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Plumage coloration plays an important role in intra and inter-sexual competition in birds.
Many of the yellow, orange, or red colors present in birds are carotenoid dependent.
Carotenoids cannot be synthetized de novo by birds and consequently should be obtained
through their diet, and access to carotenoids may differ between individuals and species.
In addition to ornamentation, carotenoids are important for bird physiology and it has
been proposed that a trade-off in their allocation to these two functions occurs. Under
this scenario parasites may play a central role in maintaining the honesty of plumage as
a signaling system by increasing the demands for carotenoids for infection or damage
control and/or by reducing carotenoid absorption in the intestines. We analyzed the
relationship between (1) carotenoid concentrations in plasma and (2) blood and intestinal
parasite richness and abundance in 22 species of passerines sampled in spring. Loads
of different groups of parasites were unrelated so conclusions drawn from examining a
particular group of parasites cannot be extrapolated to the whole community of pathogens
and parasites inhabiting a host. At intraspecific level plasma carotenoid concentration
was negatively related to the richness of intestinal parasites and the abundance of some
groups of intestinal parasites, at interspecific level plasma carotenoid concentration was
negatively related with the abundance of intestinal parasites. No relationship at intra- nor
interspecific level was found between carotenoids and blood parasites. The results
suggest that intestinal parasites play an important role in the evolution and maintenance of
carotenoid-derived sexually selected ornamentations probably through a negative impact
on the uptake of carotenoids at the gut.
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Hamilton and Zuk (1982) proposed that plumage coloration in
birds may act as a reliable indicator of resistance to parasites. Most
comparative analyses have supported this hypothesis by report-
ing a relationship between parasite prevalence or richness and
interspecific differences in plumage coloration (e.g., Scheuerlein
and Ricklefs, 2004 and references therein). At intraspecific level,
positive, negative, and non-significant relationships between par-
asitism and plumage coloration have been reported (Hill, 2006).
However, experiments performed up to now largely support the
idea of a negative impact of ectoparasites (Figuerola et al., 2003)
and coccidian endoparasites (Brawner et al., 2000; McGraw and
Hill, 2000; Hõrak et al., 2004) on plumage coloration. Many
of the colorations involved in sexual selection are derived from
carotenoids (Badyaev and Hill, 2000), pigments that cannot be
synthesized by birds and thus have to be incorporated from their
diets (Olson and Owens, 1998). Consequently, dietary access to
carotenoids may strongly limit the development of carotenoid
derived colorations (Hill, 2006). Carotenoid derived coloration
has been associated with nutritional status and condition of the
individuals (Hill and McGraw, 2006), efficiency of vital cellular
processes (Hill and Johnson, 2012), cognitive function (Mateos-
Gonzalez et al., 2011) or escape behavior (Mateos-Gonzalez et al.,
2014). Interestingly, carotenoids are not only used to confer color

on feathers and skins, but are also involved in the synthesis of dif-
ferent vitamins and the control of oxidative stress (von Schantz
et al., 1999; Blas et al., 2006 but see Constantini and Møller, 2008).
A recent meta-analysis concluded that carotenoid levels in birds
are related to individual immune response and antioxidant capac-
ity (Simons et al., 2012). For example, the inflammatory/immune
response elicited by the injection of a vegetal protein (PHA test) is
associated to a decrease in the levels of carotenoids in blood (Biard
et al., 2009). However, it is unclear if carotenoids act properly as
antioxidants or just are affected by organisms antioxidant status
(Simons et al., 2012). For these reasons, it has been proposed that
birds have to face a trade-off between investing carotenoids in
showiness or in health-related functions (von Schantz et al., 1999;
Peters, 2007). Under this scenario, parasites and pathogens may
play a central role in the regulation of the honesty of birds’ signal-
ing systems. The mechanistic and physiological processes linking
parasites, health and ornament expression are now the focus of
intense debate and research.

