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Models of genetic effects are mathematical representations of a genotype-to-phenotype
(GP) map that, rather than accounting for a raw map assigning phenotypes to genotypes,
rely on parameters with deliberate evolutionary meaning—additive and interaction effects.
In this article, the conceptual particularities of genetic imprinting and their implications on
models of genetic effects are analyzed. The molecular mechanisms by which imprinted
loci affect the relationship between genotypes and phenotypes are known to be singular.
Despite its epigenetic nature, the (parent-of-origin-dependent) way in which the alleles of
imprinted genes are modified and segregate in each generation is precisely determined,
and thus amenable to be represented through conventional models of genetic effects. The
Natural and Orthogonal Interactions (NOIA) model framework is here extended to account
for imprinting as a tool for a more thorough analysis of the evolutionary implications of
this phenomenon. The resulting theory improves and generalizes previous proposals for
modeling imprinting.
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INTRODUCTION
Classical models of genetic effects were established almost
one century ago for assembling biometric observations with
Mendelian genetics (Fisher, 1918; Provine, 1971). This way,
mechanistic explanations were provided for interesting proper-
ties of quantitative traits that had been revealed in the nineteenth
century, particularly the regression toward mediocrity (Galton,
1886). A key concept in this theory is the split of effects of
allele substitutions into additive and non-additive components,
since the population variance of the additive components was
shown to determine the resemblance between relatives within that
population (see e.g. Falconer and Mackay, 1996).

The practicality of that rule keeps on being of huge importance
nowadays. By assessing the resemblance between relatives for a
trait within one generation of a population (which requires track-
ing relatedness and phenotype scores) it is possible to estimate the
additive variance of that trait at that population. That estimate
may in its turn be used to predict the resemblance between par-
ents and their offspring and hence the response to selection in the
forthcoming generation. Thus, although the theory behind relies
on genetic effects, no direct information about the genes under-
lying a trait in a population is necessary in practice for estimating
parameters with convenient predictive power.

With time, molecular, statistical and computational tools have
enabled mapping experiments to be performed even in non-
model species (see e.g. Rifkin, 2012). The need to update models
of genetic effects for making the most of this new source of infor-
mation was soon pointed out (Cheverud and Routman, 1995),
leading to the development of models of genetic effects depict-
ing the GP map as effects of allele substitutions from individual
genotypes (Hansen and Wagner, 2001). This is the context in

which the Natural and Orthogonal Interactions (NOIA) model of
genetic effects was developed (Álvarez-Castro and Carlborg, 2007;
Álvarez-Castro and Yang, 2011).

NOIA is a generalization of models of genetic effects that
unifies the individual-based formulations mentioned right above
with the aforementioned classical approaches, which depict the
GP map in terms of effects of allele substitutions averaged over
populations. As an example, this approach has enabled analyses of
the role of epistatic interactions during the artificial selection pro-
cess leading to the domestication of chicken (Álvarez-Castro et al.,
2008). The classical population-referenced models are convenient
for obtaining genetic effects of growth rate from the data gener-
ated in quantitative trait loci (QTL) experiments. But, next, those
have to be transformed into individual-based genetic effects for
analyzing how allele substitutions could have occurred in genes
underlying growth rate from the reference of the genotype of
the wild ancestors of current domestic chicken. In general, being
able to transform between the individual- and the population-
referenced approaches opens new opportunities of analyses of
gene effects and interactions, as reviewed by Álvarez-Castro
(2012).

QTL analyses eventually focussed also on the quest for
imprinted genes and the estimation of imprinting effects (Knott
et al., 1998). The traditional scheme of either maternal or paternal
allele-effect silencing is known not to be universal—the callyp-
ige phenotype in sheep being a remarkable counterexample for
this (Cockett et al., 1996). Indeed, several alternative patterns of
imprinting have been described more recently (e.g. Wolf et al.,
2008; Xiao et al., 2013). In general, a gene is imprinted for a trait
when heterozygotes with different parent-of-origin of their alleles
are associated to different phenotypes. Hence, imprinting always
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involves some kind of dominance (since at least one of the two
cases will depart from the mid-homozygote expectation).

New models of genetic effects, involving also epistasis, have
recently been proposed to detect and analyze imprinted genes
(Wolf and Cheverud, 2009). Here, the discussion on how to
model genetic effects in the presence of imprinting is resumed
with emphasis on the conceptualization (and thus the biologi-
cal meaning) of all genetic effects involved. Two different options
of extending NOIA to imprinting are developed and pondered
in order to stress that the meaning of the genetic effects with
imprinting must be considered with particular caution.

