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The management of natural systems often involves periodic interventions that must
be decided without a complete understanding of how the system responds to our
actions. It is in this situation of recurrent decision-making under uncertainty that adaptive
management (AM) has been repeatedly advocated, with each decision round providing an
opportunity to improve our knowledge in order to facilitate future decisions: the “learning
while managing” tenet of AM. When the subject of management is a wildlife population
(that is harvested, is a pest or is threatened with extinction), population models will be
at the core of the AM process. We provide an overview of the steps in AM, from the
set-up to the iterative phase, highlighting the central role that population models can play
at different stages of the process of planning and implementing an AM program, as well
as when analyzing the value of acquiring new information. We discuss the contexts in
which these models have been applied in natural resource management and biodiversity
conservation. We aim to bring this applied discipline to the attention of researchers
interested in population dynamics, while stressing the relevance of these models for
managers considering an AM approach.

Keywords: adaptive management, biodiversity conservation, decision theory, demography, growth model, natural

resource management, uncertainty, value of information

INTRODUCTION
Management decisions regarding biodiversity conservation and
natural resource management (NRM) often have to be made
under uncertainty, which may arise from different sources (Regan
et al., 2002; Williams et al., 2007, p. 61). When the management
is directed at some animal or plant population rather than at
an ecosystem or habitat, the uncertainties that impede straight-
forward decision-making are often underpinned by some aspect
of population dynamics. From the specification of sustainable
harvest rates (Nichols et al., 1995) to the management of pests
(Shea et al., 2002) and endangered species (Runge, 2011), deci-
sions need to be based on an understanding of population growth
or demography, knowledge that can be formalized as population
models. By population models we refer both to growth mod-
els (e.g., logistic or Ricker model; Ricker, 1954) and to models
with explicit demographic dynamics (process models, e.g., based
on a Leslie matrix; Caswell, 2001). The structure of such mod-
els, the value of the parameters within them, or how these are
affected by environmental or human-related factors, are potential
sources of uncertainty. Improving our knowledge about natu-
ral systems can be costly and/or time-consuming and waiting
until uncertainties are resolved may not always be feasible in the
face of pressing management decisions. In this context of recur-
rent decision-making under uncertainty “adaptive management”
(“AM” hereafter) has often been advocated, such that knowl-
edge can be updated over time and management actions adapted
accordingly. It is therefore natural that population models play a

key role in the application of the AM framework to programs that
deal with populations of animals and plants.

The theory of AM was developed several decades ago in
fisheries science (Walters and Hilborn, 1976, 1978; Smith and
Walters, 1981) and then spread to other areas of NRM (Parma
et al., 1998; Williams et al., 2007), particularly waterfowl hunting
management (Nichols et al., 1995; Johnson et al., 1997). The
last decade has seen a renewed interest in its application to
biodiversity conservation, for both plant (Moore et al., 2011)
and animal species (Rout et al., 2009; McDonald-Madden
et al., 2010; Runge, 2013), as well as habitat-based approaches
(Gerber et al., 2005; Moore and Conroy, 2006; McCarthy and
Possingham, 2007). Although often dealing with a single species,
multi-species problems have also been addressed using AM,
including predator-prey systems with linked dynamics (Varley
and Boyce, 2006; Martin et al., 2010) and sympatric species
(Sainsbury, 1991; Smith et al., 2013).

In this paper we provide an overview of AM, stressing the
central role that population models play in the different stages
of the process of planning and implementing an AM program
(Figure 1), as well as in assessing the value of acquiring new
information. With this review we hope to bring an applied dis-
cipline (AM) to the attention of population ecologists and other
researchers interested in the development of population models,
while highlighting the relevance of population modeling in the
AM framework for researchers and managers that are new to this
area and are considering applying an AM approach.
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FIGURE 1 | Diagram of the main steps in adaptive management, as an

iterative form of structured decision making (adapted from Runge,

2011), highlighting the two main phases. VOI stands for “value of
information analysis.”

A QUICK TOUR OF ADAPTIVE MANAGEMENT: WHY AND
HOW
AM is sometimes described as “learning while managing” but
this broad expression may be misleading and a more care-
ful definition is warranted: the key to an AM program is that
there must be careful planning for learning from the first steps
of the program definition (Walters, 1986; Parma et al., 1998;
Williams et al., 2007, p. 31), rather than learning opportunistically
from management mistakes as they occur, in a trial-and-error
approach. Therefore, monitoring within AM must be specifically
targeted to increase our knowledge of the system in a way that
improves future management actions, in an iterative process of
decision-action-monitoring-evaluation (Figure 1).

We do not delve in the details of AM itself in this short paper;
the reader is directed to different sources in the literature: guide-
lines for managers (Williams et al., 2007), more methodological
sources about quantitative methods (Walters and Hilborn, 1978;
Williams, 2011c), overviews and reviews of different aspects of
AM (Runge, 2011; Williams, 2011a; Westgate et al., 2013), includ-
ing discussions about bridging the research-practice gap (Gregory
et al., 2006; Allen and Gunderson, 2011) and circumstances when
an AM approach is not warranted (Walters, 1986). The human
or managerial dimension of the problem (i.e., long-term institu-
tional commitment or proper stakeholder engagement; Williams
et al., 2007, p. 18) can also influence the suitability of an AM app-
roach; while recognizing its relevance, we do not discuss it here.