Concentrations of carotenoids differ widely between individu-
als; individuals with higher concentrations of carotenoids in their
blood usually develop brighter plumages (Figuerola et al., 1999;
Yang et al., 2013) and have a more active immune system (Blas
et al., 2006; Aguilera and Amat, 2007). Studies of interspecific
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variation in carotenoids levels are less common. Tella et al. (2004)
analyzed some ecological, morphological, and evolutionary fac-
tors related to variations in carotenoid concentrations in the
blood of 80 wild bird species. Phylogeny, body size, and the pres-
ence of carotenoid-dependent colorations were related to inter-
specific differences in carotenoids. Concentration of carotenoids
varied allometrically with body mass in nine species of raptors,
once controlling for differences in diet (Blanco et al., 2014).
Although Tella et al. (2004) have already suggested that some of
the interspecific variation they found in carotenoid concentra-
tions in plasma may merely reflect differences in the incidence of
coccidian parasites between species, to our knowledge no study
has ever analyzed the relationship between parasitism and inter-
specific variation in the circulation of carotenoids. At intraspecific
level, Mártinez-Padilla et al. (2007) reported an increase in the
concentration of carotenoids in the blood after experimentally
reducing infection by nematodes in Red Grouse (Lagopus lago-
pus), while the reduction of coccidian loads has been reported
to lead to increased plasma carotenoid levels in Greenfinches
(Carduelis chloris) and growing chickens (Zhu et al., 2000; Hõrak
et al., 2004; Pap et al., 2011).

In this paper, we analyze the relationship of carotenoids and
parasitism in 22 species of passerines in terms of two different
groups of parasites: haematozoa and intestinal parasites. First of
all we tested the relationship between the incidence of different
parasite groups and the levels of plasma carotenoids in individ-
ual birds. Secondly, we tested the role of interspecific differences
in the incidence of parasitism as a means of explaining inter-
specific differences in the concentration of plasma carotenoids.
Overall, we provide evidence that levels of circulating carotenoids
are negatively related to the loads of some endoparasites,
notably those that may negatively affect carotenoid uptake at the
intestine.

METHODS
We captured 354 individuals of 22 passerine species (Table 1) dur-
ing the pre-breeding migration period (March-May) in 2004 and
2005 in a tree nursery in a suburb of the Spanish city of Seville
(37◦ 23′ 11′′ N, 5◦ 57′ 46′′W). Twenty twelve-meter-long mist-
nets were operated from sunrise to sunset. Between capture and
ringing birds were kept individually in clean cloth bags to allow
any droppings produced during this time to be collected. Each
bird was marked with a numbered ring and wing length (to the
nearest mm) and body mass (to the nearest 0.1 g) were mea-
sured. Whenever possible sex was determined on the basis of the
plumage characteristics given by Svensson (1996). Subsequently,
0.5 ml of blood was taken from the birds’ jugular vein using 29 G
sterile insulin syringes. A drop of this blood was used to prepare
a smear on a microscopic slide (as per Bennett, 1970), which was
air dried and then fixed and stained using Diff-Quick solution.
The rest of the blood sample was placed in a vial and after sev-
eral hours centrifuged for 10 min at 6000 rpm in an Eppendorf
Minispin centrifuge to separate serum from cells. Samples were
then stored at −20◦C to be used for other studies (see López
et al., 2008). After blood extraction, birds were kept individually
in the cloth bags for 20 min to collect fecal samples and were then
released. Between 0.5 and 1 mg of feces were placed in individually

marked vials containing 5% formaldehyde and the collection time
was annotated for each sample.

Ringing procedures were approved by the Spanish Ministry of
Environment according to Ley 8/2003 (permit number 530394).
Blood samples were taken with authorization of the Spanish
Ministry of Environment (permit number 39/2003). All efforts
were made to minimize suffering during handling and sample
collecting, and birds were released in less than 30 min after their
capture. According to Spanish law in 2004–2005, no approval by
Animal Care and Use Committee was needed for this field study
(Ley 8/2003).

LABORATORY METHOD
Blood smears were scanned for blood parasites at low (400×)
and high (oil 1000×) magnification: a total of 15,000 erythrocytes
were explored in each sample (Godfrey et al., 1987). Parasites were
identified to genera level and when intraerythrocytic parasitemia
occurred, the blood parasite load was estimated as the percent-
age of infected erythrocytes. Haemoproteus spp. (27.7% preva-
lence), Plasmodium spp. (16.4%), Leucocytozoon spp. (6.2%),
and Trypanosoma spp. (0.8%) were detected in the blood slides
(Table 1).

Droppings were filtered through a double layer of cotton-lint
cheesecloth and scanned for endoparasites in a McMaster cham-
ber. A known volume of the sample was dried and the dry weight
of the feces was used to estimate the number of oocysts or eggs
per mg of dry feces (following López et al., 2007). The most
frequent parasite species found were Protozoan coccidia of the
genera Isospora (45.5% prevalence), although some trematodes
and nematodes were also found. Taxonomic identifications of
blood and intestinal parasites were done according to Carpenter
(1996). Because most species could not be identified, parasites
were grouped according to Order: Trematoda: Strigeida (3.1%);
Nematoda: Spirurida (13.6%), Capilariida (4.8%), Ascarida
(3.4%) and unidentified nematodes (6.2%, Table 1). All screening
of the samples was carried out by one of the authors (GL).