INDIVIDUAL- AND POPULATION-REFERENCED GENETIC
EFFECTS
First, let us recall the most basic expressions and facts of NOIA
(from Álvarez-Castro and Carlborg, 2007; Álvarez-Castro et al.,
2012). The effects of allele substitutions can be expressed in terms
of additive (a) and dominance (d) effects in matrix notation as G
= SE, which, for one non-imprinted locus with two alleles (A1,
A2) and using the homozygote for the first allele as reference,
expands to:

⎛
⎝

G11

G12

G22

⎞
⎠ =

⎛
⎝

1 0 0
1 1 1
1 2 0

⎞
⎠

⎛
⎝

R
a
d

⎞
⎠ (1)

In this expression, E is the vector of genetic effects (including
also the reference point R), G is the vector of genotypic values
(accounting for the expected phenotype for each of the geno-
types), and S is the genetic-effect design matrix, which determines
how the genetic effects are defined as a reparameterization of
the genotypic values. This point is easier to visualize through the
equivalent expression E = S−1G:
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−½ 1 −½
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⎛
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G12

G22

⎞
⎠ (2)

Since a = (G22 − G11)/2 is half the distance between the geno-
typic values of the two homozigotes, adding two additive effects
from the genotypic value of the reference genotype A1A1 (G11)
brings us to the genotypic value of the other homozygote (G22).
Thus, adding one only additive effect brings us to the midpoint
between the two homozygotes, from which further adding the
dominance effect brings us to the genotypic value of the het-
erozygote (G12). Indeed, the dominance effect d = G12 − (G11 +
G22)/2 measures the deviation of the heterozygote from its addi-
tive expectation.

More general expressions, enabling the use of any genotype
as reference point, have been developed. In any case, the split
of effects of allele substitutions from the reference of an indi-
vidual genotype into additive and interaction components has
direct evolutionary meaning. Indeed, assuming that the geno-
typic values reflect fitness, a quick comparison of the additive and
dominance effects provides the equilibrium properties of the sys-
tem (either one stable or one unstable polymorphic equilibrium,
or fixation of a particular allele, which may occur asymptotically

with complete dominance). For the simple case of one locus with
two alleles, this information can also be retrieved visually from the
representation of the raw genotypic values—the genetic effects
become more useful for systems of increasing complexity.

On the other hand, the classical additive and interaction
population-referenced genetic effects are useful for analyzing
properties of particular populations, with given genotype fre-
quencies (pij, with pi = pii + 1/2p12 being the allele frequencies
and μ the phenotype mean). They are average effects of allele
substitutions over populations and they can be obtained by a
regression of the genotypic values on the allele content. The
general expression for two alleles can be written as:

⎛
⎝

G11

G12

G22

⎞
⎠ =

⎛
⎜⎜⎝

1 −2p2 − p12p22
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p11p22

p1p2 − ¼p12

1 2p1 − p11p12

2p1p2 − ½p12

⎞
⎟⎟⎠

⎛
⎝

μ

α

δ

⎞
⎠ (3)

The parameters of this model are summarized in Table 1. The link
between expression (3) and the previous ones comes easy, by just
taking into account that the genotypic values remain the same.
From any two expressions of this kind, G = S1E1 and G = S2E2,
the genetic effects can be transformed into each other directly as:

E2 = (S2)−1S1E1 (4)

INTERACTIONS MAKE A DIFFERENCE
Using expression (4), it is easy to derive that a GP map in
which d = 0 fulfills δ = 0 and α = a, regardless of the geno-
typic frequencies. However, the presence of interactions makes
the relationship between individual- and population-referenced

Table 1 | Summary of the parameters of the models in this article.

All models Imprinting models

All formulations G11 G12 G22 G21

p11 p12 p22 p21

Individual-referenced R a d d12, d21 |i

Population-referenced μ α δ δ12, δ21 |ι

Gij are the genotypic values (expected phenotype of each genotype), with G 12

for the only heterozygote without imprinting and for one of the two heterozy-

gote options with imprinting (in which case G 21 stands for the other option).

The genotype frequencies (whose subscripts follow the same logic) are pij and,

following the standard notation, the allele frequencies not included in the table

are pi = pii + 1/2p 12, i = 1, 2. The parameters pij can also stand as indexes

of individual genotypes in the individual-referenced formulation—when one of

them equals one and the others equal zero. In the individual-referenced formula-

tion, R stands for the reference point (which is an individual genotype), a for the

additive genetic effect and d for the dominance genetic effect. With imprinting,

there is an additional imprinting effect, i (in the imprinting-effect model), or two

alternative dominance effects, d 12 and d 21 (in the two-dominance model; for a

justification of the use of the superscripts see Álvarez-Castro and Yang, 2011).