We note that the emphasis in AM is in facilitating a decision-
making process which, depending on the case, may not require
indulging in aspects of the ecology or population dynamics of
a species if these are not necessary in order to make the deci-
sion. For example, some decisions simply require distinguishing
between probabilities of success of different management options
(e.g., McCarthy and Possingham, 2007) independently of the
mechanistic explanation behind their performance; in such cases
a population model, although informative and more portable to
other situations, may not be necessary for AM to proceed.

Adaptive management can be seen as an iterative form of
structured decision making (Runge, 2011; Gregory et al., 2012),
a common framework for the application of decision theory
grounded in value-focused thinking, which emphasizes the early
identification of management objectives (Figure 1). The follow-
ing two sections describe the role that population models can play
in the different steps of this process, which consists of a set-up
phase and an iterative phase.

SET-UP PHASE
Properly setting the context for the decision is the focus of the
set-up phase, in which the management problem is discussed and
consensus between stakeholders is reached regarding objectives
and acceptable alternative actions. The consequences of actions
are evaluated and decision trade-offs clarified so that a preferred
action can be identified.

At the problem-framing stage [step 1, Figure 1], population
models may be used to help understand the biological context
of the problem, e.g., to evaluate the current status of a species,
threatening factors, or the impact of harvest levels. Such models
may also influence how objectives (and measures to gage them)
are articulated [step 2]. A set of alternative management actions
[step 3] is often elicited based on conceptual models of why there
is a problem to be solved (e.g., different actions may address dif-
ferent hypotheses about reproductive failure; Runge et al., 2011);
this step can sometimes be supported by population models (e.g.,
including/excluding the effect of a competitor on survival of the
target species). Evaluating the consequences of alternative actions
[step 4] may be based on expert opinion but would ideally use
predictions from those models. The final step is to identify a pre-
ferred management action [step 5], which often involves assessing
trade-offs (e.g., an action that provides higher expected popu-
lation growth may also involve higher risk of a poor outcome)
and may require using different decision tools depending on the
complexity of the decision context (e.g., multi-criteria decision
analysis, dynamic programming).

Alternative hypotheses and management actions can some-
times be based on different beliefs about population dynamics
even without defining population models explicitly (e.g., disease
persistence and resulting population growth rates; McDonald-
Madden et al., 2010); parameterization may be based on expert
elicitation during the set-up phase (Runge et al., 2011). In gen-
eral, the structure chosen for the population model must take
into account how it will be used to make a decision and to test
alternative actions (Converse et al., 2013). It must therefore be
able to reflect the set of hypotheses regarding the effect that alter-
native actions have on demography or population growth of the
managed population, and provide good metrics for the objectives.

Objectives, model structures and uncertainties depend on the
type of managed resource. For harvested populations, objectives
are usually linked to maximizing long-term yield, by establish-
ing optimal harvest rates. Early fisheries AM programs were based
on a growth model with uncertain parameter values (e.g., intrin-
sic growth rate, Walters and Hilborn, 1976; density-dependence,
Smith and Walters, 1981) or uncertain model structure (e.g.,
Ricker vs. Beverton-Holt stock-recruitment models, Walters and
Hilborn, 1976). For waterfowl harvests in the US (Nichols et al.,

Frontiers in Ecology and Evolution | Population Dynamics October 2014 | Volume 2 | Article 60 | 2

http://www.frontiersin.org/Population_Dynamics
http://www.frontiersin.org/Population_Dynamics
http://www.frontiersin.org/Population_Dynamics/archive


Lahoz-Monfort et al. Population models and adaptive management

1995; Johnson et al., 1997), alternative demographic models have
been used to reflect relevant hypotheses about mortality being
additive or compensatory (Williams et al., 1996) or the strength
of density-dependence in recruitment (Johnson et al., 1997). In
species conservation problems, objectives are usually related to
population viability (Converse et al., 2013). This objective may
be explicit (either maximizing viability or minimizing probabil-
ity of extinction; Bakker and Doak, 2009) or defined indirectly
through maximizing population abundance (Bearlin et al., 2002;
Runge, 2013; Smith et al., 2013), number of populations (Moore
et al., 2011) or population growth rate (McDonald-Madden et al.,
2010), and may include thresholds (e.g., productivity above some
level, Martin et al., 2010) or multiple competing objectives (e.g.,
harvest and conservation, Varley and Boyce, 2006; Smith et al.,
2013). All these metrics require population models for their
calculation. Again, the uncertainty that complicates decision-
making may be related to demographic parameters (e.g., survival,
Rout et al., 2009; Runge, 2013; or productivity, Smith et al., 2013)
or model structure (Martin et al., 2010; Moore et al., 2011). The
issue of population control is in a way inverse to that of conser-
vation: managers attempt to keep the population of the problem
species under some level, or even aim at eradicating it in the
case of invasive species. AM has been proposed for the control
of native species (e.g., overgrazing, Kaji et al., 2010; or preda-
tors, Martin et al., 2010) as well as alien invasive species (Parkes
et al., 2006) and forestry/agricultural pests (Shea et al., 2002).
Applications of AM to pest control in agriculture and forestry
are still surprisingly rare given that these systems lend themselves
well to experimental manipulation (Parma et al., 1998; Shea et al.,
2002).

