor et al.
(2008), and Allbed and Kumar (2013). The surface approach
delivers reasonably accurate spatial predictions of soil salinity
(e.g., Fan et al., 2015). Accumulation of salts at the soil surface
can result in loss of soil quality and increase erosion. Salt crusts
have reflectance properties that are very different from those
of non-salt-affected soils (Mougenot et al., 1993), making them
easy to identify and classify (e.g., by using fuzzy classification
andmicrowave measurements; see Metternicht, 1998). When salt
efflorescence is partial, especially at coarse resolution, different
soil type (e.g., texture, color) and roughness, presence of sparse
vegetation, and surface water content can have confounding
effects on salinity estimations. However, these effects can be
accounted for, as presented by Xu et al. (2016).

Unfortunately, monitoring salinity at the soil surface
has limited relevance in agro-environmental applications
because plant growth and yield are negatively influenced by
salinity within the entire root-zone. Often, there is not a
direct correlation between surface and root-zone soil salinity
(e.g., Zare et al., 2015), making surface assessments of soil
salinity agriculturally irrelevant except for evaluation of plant
germination. This is a significant issue because in irrigated
agriculture salinity generally accumulates deeper in the root
zone.

ROOT-ZONE SOIL SALINITY

Canopy reflectance can be used as a proxy for crop status,
in particular, for monitoring plant-soil relationships. Under
salinity stress, crop canopy reflectance increases in the visible
range (e.g., 450–700 nm) and decreases in the near-infrared
(e.g., 770–900 nm) range. However, remote sensing of salinity
based on vegetation analysis over large areas has often returned
unsatisfactory results. This is because other stress sources
(e.g., water stress, pests) trigger very similar responses in
canopy reflectance. Furthermore, different crops have different
phenology and reflectance properties, making it difficult tomodel
plant-soil interactions at the regional scale.

With their pioneering papers, Lobell et al. (2007) and Lobell
et al. (2010) showed that temporal analysis of canopy reflectance
is the key to successful regional scale soil salinity mapping.
Lobell et al. (2007) hypothesized that most stressors (e.g., pests,
mismanagement, diseases) are transient in time. However, under
similar farming practices, average salinity in the root-zone
remains relatively stable over multiple years (i.e., 5–7 years).
They preliminarily tested this hypothesis over 182 fields in the
Colorado River Delta region, Mexico, noting that consistently
low yields were an indicator of high root-zone salinity. In the
paper by Lobell et al. (2010) this hypothesis was tested showing
that the relationship between soil salinity in the Red River Valley
(USA) and summer average values of the Enhanced Vegetation
Index (EVI) obtained from the Moderate Resolution Imaging
Spectro radiometer (MODIS) instruments (NASA Aqua and
Terra satellites) changed substantially from year to year. Using
7-year average summer EVI value significantly improved the
EVI-salinity relationship. The multi-year data masked the effect
of other stress types on canopy reflectance. Additionally, they
observed that lands farmed with irrigated annual crops have
different reflectance properties than fallow and barren rain-fed
land.

Wu et al. (2014) and Scudiero et al. (2015) have validated
and improved the approach of Lobell et al. (2010). Wu et al.
(2014) used multi-year maxima of vegetation indices to map soil
salinity in Iraq. They used a multi-scale platform consisting of
MODIS and Landsat 7 (USGS and NASA, USA) imagery because
MODIS data alone would provide estimations too coarse for
agricultural applications. Scudiero et al. (2015) used the multi-
year vegetation index maxima approach to map soil salinity over
farmlands of the western San Joaquin Valley in the USA. By
including the presence or absence of a crop and meteorological
information (temperature and rainfall) in their spatial prediction
model, Scudiero et al. (2015) calibrated Landsat 7 data to soil
salinity with unprecedented accuracy in the 0 < ECe< 20 dS
m−1 range (i.e., at levels where most crops can grow without
total failure), where ECe is soil salinity measured as electrical
conductivity of the saturated soil extract (in dS m−1).