In the population-referenced formulation (last row), the corresponding parame-

ters are taken from the Greek alphabet instead of the Latin one (e.g. μ is the

population phenotype mean).
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genetic effects to be far from trivial—and, indeed, far more inter-
esting (Álvarez-Castro and Le Rouzic, 2014). This is illustrated
by two simple examples in Figure 1. These graphs show the lin-
ear regression (solid line) of the genotypic values (discs) on the
allele content (horizontal axis) for a particular population (with
specific allele frequencies), as well as the decomposition of the
genetic variance (curves) for any allele frequencies.

The first example (Figure 1A) shows a case in which the
individual-referenced additive genetic effect is nil (the genotypic
values of the homozygotes are equal) whereas the dominance
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FIGURE 1 | Genotypic values (discs) and variance decomposition

(curves) of one-locus, two-allele (A1 and A2), non-imprinted genetic

systems with overdominance assuming Hardy–Weinberg proportions

for all possible allele frequencies (represented by the frequency of A2,

p2). The variances (black solid curve for additive, gray dashed curve for
dominance) are actually plotted as trait units squared. The size of the discs
marking the genotypic values are scaled according to p1 = 0.625
(approximately, p11 = 0.14, p12 = 0.47, p22 = 0.39). (A) The genotypic values
are G11 = 0, G12 = 5, G22 = 0, leading to individual-referenced genetic
effects (from the reference of A1A1) a = 0, d = 5. At p2 = 0.375 (p1 = 0.625,
marked by the vertical dashed line), the regression of the genotypic values
on the proportional allele content (solid line) is an increasing function with
slope (and thus population-referenced additive effect) α = 2.5, indicating that
p2 would increase under directional selection (toward the equilibrium point,
p1 = p2 = 0.5). (B) The genotypic values are the same as in (A) but for
G11 = 2, leading to individual referenced genetic effects of a = −1, d = 4. At
p2 = 0.375 (p1 = 0.625, marked by the vertical dashed line), the regression
of the genotypic values on the proportional allele content (solid line) has
α = 0 slope, indicating a polymorphic equilibrium point.

effect is not (the genotypic value of the heterozygote is different
from them). The slope of the weighted regression of the genotypic
values on the allele content provides the population-referenced
additive genetic effect, α. In that figure, such regression is shown
for a Hardy–Weinberg population with p1 = 0.625, marked with
a vertical dashed line. Since the slope of the regression is pos-
itive, so it is α. The second example (Figure 1B) still shows a
case of overdominance (the genotypic values of the homozy-
gotes are lower than the one of the heterozygote, i.e., d > |a|),
although in this case the individual-referenced additive effect is
not nil. However, the regression at p1 = 0.625 has a slope of zero,
indicating that this is a (polymorphic) equilibrium point.

In the context of a population, the decomposition of the geno-
typic values into additive and interaction effects has its parallel at
the level of variances. Indeed, in the second example (Figure 1B),
the additive variance is nil at p1 = 0.625. Coming back to the first
example (Figure 1A), the additive variance is not nil at p1 = 0.625
(where the regression slope is not either nil) and, more in general,
the additive variance, which determines the selection response,
dominates the extremes of the graph (40% of the possible fre-
quencies), indicating very efficient selection response of those
populations (toward the equilibrium point, with p1 = 0.5, where
the additive variance is nil).

Thus, throughout these examples it becomes evident that
interaction makes it possible both to have nil individual-
referenced with non-nil population-referenced additive effects
and vice versa. Overall, the presence of interactions unveils that
individual- and population-referenced genetic effects have dif-
ferent meanings. The later ones reflect properties of populations
(the additive effect and the additive variance are nil at equilib-
rium frequencies) whereas the former ones are effects of allele
substitutions from individual references (the additive effect is nil
when the homozygotes have equal genotypic values). Keeping this
in mind aids interpretation of the subsequent developments and
discussion.

MODELING IMPRINTING: HOW MANY ADDITIVE AND
DOMINANCE EFFECTS?
When considering one imprinted locus with two alleles, we could
be tempted to try to fit it into a one-locus four-allele genetic
model, since each of the two alleles (with different nucleotide
sequences) may be expressed at the level of the phenotype in two
ways (each has two possible methylation stages), thus leading to a
total of four variants with potentially different effects on the phe-
notype. One evident issue coming from this scheme arises when
considering how segregation is assumed in a one-locus four-allele
model, which does not at all consider transformations of the vari-
ants into one another through generations (as it is the case of
alleles in imprinted genes). Moreover, even if we dismissed any
analyses involving segregation, we could not possibly use the mul-
tiallelic model for depicting the differences between phenotypes
due to allelic variants, as explained below.