MOLECULAR SEXING
The cellular fraction of the blood sample was used to extract DNA
for each bird and sex was determined using a polymerase chain
reaction (PCR) amplification of the CHD genes with the P2/P8
primers following the PCR conditions given by Ellegren (1996)
and Griffiths et al. (1998).

CAROTENOID QUANTIFICATION
Pigments were extracted from plasma by adding acetone to the
plasma samples at a ratio of 1:1 (v/v). The mixture was cen-
trifuged at 13 000 r/min at 16 249 g for 10 min to precipitate
the flocculant proteins (Negro and Garrido-Fernandez, 2000).
The supernatant was retained and stored at −20◦C until high-
performance liquid chromatography (HPLC) analysis. A Jasco
PU-2089 Plus instrument equipped with a quaternary pump
(Jasco Analítica Spain, S.L., Madrid) was used for carotenoid
analyses, with a reverse-phase C18 column (Phenomenex Synergi
4 μ) and a pre-column of the same material with a particle size
of 5 μm. Samples were prefiltered using an OEM nylon filter,
0.45 μm◦—4 mm) and later injected using a Rheodyne 7725i
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Table 1 | (A) Number of analyzed individuals per species (males/females), abundance of the different intestinal parasite groups (for each parasite the

mean abundance, the maximum abundance and the number of infected individuals is given), (B) Abundance of the different blood parasite groups (for

each parasite the mean abundance, the maximum abundance and the number of infected individuals is given except for extra-erythrocytic blood

parasites, for whom only the number of infected individuals is given), parasite richness (mean number of different parasite groups and range in brackets)

and caratoneid concentrations (mean and range in brackets).

A Intestinal parasites

Host especie N Coccidia Spirurida Capilarida Ascarida Und. nemates Strigeida

Acrocephalus scirpaceus 12/6 66.17 (823.45, 5) 1 (8.66, 4) 0 (0.09, 1) 0.23 (4.08, 1) 0.76 (9.24, 2) 0.29 (4.96, 2)

Carduelis carduelis 18/2 680.21 (4025, 14) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Carduelis chloris 12/9 196.42 (1722.32, 13) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Erithacus rubecula 7/13 28.47 (217.77, 9) 7.93 (93.24, 4) 7.09 (89.08, 2) 0 (0, 0) 1.18 (23.69, 1) 3.9 (78.07, 1)

Ficedula hypoleuca 12/7 12.55 (84.7, 5) 0.52 (3.74, 4) 4.51 (85.7, 1) 4.94 (93.91, 1) 4.35 (59.72, 2) 0 (0, 0)

Hippolais pallida 5/6 16.11 (90.25, 4) 5.3 (52.77, 2) 0 (0, 0) 3.27 (35.98, 1) 0 (0, 0) 0.39 (4.34, 1)

Hippolais polyglotta 7/2 26.27 (234.97, 2) 0.23 (2.05, 1) 0.45 (4.04, 1) 0.48 (4.32, 1) 0.41 (3.71, 1) 0 (0, 0)

Lanius senator 9/6 78.66 (752.84, 7) 0.71 (7.15, 3) 10.95 (96.16, 3) 0 (0, 0) 0.28 (4.27, 1) 0.47 (7.05, 1)

Luscinia megarhynchos 13/6 60.02 (838.86, 6) 13.24 (95.2, 5) 0.48 (9.01, 1) 0 (0, 0) 0.1 (1.85, 1) 0 (0, 0)

Parus major 4/1 698.64 (2438.99, 4) 1.25 (3.44, 2) 0 (0, 0) 0.48 (2.42, 1) 0.11 (2.51, 2) 0 (0, 0)

Passer domesticus 16/4 280.62 (1280.83, 13) 0.1 (2.06, 1) 0 (0, 0) 0.49 (9.13, 1) 0.66 (9.23, 2) 0 (0, 0)

Passer montanus 10/6 295.89 (2151.42, 8) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Phoenicurus phoenicurus 7/1 39.99 (283.49, 3) 1.33 (6.62, 2) 0.86 (6.89, 1) 0.31 (2.49, 1) 1.89 (51.6, 2) 0.51 (4.09, 1)

Phylloscopus bonelli 2/3 0 (0, 0) 5.61 (28.36, 1) 6.31 (31.84, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Phylloscopus collybita 6/5 43.1 (425.68, 5) 7.53 (82.84, 1) 0 (0, 0) 0 (0, 0) 0.66 (1.29, 1) 0 (0, 0)