Ground-Truthing is Essential
To avoid erroneous predictions, spatial and temporal
extrapolations should always be minimized. Vegetation
indices, such as the Normalized Difference Vegetation Index
(NDVI), can be used to map salinity, but are generally not stress
specific: they simply measure plant status. Therefore, they need
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to be calibrated locally. Extensive ground-truth surveys are
necessary. Ideally, when selecting a ground-truth dataset, one
should sample according to the frequency distribution of the
target variable, which is impossible to know a priori. As a best
guess for capturing the variability of soil salinity, Lobell et al.
(2010) selected ground-truth sites according to the frequency
distribution of MODIS data. To increase the extent of surveyed
land in a cost-effective manner, local salinity maps can be created
using near-ground electromagnetic surveys and apparent soil
electrical conductivity directed soil sampling (Corwin et al.,
2012), as done by Lobell et al. (2010), Wu et al. (2014), and
Scudiero et al. (2015).

Spatial Modeling
Typically, this kind of modeling follows the directives for
digital soil mapping delineated by McBratney et al. (2003). The
ground-truth data is used to establish a statistical relationship
with selected covariates to estimate soil salinity at un-
sampled locations. Remote sensing data is used as the main
explanatory variable, and several co-variables can be added
(e.g., environmental, management, meteorological, landscape
position) to improve the remote sensing predictions of soil
salinity. Linear modeling (either additive or multiplicative, see
Tian et al., 2013) is a viable means of regional-scale soil mapping.
Other modeling approaches include artificial neural networks,
geostatistics, and support vector analysis, just to mention a few.
Any selected modeling technique should be robust for the entire
area of study. Of particular noteworthiness is that the coefficient
of determination (R2) is often not a good measure of map
accuracy (Scudiero et al., 2015). For example, consider the case
where prediction errors for a linear model with R2 = 0.85,
based on a ground-truth dataset of salinity with ECe ranging
from 0 to 120 dS m−1, are likely to be significantly higher than
those for a regression with R2 = 0.65 modeling ECe in the 0–
30 dS m−1 range. Model parameterization should put particular
focus on reducing prediction errors (i.e., residual errors) at
the low salinity range (e.g., 0 < ECe < 8 dS m−1), which is
the most important range for agricultural management. Model
accuracy should be discussed with respect to its prediction errors
at unknown locations. This can be done through (spatially-
independent) resampling (e.g., cross validation) and/or by
independent validation.

Limitations and Research Gaps Are Future

Research Challenges
The above reviewed publications represent clear steps forward in
remote sensing of soil salinity of agricultural soils at the regional
scale. However, there are many limitations and research gaps that
currently characterize this approach, including:

• Uncertainty of predictions at low salinity values. At low
salinity levels, the growth of many crops is not significantly
influenced (Maas and Hoffman, 1977), making it difficult
to assess the underlying soil salinity through canopy
reflectance. This issue could be addressed by considering
the specific reflectance properties of each crop present in
a region, as explored by Zhang et al. (2011). However,

the parameterization of crop-specific coefficients need to be
regionalized; i.e., the crop-salinity interactions should be fully
represented in the ground-truth dataset. In the USA, online
databases like the Cropland Data Layers (Han et al., 2012)
can be helpful for the purpose of crop-specific modeling.
Additionally, when salinity is not the only factor consistently
limiting plant growth, the resulting salinity model will be
returning erroneous predictions. This issue may be resolved
by the use of high resolution covariates for soil properties.
Scudiero et al. (2015) indicated that high resolution soil
texture information would significantly improve their model’s
performance. If such information was available, then the soil
texture-salinity interactions should be fully represented in the
ground-truth dataset.

• Halophyte reflectance properties are problematic.
Halophyte (salt-tolerant plants) growth is optimal at
fairly high soil salinity (e.g., 8–12 dS m−1), but reduced
when salinity is too high or too low (BOSTID, 1990). As
observed by Scudiero et al. (2015) and Zhang et al. (2015) this
affects remote sensing predictions of soil salinity, as low plant
performances (e.g., low NDVI scores) can be caused by either
low or very-high soil salinity values.

• Published work does not focus on perennial tree crops.
Reflectance over orchards are a mixture of bare-soil (or inter
raw cover crop) and tree canopy reflectance. Moderately
high resolution imagery (e.g., Landsat) often returns
unrealistically low NDVI scores because of this (Scudiero
et al., under review). Future research should focus on the
use of higher resolution remote sensing data, or on the use
of scaling coefficients for better salinity estimations over
orchards.