Let the two alleles be A1 and A2, just as in the cases with-
out imprinting above. Due to imprinting there now also exist
the modified variants Ā1 and Ā2, summing up to a total of
four variants as mentioned just above. In a four-allele model of
genetic effects, there are six additive effects, three of which can be
retrieved from the other three (see e.g. Álvarez-Castro and Yang,
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2011). These parameters account for effects of allele substitutions
between any possible pair of homozygotes, which in our case
would be A1A1, A2A2, Ā1Ā1, and Ā2Ā2. However, none of these
genotypes will be present in any of the individuals of our analy-
ses. More to the point, we cannot easily think of those genotypes
as putative artificial constructs, since imprinted loci preclude via-
bility under unbalanced dosages of modified alleles (Kono et al.,
2004; Kawahara et al., 2007).

Indeed, the two “homozygotes” of our imprinted biallelic
locus actually are A1Ā1 and A2Ā2—they are allele-wise homozy-
gotes, although not variant-wise homozygotes. Only substitutions
implying the pairs A1-A2 and Ā1-Ā2 are allowed. Thus, one only
additive effect of allele substitutions makes sense in this genetic
system, involving substitutions of alleles A1 and A2 in each of
their variants. In the context of the individual-referenced frame-
work, that effect can be measured in a way analogous to the
non-imprinted loci as a = (G22 − G11)/2, just considering that
with imprinting the “homozygotes” bear two differently modified
allelic variants.

Thus, although properly conceptualizing the additive effects
of an imprinted locus may require some reflection, they in the
end can be modeled in a way that brings no additional complex-
ity as compared to modeling the non-imprinted case. It is the
modeling of the dominance effects that will make the difference.
It has been discussed just above that from genotype A1Ā1 there
is one only way of performing two allele substitutions, which
leads to genotype A2Ā2. There are however two possible ways of

performing one only allele substitution from that genotype, lead-
ing to either A1Ā2 or A2Ā1. Consequently, considering two pos-
sible dominance effects (one for each parent-of-origin of the two
alleles in the heterozygote) emerges as a sensible solution.

To begin with the development of this two-dominance set-
ting, an expression of the genotypic values as a sum of genetic
effects of allele substitutions from one reference genotype is
firstly provided—as it was done in expression (1) above for a
non-imprinted locus. This way (following the same logic as in
Álvarez-Castro and Carlborg, 2007; Álvarez-Castro and Yang,
2011), the expression of NOIA from the reference of homozygote
A1Ā1 can be obtained as:⎛

⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
1 1 1 0
1 1 0 1
1 2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R
a

d12

d21

⎞
⎟⎟⎠ (5)

All parameters are summarized in Table 1. The genotypic value
of A2Ā2 is here expressed as the sum of two additive effects from
the reference whilst the genotypic values of the heterozygotes
involve one additive plus one dominance effect each. The differ-
ence between (5) and (1) is that in (5) each heterozygote involves
a different dominance effect. By equating the vector of genetic
effects in (5) we obtain an extension of expression (2) to imprint-
ing, providing how each of the genetic effects is defined in terms
of the genotypic values:

⎛
⎜⎜⎝

R
a

d12

d21

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
− 1/2 0 0 1/2

− 1/2 1 0 − 1/2

− 1/2 0 1 − 1/2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ (6)

Thus, for instance, the second dominance effect is defined as
d21 = G21 − 1/2(G11 + G22). Expression (6) also entails the gen-
eral individual-referenced formulation of NOIA for one biallelic
imprinted locus, by just replacing the first row of the matrix by
(p11, p12, p21, p22), so that any genotype may be chosen as refer-
ence (e.g. A2Ā2 is the reference when p22 = 1 and the remaining
pij = 0).

For describing the potential response of the imprinted
genetic system to one-generation step of selection, a population-
referenced formulation [as expression (3) for a non-imprinted
locus] is required. Following the same approach as by Álvarez-
Castro and Carlborg (2007, Appendix C; see Supplementary
Material), such expression can be obtained as:

(7)

Using the procedure for inspecting orthogonality of models of
genetic effects, also conveyed by Álvarez-Castro and Carlborg
(2007, Appendix C; see the Supplementary material), it fol-
lows that expression (7) entails an orthogonal decomposition
of the genotypic values into additive and dominance com-
ponents, thus leading to an orthogonal decomposition of the
genetic variance. The two dominance effects are however not
orthogonal to each other. Overall, it is possible to model a bial-
lelic imprinted locus using one additive and two dominance
genetic effects, which makes it straightforward to keep track of
the biological meaning of the parameters, in analogy with the
non-imprinted case.