Phylloscopus trochilus 7/2 1.49 (9.16, 3) 10.11 (50.11, 2) 0 (0, 0) 0.64 (5.13, 1) 0 (0, 0) 8.32 (61.5, 2)

Serinus serinus 43/8 185.11 (11500, 25) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Sturnus unicolor 4/3 5412.35 (21946.19, 1) 16.64 (91.69, 3) 9.62 (61.32, 1) 0 (0, 0) 5.18 (36.26, 1) 0 (0, 0)

Sylvia atricapilla 8/11 1.16 (16.41, 4) 12.3 (98.31, 5) 6.62 (13.63, 3) 1.18 (10, 3) 3.02 (38.99, 2) 0 (0, 0)

Sylvia borin 13/5 13.98 (93.33, 4) 2.93 (45.11, 3) 0 (0, 0) 0 (0, 0) 0.11 (2, 1) 0 (0, 0)

Turdus merula 16/8 433.4 (5889.09, 14) 0.71 (14.12, 2) 0 (0, 0) 1.21 (30.44, 1) 2.62 (61.45, 2) 0.35 (6.61, 2)

Turdus philomelos 1/8 3089.43 (23105.88, 6) 14.95 (83.13, 3) 1.61 (50.69, 2) 0 (0, 0) 6.24 (56.13, 1) 1.66 (14.94, 1)

B Blood parasites Richness

Host especie (µg/ml) Plasmodium Haemoproteus Leu* Try+ Blood Intestinal All Carotenoids

Acrocephalus scirpaceus 0.0014 (0.013, 2) 0.0063 (0.04, 6) 3 1 0.67 (0–2) 0.83 (0–3) 1.50 (0–4) 26.5 (6.0–49.6)

Carduelis carduelis 0.0059 (0.04, 4) 0.0897 (0.826, 12) 0 0 0.80 (0–2) 0.70 (0–1) 1.50 (0–2) 143.2 (14.9–325.0)

Carduelis chloris 0.0272 (0.546, 2) 0.0225 (0.4, 5) 0 0 0.33 (0–2) 0.62 (0–1) 0.95 (0–3) 51.7 (1.6–149.4)

Erithacus rubecula 0.0122 (0.067, 5) 0.0507 (0.96, 2) 3 0 0.50 (0–2) 0.85 (0–3) 1.35 (0–3) 18.6 (4.3–60.3)

Ficedula hypoleuca 0.0055 (0.046, 5) 0.0993 (1.8, 4) 2 0 0.58 (0–2) 0.68 (0–2) 1.26 (0–3) 7.2 (1.1–13.8)

Hippolais pallida 0.0024 (0.02, 2) 1.3117 (10.83, 8) 0 0 0.91 (0–2) 0.73 (0–3) 1.64 (0–5) 24.2 (3.6–84.9)

Hippolais polyglotta 0.2667 (2.4, 1) 1.4449 (4.32, 8) 1 1 1.22 (1–2) 0.67 (0–2) 1.89 (0–4) 37.8 (10.2–89.5)

Lanius senator 0.1467 (1.6, 7) 2.1841 (16.35, 11) 5 1 1.60 (0–3) 1.00 (0–3) 2.60 (0–6) 27.2 (10.3–43.0)

Luscinia megarhynchos 0.0468 (0.633, 4) 0.0981 (1.4, 10) 1 0 0.79 (0–2) 0.68 (0–2) 1.47 (0–4) 13.0 (0.9–32.0)

Parus major 0.0012 (0.006, 1) 0 (0, 0) 0 0 0.20 (0–1) 1.80 (1–3) 2.00 (0–3) 59.5 (15.2–80.0)

Passer domesticus 0.0047 (0.04, 3) 0.0003 (0.006, 1) 0 0 0.20 (0–1) 0.85 (0–2) 1.05 (0–2) 20.7 (1.5–48.9)

Passer montanus 0.0081 (0.13, 1) 0.0004 (0.006, 1) 3 0 0.31 (0–1) 0.50 (0–1) 0.81 (0–2) 16.5 (2.2–30.0)

Phoenicurus phoenicurus 0.0141 (0.1, 2) 0 (0, 0) 0 0 0.25 (0–1) 1.25 (0–2) 1.50 (0–3) 26.1 (10.2–51.3)

Phylloscopus bonelli 0.115 (0.815, 1) 0.53 (2.63, 2) 0 0 0.60 (0–2) 0.40 (0–1) 1.00 (0–2) 11.1 (3.9–51.0)

Phylloscopus collybita 0 (0, 0) 0.0018 (0.02, 1) 0 0 0.09 (0–1) 0.64 (0–2) 0.13 (0–3) 42.9 (3.5–95)