• Selection of satellite products. Multi-spectral vegetation
indices were successfully used to monitor salinity by Lobell
et al. (2010), Wu et al. (2014), Scudiero et al. (2015), and
Zhang et al. (2015) but there might be room for improvement
if hyper-spectral visible and (near) infrared data (Zhang et al.,
2011) were used for the same analyses. Moreover, the addition
to the analyses of other satellite data, such as thermal (Wu
et al., 2014), should improve salinity assessment models. The
spatial and temporal resolution of satellite data may play an
important role in model performance too. Very high spatial
resolution (e.g., 1×1m) imagery is ideal for masking out non-
target features (e.g., water-bodies, roads) from the produced
soil maps. However, correlation between soil properties and
satellite data might be optimal at coarser resolutions (Gomez
et al., 2015; Miller et al., 2015). Scudiero et al., under review
gave a practical example of this. They showed the influence of
resolution (from 2 × 2 to 100 × 100m) upon the correlation
between multi-temporal maximum EVI from WorldView 2
(Digital Globe, Colorado, USA) and soil salinity over a 34-
ha fallow field in California, USA. As resolution got coarser
(by resampling), the relationship strengthened, reaching a
maximum at 20 × 20 m. The strength of the correlation
between EVI and salinity then decreased steadily as block
support increased. Preliminary studies on optimal spatial
resolution to be employed for a specific study area are
advised before committing to a specific satellite sensor. High
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temporal resolution is very important when building a time
series of vegetation indices. Very high temporal resolutions
allow for semi-continuous monitoring of crop performance
throughout different phenological stages, as shown by Zhang
et al. (2015), which could notably improve salinity predictions.
Unfortunately, high temporal resolution often comes with low
spatial resolution (Mulla, 2013). Future research should focus
on multi-spatial (e.g., Wu et al., 2014) and multi–temporal
resolution studies to see if current salinity assessment models
can be improved. Other covariates (e.g., ground water quality
data, landscape position) that are known to influence crop
growth at a given study region should be explored in future
studies.

• Approximating a regional depth for the root-zone is

erroneous. Different crops have different root depth of
penetration. Despite this common knowledge, a common
root-zone area was estimated by Lobell et al. (2010) in
the Red River Valley, USA (0–0.9 and 0–1.5m), by Wu
et al. (2014) in central Iraq (0–1.5m), and by Scudiero
et al. (2015) in the San Joaquin Valley, CA, USA (0–
1.2m). Future research should focus on better defining
regional values for root-zone depth, perhaps providing crop-
specific depth estimates to provide more accurate salinity
maps.

• The produced salinity maps are only a snapshot in time of

average root-zone salinity. It may be legitimate to assume
that average root-zone salinity remains fairly constant within
a short number of years (e.g., 5–7 years) as proposed by
Lobell et al. (2007). However, within a single season, salts
redistribute fairly dynamically within the vertical soil profile
because of evapotranspiration and irrigation/precipitation.
At the moment, multi-temporal analysis of remote sensing
imagery cannot capture such vertical variations. Moreover,
none of the cited research studied short-term (1–2 years)
average root-zone salinity changes due to abrupt land-use
and/or irrigation practice changes. Such changes are known to
be sizeable and fast (Corwin, 2012).

CONCLUSIONS

Some of the most crop productive areas of the world occur in
water-scarce regions where salinization of soils can be a concern.
The sustainability of irrigation practices must be preserved in
such areas because of the expected future increases in food
demand. Unfortunately, the frequency and duration of droughts
are likely to increase in arid and semi-arid regions due to global
climate change. Subsequently, water resources must be utilized
wisely to assure crop production and maintain soil quality. We
believe that mapping soil salinity at the regional scale should
be a priority in such areas. Mapping salinity only at the soil
surface is not sufficient since for irrigated agriculture salinity is
“hidden” below the surface where crop roots take up water. We
invite scientists to focus more on indirect assessment of root-
zone soil salinity through multi-temporal canopy reflectance
studies. This remote sensing approach is relatively young (ca.
10 years) and has seen some successful applications, but still has

limitations and considerable room for improvement. Monitoring
mid-term (e.g., 5–10 years) soil salinity changes can help
understand the trends and drivers of soil salinity. In particular,
salinity maps and information on land use and agronomic
management can helpmonitor changes and prevent excessive soil
degradation by correcting negative (i.e., increasing) salinization
trends.
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