IMPRINTING AS A GENETIC EFFECT
The previous setting can be used for detecting imprinting by just
developing a procedure for testing whether the two dominance
effects are significantly different. To this aim, it seems however
more convenient to design a model in which a parameter accounts
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for the difference between the two heterozygotes, thus leading
to a more direct test for imprinting—consisting in just check-
ing whether that parameter is significantly different from zero.
Actually, this is in general terms the approach commonly cho-
sen to model imprinting (see e.g. Wolf et al., 2008). Hereafter,
NOIA is extended following that approach and thus implemented
with a parameter to account for the putative difference between
the heterozygotes with different parent-of-origin. As in the pre-
vious section, an expression of effects of allele substitutions from
the reference of homozygote A1Ā1 is here provided in the first
place, as: ⎛

⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
1 1 1 −1
1 1 1 1
1 2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R
a
d
i

⎞
⎟⎟⎠ (8)

This model is designed for using the midpoint between the two
heterozygotes to define the dominance effect and the deviations
of the two heterozygotes from that point as the imprinting effect.
A graphical comparison explaining how the three models shown
in this article (the non-imprinted model, the two-dominances
model and the imprinting-effect model) decompose the geno-
typic values is shown in Figure 2. By equating the vector of genetic
effects in (8) it follows:

⎛
⎜⎜⎝

R
a
d
i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
− 1/2 0 0 1/2

− 1/2 1/2 1/2 − 1/2

0 − 1/2 1/2 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ (9)

From this expression it immediately follows that indeed d =
1/2(G12 + G21) − 1/2(G11 + G22) (i.e., the dominance effect mea-
sures the distance of the midpoint between the two heterozygotes
and the additive expectation) and i = 1/2(G21 − G12) (i.e., the
imprinting effect measures the distance of the heterozygotes from
the midpoint between them). Expression (9) provides a gen-
eral individual-referenced formulation, analogously to (6) for the
two-dominances model in the previous section. Also in an analo-
gous way as in that section, an orthogonal population-referenced
formulation of the imprinting-effect model can be obtained as:

⎛
⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 −2p2 − p22(p12 + p21)
2p1p2 − 1/2(p12 + p21)

0

1 p1 − p2
p11p22

p1p2 − 1/2(p12 + p21)
−2p21

p12 + p21

1 p1 − p2
p11p22

p1p2 − 1/2(p12 + p21)
2p12

p12 + p21

1 2p1 − p11(p12 + p21)
2p1p2 − 1/2(p12 + p21)

0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

μ

α

δ

ι

⎞
⎟⎟⎠

(10)
In this case, the three genetic (additive, dominance and
imprinting) effects are fully orthogonal. The independence of
the parameters makes this expression to resemble expression
(3). Indeed, the decomposition of the genotypic values of the
homozygotes into additive and dominance effects in (3) holds
in (10), since p12 in (3) is equivalent to (p12 + p21) in (10).
Concerning the heterozygotes, in the imprinted case we have two
instead of one, leading to an extra row in the genetic-effects design
matrix in (10), and there is an extra (imprinting) term in the

FIGURE 2 | Individual-referenced genetic effects proposed in the text

for a one-locus, two-allele, imprinted genetic system. As in the previous
figure, the alleles are A1 and A2, with the variants due to imprinting being
Ā1 and Ā2. Although no population frequencies are considered in this
figure, the notation of the axes is kept consistent with the other figures,
with p2 = 0.5 indicating the heterozygotes. Also the genotypic values (black
discs) are mostly kept, with the one of the heterozygote of Figure 1 (A1A2,
G12 = 5) being the midpoint between the ones of the two heterozygotes in
this figure (A1Ā2 and A2Ā1, G12 = 4 and G21 = 6, respectively). (A) The
two-dominances model is a natural extension of the non-imprinted case
that consists in introducing two dominance parameters, one for each
heterozygote. As well as in the non-imprinted case, the dominance effects
measure departures of the heterozygotes from their additive expectation
(gray disc). (B) The imprinting-effect model keeps one only dominance
effect that accounts for the departure of the midpoint between the two
heterozygotes (upper gray disc) and the midpoint between the
homozygotes (lower gray disc), and adds up an imprinting effect for
accounting for the distance between the heterozygotes and their midpoint
(upper gray disc). Thus, the dominance effect in this model coincides with
that of a non-imprinted model (i.e., the one that would be obtained if
imprinting was just disregarded).

decomposition, coming from the fourth column of that matrix.
That term actually makes the only difference of the decompo-
sition of the genetic effects of the heterozygotes as compared
with the decomposition of the heterozygote in the non-imprinted
case (3).