Phylloscopus trochilus 0.0014 (0.013, 1) 0 (0, 0) 1 0 0.22 (0–1) 0.89 (0–2) 1.11 (0–3) 51.1 (9.9–128.9)

Serinus serinus 0.0022 (0.0533, 3) 0.0012 (0.0333, 3) 0 0 0.12 (0–2) 0.49 (0–1) 0.61 (0–3) 11.4 (10.3–195.9)

Sturnus unicolor 0.09 (0.63, 1) 0.0019 (0.013, 1) 0 0 0.29 (0–1) 1.11 (1–3) 2.00 (0–4) 15.0 (1.4–21.3)

Sylvia atricapilla 0.0119 (0.181, 2) 0.0015 (0.013, 3) 0 0 0.26 (0–1) 0.89 (0–3) 1.16 (0–3) 41.6 (2.6–195.4)

Sylvia borin 0.0001 (0.013, 1) 0.2145 (4.133, 10) 1 0 0.61 (0–2) 0.44 (0–1) 1.11 (0–3) 20.4 (1.1–11.9)

Turdus merula 0.0183 (0.24, 6) 0.2098 (4.133, 9) 0 0 0.63 (0–2) 0.88 (0–2) 1.50 (0–3) 22.3 (4.1–58.1)

Turdus philomelos 0.0126 (0.04, 4) 0.0051 (0.046, 1) 2 0 0.18 (0–2) 1.44 (0–3) 2.22 (0–4) 24.5 (12.8–52.3)

*Leucocytozoon, +Trypanosoma.
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valve equipped with a 20-μL loop (Rheodyne, Rohnent Park,
California, USA). The eluent system is that described in Mínguez-
Mosquera and Hornero-Méndez (1993), with the only difference
being that the flow rate was 1 mL·min−1. Data were acquired
between 195 and 650 nm with a multiwavelength detector (MD-
2010 Plus, Jasco Analítica Spain, S.L.).

Reference carotenoids were obtained from fresh green plants in
J. Garrido’s laboratory, as per Mínguez-Mosquera (1997). Known
reference dilutions of zeaxanthin, lutein, and β-carotene were
injected into the HPLC instrument to build a calibration curve at
450 nm. The concentration of individual carotenoids was calcu-
lated from HPLC areas recorded at 450 nm. The total carotenoid
concentration (μg/ml) used in the analyses was obtained by
adding together the values for zeaxanthin, lutein, β-carotene and
other unidentified carotenoids for each individual.

STATISTICAL ANALYSIS
In this paper we aim to explore intraspecific and interspecific pat-
terns of variation in plasma carotenoid concentrations in relation
to parasite load and richness. Thus, the statistical relationships
between carotenoids and parasites were tested using two different
approaches.

Firstly, patterns of variation between individuals were analyzed
by using generalized mixed-effect linear models. In this analysis,
species was included as a random effect and the existence of a
relationship between carotenoids and parasites was tested while
allowing for species-specific differences in the intercept (but not
the slope) between parasites and carotenoid concentrations (i.e.,
see Stamps et al., 2012). In preliminary analyses we included also
random slopes in the models but the final models were fitted only
with random intercepts because random slopes did not increase
the fit of the models and complicated in some cases model con-
vergence. In all the analyses sex (male or female), year (2004 or
2005), date of capture (days counted as from March 8) and time
of capture (morning or afternoon) were included as fixed fac-
tors. The time of capture had an important effect on endoparasite
abundance [F(1, 331) = 223.24, P < 0.0001, see also López et al.,
2007] and for this reason an interaction coding for time of cap-
ture and parasite abundance was included in the analyses that
included intestinal parasites with significant diurnal cycles in egg
shedding [coccidians: F(1, 331) = 338.63, P < 0.0001; Capilariida:
F(1, 331) = 4.74, P = 0.03; F(1, 331) < 2.05, P > 0.15 for all other
parasite groups]. The amount of variance explained by the species
factor was estimated from changes in the model deviance.

Secondly, to investigate interspecific patterns of variation we
first estimated for each variable and species the least-square
means corrected for sex, time of capture, date, and year. Least-
square means were then included in a generalized linear model to
explore the covariates of plasma carotenoid concentration differ-
ences between species. In addition to parasites, the initial model
included three other variables that are related to interspecific vari-
ation in carotenoid concentrations (Tella et al., 2004): mean body
mass, the extent of carotenoid-derived coloration in plumage, and
the extent of carotenoid-derived pigmentation in non-feathered
parts (following the scoring methodology used by Tella et al.,
2004). Phylogeny explains a relevant amount of variance in the
concentration of circulating carotenoids (Tella et al., 2004), but

most variance occurred at Order level and for this reason we
restricted our analyses to passerine species.

In all the analyses carotenoid concentrations were considered
to be the dependent variable and parasite richness (number of
parasite taxons per individual) and parasite abundance as inde-
pendent variables. Our results show that parasite abundance
and richness are unrelated (see below) and consequently can be
included both as independent variables without problems derived
from colinearity. Carotenoid concentrations, parasite counts and
mean body mass were log-transformed to attain normality. We
followed a backwards selection procedure, starting with a model
including all the variables (and in the case of intestinal para-
sites, its interaction with the factor “time of capture”), removing
the least significant variable and fitting the model again until all
the variables in the model contributed with P < 0.10 to the fit
of the model. Only variables with P < 0.05 were interpreted as
significant.

RESULTS
RICHNESS AND ABUNDANCE OF INTESTINAL AND BLOOD PARASITES
No relationship was found between the richness of intestinal
and blood parasites in individuals [r2 = 0.01, F(1, 330) = 0.04,
P = 0.84, Figure 1] or in species [r2 = 0.01, F(1, 20) = 0.25, P =
0.63]. Likewise, intestinal and blood parasite abundances were
unrelated at either level [inter-individuals: r2 = 0.00, F(1, 330) =
0.69, P = 0.41; inter-specific: r2 = 0.09, F(1, 20) = 1.98,
P = 0.18].

FACTORS RELATED TO CAROTENOID CIRCULATION
In the analyses at individual level both year [larger concentrations
in 2005 than in 2004, F(1, 330) = 18.26, P < 0.0001] and date
[increases throughout the spring, F(1, 330) = 16.11, P < 0.0001]
were related to carotenoid concentrations; no differences were
found in carotenoid concentrations in relation to either sex
[F(1, 329) = 0.24, P = 0.62] or time of capture [F(1, 329) = 0.01,
P = 0.92]. Overall, species explained 42.78% of inter-individual
variance carotenoid concentrations in plasma.

ANALYSES OF THE RELATIONSHIPS BETWEEN PLASMA CAROTENOIDS
AND PARASITISM AT INDIVIDUAL LEVEL
Between individuals, plasma concentrations of carotenoids
were negatively related to the richness of intestinal parasites
[−0.0767 ± 0.0298, F(1, 327) = 6.64, P = 0.01, Figure 2A], but
were not related to the richness of blood parasites or to the abun-
dance of intestinal or blood parasites [F(1, 326) < 2.75, P > 0.10
for all variables]. We repeated the analyses, taking into account
separately coccidians and Spirurids, and also added data for the
other parasite taxons with less than 5% prevalence in a group
we named “other intestinal parasites.” This second set of anal-
yses confirmed the negative relationship between carotenoids
and the presence of “other intestinal parasites” [F(1, 329) = 7.51,
P = 0.007, Figure 2B] and a trend for a negative relation-
ship with the presence of Spirurids [F(1, 328) = 3.53, P = 0.06].
When we repeated the analyses with abundance, both “other
intestinal parasites” and Spirurids were negatively related to
carotenoid concentrations [F(1, 328) = 5.95, P = 0.02, Figure 2C;
F(1, 328) = 5.37, P = 0.02, Figure 2D]. Presence and abundance
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FIGURE 1 | Relationship between intestinal and blood parasite richness

for 354 individual birds of 22 different passerine species after controlling

for the effects of time of capture (morning or afternoon) on intestinal

parasite richness. Species were included in the model as a random factor to
allow different intercepts for data from different species but a common slope
for all species.

of coccideans were not related to carotenoid concentrations
[prevalence: F(1, 328) = 1.24, P = 0.27; abundance: F(1, 327) =
0.87, P = 0.35].

INTERSPECIFIC RELATIONSHIPS BETWEEN PLASMA CAROTENOIDS
AND PARASITISM
Both the proportion of carotenoids in the plumage
[0.0058 ± 0.0019, F(1, 17) = 9.87, P = 0.006] and in non-
feathered parts [0.0806 ± 0.0323, F(1, 17) = 6.21, P = 0.02]
were positively related to carotenoid concentrations. Carotenoid
concentrations were unrelated to mean species body mass
[F(1, 18) = 0.02, P = 0.88]. In addition, a negative relationship
between carotenoid concentrations and the abundance of intesti-
nal parasites was found [−0.4925 ± 0.2350, F(1, 17) = 4.39,
P = 0.05, Figure 3]. This relationship was not due to the abun-
dance of any particular intestinal parasite group [coccidians:
F(1, 19) = 0.43, P = 0.52; Spirurids: F(1, 19) = 1.74, P = 0.20;
other intestinal parasites: F(1, 19) = 0.05, P = 0.83]. No rela-
tionship between intestinal parasite richness [F(1, 17) = 3.19,
P = 0.09], blood parasite richness or abundance was found
[F(1, 18) < 0.08, P > 0.78 for both variables].