VARIANCE DECOMPOSITION WITH IMPRINTING
The previous expressions and arguments can be extended to
the decomposition of the genetic variance with an imprinting
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variance component, which can easily be obtained from the
model in matrix notation above (10) by following the formu-
lae provided by Álvarez-Castro and Yang (2011). In expressions
(12) and (13) of that article, the additive and the dominance
variance have been obtained as VA = PT

G (αG ◦ αG) and VD =
PT

G (δG ◦ δG), respectively. In an analogous way (by means of anal-
ogous intermediate definitions; see Supplementary Material), a
general expression for the imprinting variance can be provided
simply as:

VO = PT
G (ιG ◦ ιG) (11)

Since VI traditionally stands for the epistatic variance, the
subscript O is here chosen for the imprinting variance, ulti-
mately coming from a differential effect of the alleles depend-
ing on their parent-of-origin. In any case, it is also possible
to obtain the decomposition of the genetic variance by getting
all three variance components at the same time, by just fol-
lowing expressions (14) and (15) in Álvarez-Castro and Yang
(2011). Indeed, the imprinting variance component emerges
from that formulae as a new term due to feeding them with
expression (10).

By obtaining the variance decomposition in any of the ways
described above (each individually or all simultaneously), it
is easy to check that the additive and the dominance vari-
ances actually remain the same as for a non-imprinted biallelic
locus. Assuming for simplicity the Hardy–Weinberg proportions,
they are VA = 2p1p2[a + d(p1 − p2)]2, VD = (2dp1p2)2 (see e.g.
Falconer and Mackay, 1996)—, whilst the imprinting variance
component can be expressed simply as:

VO = 2i2p1p2 (12)

Figure 3 shows the decomposition of the genetic variance for
two cases of imprinting. The genotypic values in Figure 3A
are the same as in Figure 2, and thus they also fit the non-
imprinted case in Figure 1B, in which the genotypic value of the
heterozygote (A1A2, G12 = 5) is the midpoint between the geno-
typic values of the two heterozygotes in Figure 3A (A1Ā2 and
A2Ā1, G12 = 4 and G21 = 6, respectively). Therefore, the addi-
tive effects coincide in both cases and the dominance value of the
imprinting-effect model in Figure 3A coincides with the simpler
non-imprinted model in Figure 1B. Hence, the additive and the
dominance variances coincide in both graphs. In Figure 3A there
is, though, an extra (imprinting) term of the genetic variance
decomposition.

As it is the case for dominance, the imprinting variance
is higher for intermediate frequencies. In Figure 3A, the rela-
tively small imprinting effect (relatively short distance between
the two heterozygotes) leads to a small imprinting variance
for all allele frequencies. In Figure 3B, however, it is shown
that with larger differences between the two heterozygotes the
imprinting variance may dominate the variance decomposi-
tion at almost any allele frequencies. And this actually occurs
in practice, since this case fits to the callypige pattern men-
tioned above (with equal or similar phenotype values of the
two homozygotes and one of the heterozygotes, relative to
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FIGURE 3 | Genotypic values (discs) and variance decomposition

(curves) of one-locus, two-allele, imprinted genetic systems assuming

Hardy–Weinberg proportions. The notation is in accordance with the
previous figures (with the addition of a black dashed curve for the
imprinting variance). (A) The genotypic values are G11 = 2, G12 = 4,
G21 = 6, G22 = 0, leading to individual-referenced genetic effects (from the
reference of A1Ā1) a = −1, d = 4, i = −1. Since the additive and the
dominance effects are the same as in Figure 1B, the additive and the
dominance variances coincide and the equilibrium point also remains at
p2 = 0.375. (B) The genotypic values are the same as in (A) but for G21 = 1
(at the midpoint between the two homozygotes), leading to individual
referenced genetic effects of a = −1, d = 2.5, i = −2.5. The equilibrium
point occurs here at p2 = 0.3.

a higher value of the remaining heterozygote). Imprinting is
thus—as well as other allele interactions (Álvarez-Castro and
Le Rouzic, 2014)—a phenomenon that may by itself condi-
tion little responses to selection in the face of high genetic
variances.

Incidentally, this particular claim could not be supported using
the two-dominances model alone. Indeed, that model does not
provide a separate term accounting for the variance explained
by the difference between the two heterozygotes. Instead, it leads
to a dominance variance that is different from the one of this
imprinting-effect model (and thus also from the one of the
non-imprinted case), and it actually equals the sum of the clas-
sical dominance variance VD and the imprinting variance VO as
expressed above (11, 12).
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COMPARISONS TO PREVIOUS MODELS
Xiao et al. (2013) have recently proposed a model of imprinting
based on the (non-imprinted) NOIA model. They take the option
of implementing an explicit imprinting parameter, which in their
mathematical construction is closely related to the additive effect,
rather than to the dominance effect as in the imprinting-effect
model developed above (8–10). Since it is in this article acknowl-
edged that modeling imprinting requires some improvisation as
compared to other facts of genetic architecture, several different
solutions could be possible—it is not intended here to pose any
objective criticism on that choice by itself.