DISCUSSION
Traditionally, hypotheses concerning the relationships between
host ecology and parasites have been tested by focusing on a
particular group of parasites (e.g., Haematozoa, intestinal para-
sites, or ectoparasites). With this approach, the failure to falsify
a hypothesis may be due to a lack of success in identifying
the group of parasites that most significantly affect host fit-
ness (unless the abundance of the different groups of parasites

is highly correlated). Several studies have already pointed out
that the intensity of infection by different species of parasites
is not strongly correlated at intraspecific level (Møller, 1991;
Weatherhead et al., 1993, but see Holmstad et al., 2008 for an
exception). Our results indicate that species richness and abun-
dance of blood and intestinal parasites are unrelated in analyses
at both individual and species level. Consequently, conclusions
obtained for one group of parasites cannot be extrapolated for the
full community of parasites and so our capacity to rigorously test
parasite-mediated selection hypotheses is lessened unless clear
indications of the effects on host fitness exists for a significant
fraction of the parasite community.

We believe that it is important to highlight that we did not ana-
lyze intestinal parasite fauna directly by killing and dissecting the
birds. Rather, we used the release of parasite propagules in feces
as a surrogate method for estimating intestinal parasite abun-
dance and richness. Although this is not a direct measurement of
parasite load, concentrations of parasite oocysts in feces do indi-
cate parasite reproductive success (Chapman, 1998) in a highly
reliable fashion (López et al., 2007). We cannot rule out the pos-
sibility that the correlation between blood and intestinal parasites
was underestimated for these reasons. However, the relationships
found between intestinal parasites and carotenoid concentrations
suggest that we obtained biologically relevant estimates of the
composition of intestinal parasite communities.

The second main result of our study is the finding of a nega-
tive correlation between intestinal parasite abundance or richness
and carotenoid circulation in the blood. These relationships were
detected between individuals (for intestinal parasite richness and
the abundance of some intestinal parasite groups) and between
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FIGURE 2 | Carotenoid concentrations and parasites. Relationship
between carotenoid concentrations (μg/ml) in 354 individuals of 22 species
of passerines and (A) intestinal parasite richness, (B) prevalence of other

(less frequent) intestinal parasites, (C) abundance of other (less frequent)
intestinal parasites and (D) abundance of the intestinal parasites of the Order
Spirurida (see legend of Figure 1 to identify the data from each species).

species (for the case of intestinal parasite abundance). There
are several non-exclusive factors that can explain these results.
Firstly, immune response to parasitism may require the mobiliza-
tion of carotenoids as scavengers of free radicals released during
an immune response, leading to the depletion of carotenoid
stores and reduced carotenoid levels in the blood (Alonso-Alvarez
et al., 2004; Pérez-Rodríguez et al., 2008, but see Constantini and
Møller, 2008). However, in such a case we would expect a signif-
icant relationship between carotenoid concentration and overall
parasite load and not only for intestinal parasites. Secondly, some
intestinal parasites such as coccidians lessen carotenoid absorp-
tion in the intestines and thus reduce carotenoid incorporation
into the blood (Ruff et al., 1974; Augustine and Ruff, 1983; Allen,

1987; Tyczkowski et al., 1991). Interestingly, we have found a neg-
ative relationship between infection by intestinal parasites and
carotenoid concentration. These results support the hypothesis
of an impact of parasites on carotenoid availability, for plumage
coloration and other functions, through a negative effect on
carotenoid uptake at the intestines. Thirdly, different kinds of
parasites may differ in their overall impact on organisms health,
and consequently on their impact on organisms oxidative stress.
Unfortunately, no detailed information to test this hypothesis
is available at this moment. Lastly, food (prey) that is poor
in carotenoids may have been more parasitized, thereby expos-
ing individuals and species to a higher amount of parasites.
We suspect that this is not the case in our results given that
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FIGURE 3 | Carotenoid concentrations and parasites. Relationship
between the abundance of intestinal parasites and carotenoid
concentrations (μg/ml) at interspecific level (see legend of Figure 1 to
identify the data from each species).