The developments by Xiao et al. (2013) are indeed
inspired in the NOIA model and they provide both statisti-
cal (i.e., population-referenced) and functional (which are not
population-referenced) formulations. However, their models are
difficult to be considered as pure extensions of the NOIA model.
A very simple counterexample for this can be shown through
their expression (12), from which it follows that they define
the functional additive effect as r1 = G22 − G11, whereas in the
NOIA model it is defined as a = (G22 − G11)/2. This can be eas-
ily derived e.g. from (2) for the non-imprinted case, and also
from (6) and (9) for the extensions to imprinting provided in this
article.

Xiao et al. (2013) carried out simulations to prove that their
statistical models are more appropriate (due to orthogonality)
for detecting allelic effects than their functional developments.
This effort seems to be rather futile since the functional for-
mulations are in general not developed with that motivation in
mind, but mainly for representing the GP map as effects of allele
substitutions from individual references (Hansen and Wagner,
2001; Álvarez-Castro and Carlborg, 2007; Álvarez-Castro, 2012;
and also summarized above). In any case, the statistical mod-
els of imprinting by Xiao et al. (2013) are admittedly not fully
orthogonal as the imprinting-effect model provided above (10),
but only under certain conditions e.g. (but not only) under the
Hardy–Weinberg proportions.

Wolf and Cheverud (2009, Appendix 2) had also provided a
model with an explicit imprinting parameter that is orthogonal
under the Hardy–Weinberg proportions. As well as Xiao et al.
(2013), they make the point that, also with imprinting, exten-
sions to multiple loci with epistasis come naturally using the
Kronecker product of genetic-effect design matrices (following
Tiwari and Elston, 1997), which incidentally applies directly also
to the models of imprinting provided in this article. However,
Wolf and Cheverud (2009) do not provide explicit expressions for
performing variance decompositions.

Neither they discuss an explicit link of their statistical setting
to a functional formulation, although their expressions (4) and
(5) fit to an extension of the physiological model (Cheverud and
Routman, 1995, which is an alternative to statistical formulations
with the unweighted population mean as reference point) rather
than to the F2 model they initially follow in their developments.
More to the point, in their previous work on imprinting (Wolf
et al., 2008) they made an extension of the F∞ model, another
alternative to the classical statistical formulations.

There is also a previous work in which a two-dominance
strategy has been chosen to model imprinting, by Santure and

Spencer (2011). They have adapted several standard quantitative
approaches to derive quantitative genetics parameters in the pres-
ence of imprinting, which is implemented as in this article, in the
form of one dominance effect for each heterozygote. The differ-
ent approaches considered in that article lead to different results,
but none of them enables an orthogonal decomposition of the
genetic variance into additive and dominance (due to the two
dominance effects) components. For several of those approaches,
expressions of the covariances due to lack of orthogonality could
not be derived.

DISCUSSION
Since models of genetic effects are mathematical expressions
aimed to enable the estimation of parameters with particular bio-
logical interpretations, their development is often directed to a
predefined target. The difficulties of these developments often
consist in reaching the mathematical properties that are in accor-
dance with the desired biological meanings. With imprinting,
there appears an extra layer of issues to be solved, ultimately
coming from the fact that many combinations of alleles or allele
variants will never occur (not even artificially). For solving that
issue, modeling that A2Ā2 can be reached by performing two
equal allele substitutions from A1Ā1 entails a very sensible and
practical solution (even acknowledging that this is not in reality
the case).

Standing from this point, and facing the presence of two differ-
ent heterozygotes (and their genotypic values), it appears natural
to think of accounting for two different dominance effects, analo-
gous to the one dominance effect in the non-imprinted case. This
solution, here called the two-dominances model, is not only fea-
sible but, as shown in Figure 2A, rather clean by construction. It
indeed leads naturally to an orthogonal variance partition into
additive and interaction components. However, with this setting
it may not be completely straightforward to detach imprinting
as an effect either to test or to analyze in terms of evolutionary
properties.

Traditional models of imprinting have embraced the option of
implementing an explicit imprinting effect, which is here called
the imprinting-effect model. Dominance is modeled as a depar-
ture from an additive (non-dominance) expectation. For model-
ing imprinting in an analogous way, a non-imprinting reference
has to be considered. Due to the particularities of imprinting,
this reference has to be a construct. Indeed, as explained above,
we cannot just remove imprinting effects from our alleles and
expect that the resulting genotypes exist or could even be viable,
and there seems to be no biological justification for choosing one
of the heterozygotes as the non-imprinted reference against the
other one. Hence, the midway between the two of them is in this
article set as a non-imprinted fictitious reference. In Figure 2B it
can be seen that this leads for instance to a definition of the dom-
inance effect in terms of points (gray discs) that are not genotypic
values (black discs). In any case, several advantages come from
this choice.

The imprinting-effect model here provided leads to a fully
orthogonal setting, which entails a clear advantage over previous
models. This is optimal in the first place for testing for statisti-
cal significance of the imprinting parameter. Furthermore, this
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setting can be described as a pure extension of a non-imprinting
case with the heterozygote at the midpoint between the two
imprinted heterozygote options. The variance partition, in par-
ticular, remains equal to the non-imprinting case in what regards
all variance components except from the imprinting variance,
which is of course absent in the non-imprinting case. This enables
extremely convenient comparisons: the equilibrium points of the
two cases will be the same, with a slowed down speed of pheno-
type change along generations for the imprinted case, which shall
be more noticeable for increasing proportions of the imprinting
variance component in the genetic variance partition (since the
proportion of the additive component of the phenotypic variance
decreases accordingly).

Besides population-referenced orthogonal expressions,
individual-based formulations are in this article provided. When
using any expressions in this article, the choice of a formulation
and a reference point must be based on the mathematical prop-
erties and/or biological meaning that fits the particular question
to be addressed. Each choice leads to different numerical values
of at least some of the parameters in an applied case and thus not
paying enough attention to picking the correct expression may
be misleading. An illustration of such requisite of awareness on
the specific kind of genetic effects used in each case follows.

In their article on imprinting and epistasis, Wolf and Cheverud
(2009) claim, based on a previous work (Cheverud, 2000), that
“additive-by-dominance indicates that the additive effect of the
first locus depends on (i.e., changes as a function of) the geno-
type present in the second locus, while the dominance effect
of the second locus depends on the genotype present at the
first locus.” This is true when analyzing a genetic system with
the physiological model (that is, for physiological additive-by-
dominance genetic effects). Functional formulations are meant
to express genetic effects from the reference of individual geno-
types, i.e., as individual-based formulations. Mathematically, it is
straightforward to use those expressions also from other reference
points and, when doing so, it can be shown that they then coin-
cide with statistical (population-referenced) formulations under
certain conditions [Álvarez-Castro and Carlborg, 2007, expres-
sion (7)]. Both the F∞, the F2 and the physiological models are
instances of this situation: they thus may fit both to functional
and to statistical interpretations and this is why the afore-cited
sentence holds true within its particular context.

However, it is worthwhile noting that the referred sentence
is not true for additive-by-dominance genetic effects of any
model or formulation, and in particular it cannot be applied if
the genetic effects are orthogonal (in the context a population
under study) and conditions (7) of Álvarez-Castro and Carlborg
(2007) do not hold. Indeed, in those instances it may well be
that dominance-by-dominance interactions generate statistical
additive-by-dominance interaction at genetic systems for which
the latest equals zero under the physiological model. Such a phe-
nomenon is analogous to the simpler instance shown in Figure 1,
where the presence of dominance interaction is shown to generate
additive variance in a genetic system where there are no difference
between the homozygotes (i.e., nil functional additive effects).
Interestingly, this hierarchical behavior works in a different way
when it comes to imprinting. Indeed, the imprinting-effect model

developed above is structured such that functional imprinting
alone (with neither functional dominance nor functional addi-
tive effects) generates neither dominance nor additive variance,
as it can be seen by the fact that these variances do not depend on
the imprinting effect.

Overall, it is in general crucial to mind the biological mean-
ing of the models in order to make the choice of the particular
expression to be used in each particular case. In relation with this,
NOIA conveniently provides expressions that work as a change-
of-reference tool so that the genetic effects required to a particular
question can be obtained from any others. The scope of that
tool applies to transformations between the two-dominances and
the imprinting-effect models developed above, which differ in
the presence/absence of an explicit genetic imprinting effect. The
choices of formulations are therefore not excluding, but poten-
tially informative about different aspects in the analysis of a
particular situation under study as long as the resulting values of
the genetic effects (or variance decompositions) are interpreted in
the light of the particular form of the genetic model used.

This article stands on recent advances in genetic modeling for
carrying out new theoretical developments to the aid of the anal-
ysis of genetic imprinting. The models here developed improve
previous proposals by providing both functional and statistical
formulations that enable an orthogonal partition of the genotypic
values and the genetic variance with a separate component for
imprinting, which enables both better estimation of, and insight
on, imprinted genes. Besides, imprinting may here be conceived
also as an excuse or a challenge in order to elaborate on the log-
ics behind the development of models of genetic effects—what
are they intended for, which difficulties condition their stage of
development, how to face them. Overall, one more step in the
generalization of models of genetic effects is here provided, as well
as keys about the way models of genetic effects may keep on being
developed.
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