previous analyses by Tella et al. (2004) failed to find any effect
of diet on interspecific differences in carotenoid concentrations
between species of the same family. However, a lack of informa-
tion exists on how the consumption of carotenoid-rich foods is
related to exposure to parasites at intra- and interspecific lev-
els. We had found a negative relationship between carotenoid
concentration and intestinal parasite richness. A similar nega-
tive effect for blood parasite richness and carotenoid derived
coloration was reported for blue tits (Del Cerro et al., 2010).
These effects of parasite richness may have at least two potential
explanations: (1) the synergistic or accumulative effects of para-
sites and/or (2) an effect due to only one or just a few parasite
taxons and consequently more likely to occur in an individual
with a richer parasite fauna. We cannot differentiate between
these two possibilities, although when we repeated the analyses
separately for the different intestinal groups we found indepen-
dent negative relationships for Spirurids and for the group “other
nematodes.” None of these groups of parasites is habitually the
focus of studies of parasite evolution. In particular, Spirurida, an
order of nematodes that use invertebrates as intermediate hosts,
were associated with reduced levels of carotenoids in analyses at
individual level. Our results suggest that it would be worthwhile
to include this group of parasites in future analyses and experi-
ments on the physiology of carotenoids and on the evolution of
carotenoid-derived signals.

It is a little bit surprising that relationships between carotenoid
concentration and intestinal parasite load has been found for two
different groups of parasites but not for coccideans. The relation-
ship between coccidians infection and carotenoid levels have been
demonstrated in several studies (Zhu et al., 2000; Hõrak et al.,

2004; Pap et al., 2011). However, it is possible that the effects of the
other groups of parasites on carotenoids is larger than for coccid-
ians and had masked the results. It is also possible that the impact
of coccidians (and any other of the groups of parasites studied)
differs between species (see i.e., Coon et al., 2014) making dif-
ficult to detect significant correlations in comparative studies.
Additionally, most of the samples in our study (69%) were col-
lected during the morning, while studies in passerines showed a
strong time of day-effect for passage of oocystsm with the peak
in late afternoon/evening (Brawner and Hill, 1999; López et al.,
2007). Although we have controlled for time of day in our analy-
ses, samples collected during the morning are less informative of
coccidian loads.

In addition to intestinal parasites, two other variables were
related to inter-individual variation in carotenoid concentrations
in the blood: year and date of capture. Carotenoid concentra-
tions were higher in 2005 than in 2004 and increased as spring
progressed. As previously commented, carotenoids should be
obtained from an animal’s diet and in the case of birds both inver-
tebrates and fruit are important sources of carotenoids. Both of
these resources undergo significant annual and seasonal oscilla-
tions in abundance (Herrera et al., 1998; Jones et al., 2003) that
may explain our results. Both the effects of year and season have
been already reported in the case of the Great Tit Parus major,
the only species in which seasonal and annual variation in plasma
carotenoids has been studied to date (Isaksson et al., 2007). Our
results confirm that these factors are applicable to the passer-
ine communities present in our study area. Despite the fact that
some studies have reported a higher concentration of carotenoids
in males than in females during molting periods (Hill, 1995;
Figuerola and Gutierrez, 1998), our results indicate that this is
not the case during the spring, when no molting is occurring.
Another potential reason for expecting sexual dimorphism in
carotenoid circulation is the deposition of important quantities
of carotenoids in eggs that may reduce female carotenoid stores
(Saino et al., 2002; Royle et al., 2003). It is important to note,
however, that the samples in our study were collected before the
start of egg-laying in most of the species studied.

At interspecific level, the extent of carotenoid-derived col-
oration in feathers and skins was positively related to carotenoid
concentrations in the blood, thus confirming the results reported
by Tella et al. (2004). However, in contrast to this study, we failed
to find any relationship between body mass and carotenoid con-
centrations, probably because of the smaller numbers and the
lesser variation in body mass of the species analyzed in our study.

In conclusion, parasites are related to differences between indi-
viduals and species in the concentration of carotenoids in the
plasma, suggesting that they may play an important role in the
regulation of carotenoid levels. These effects are not generalized
for parasites, but are specific to some groups. Interestingly, intesti-
nal parasites had the potential to negatively affect the uptake
of carotenoids at the intestines. Experimental studies are neces-
sary to test the relevancy of reduced carotenoid uptake at the
gut and/or the impact of these parasites on host health, oxidative
stress and immune response to understand the range of impacts
may have both on the accessibility and carotenoid needs of birds.
Additionally, Spirurida were particularly related to reduced levels
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of carotenoids, suggesting that more attention should be paid to
this group of parasites in future studies of host-parasite ecology.
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