The population models defined during the setup phase are
sometimes used in simulations to evaluate different manage-
ment options before proceeding to the implementation of an AM
program, by simulating the complete cycle of decision-action-
monitoring-evaluation (Bearlin et al., 2002; Smith et al., 2013),
an approach sometimes termed Management Strategy Evaluation
(Bunnefeld et al., 2011). Demographic models can also be used
in detailed simulations of population trajectories based on demo-
graphic parameters to evaluate management actions in terms of
the resulting extinction risk, a process commonly known as “pop-
ulation viability analysis” or PVA (e.g., studies cited in Converse
et al., 2013). A stronger integration of PVA into AM has been
advocated as a way to explicitly link monitoring and management
models in a single simulation framework (“Population Viability
Management,” Bakker and Doak, 2009).

ITERATIVE PHASE
The steps outlined in the previous section lead to a decision in a
structured way. A key element in AM (particularly the “decision-
theoretic” school of thought; Runge, 2011) is a subsequent iter-
ative phase of monitoring to help resolve our uncertainty about
decision-making, updating the belief in alternative hypothe-
ses about the system, and adapting future actions accordingly
(Figure 1).

This iterative process requires the articulation of critical uncer-
tainty in the form of competing predictive population models
[step 6]. This step strongly influences the design of the necessary

monitoring program [step 7] so that it is targeted at resolving the
critical uncertainties about the system that impede clear man-
agement decisions. Learning [step 8] comes from comparing
the responses predicted by the competing population models to
the response observed by monitoring the population; this allows
updating the belief in the different hypotheses represented by
these models. A key feature in AM is that we now adapt our sub-
sequent decision-making in the light of the new knowledge, and
enter a new iteration of the cycle.

Different actions are expected to generate different responses,
and this often translates to different kinds and speeds of learning.
Thus, there is a trade-off between the potential future benefits
of learning from novel actions and data, against the immedi-
ate benefits of managing with what we know. A classic example
from fisheries is a heavily fished population. We might assume
a logistic growth model where we have good knowledge of the
intrinsic growth rate but high uncertainty about carrying capac-
ity. Maximum sustainable yield is a function of carrying capacity
so managers may consider continuing with the intensive fishing
or alternatively allowing the population to grow and approach
carrying capacity by reducing fishing rates for a few years in
order to reveal the population’s true maximum sustainable yield
(Walters and Hilborn, 1976). Two main approaches exist to deal
with this type of trade-offs (Walters, 1986; Williams, 2011b):
one can experiment actively (deviate from what appears the best
option at a given time, in order to improve understanding so
that future decisions can be improved—active adaptive manage-
ment); or learn in a more passive fashion (act according to best
current knowledge, but plan to learn from the outcome in order
to improve future decisions—passive adaptive management). By
contrast, we can also develop strategies that maximize distinction
among hypotheses at the conclusion of the management program
without any regard for management objectives (Probert et al.,
2011).

Less structured approaches can also be used for decision-
making, with AM proceeding on a suboptimal trajectory that still
delivers learning alongside management (Williams et al., 2007,
p. 33; Converse et al., 2013). Whenever possible, optimizing the
decision-making process will improve the predicted benefits of
an AM approach. For both active and passive AM, quantita-
tive methods exist to provide an optimal schedule of actions so
that an overall objective is maximized for a given timeframe.
Optimization methods most commonly assume that populations
possess first-order Markovian dynamics, such that all feedback
from the current action is observed in the next time step. Any
delayed responses need to be incorporated as state variables,
which increase the complexity of the problem.

Stochastic dynamic programming has been used widely to
calculate optimal schedules (e.g., Walters and Hilborn, 1976;
Johnson et al., 1997; McCarthy and Possingham, 2007), and
uses discrete transition models of system and knowledge change
over time. This technique is typically constrained to small state-
spaces and simple knowledge constructions, involving discrete
approximation of continuous population models. Walters (1986)
recommended Kalman filters to approximate more complex (but
still discrete) knowledge transitions, and wide-sense dual con-
trol algorithms to approximate optimal management schedules.
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Other methods can accommodate continuity in knowledge states
for a small number of distinct alternative population mod-
els (Williams, 2011c). For more complex structures, artifi-
cial intelligence methods and algorithms for discretized belief
Markov Decision Processes (Fackler and Pacifici, 2014), Partially
Observable Markov Decision Processes (Nicol et al., 2013) and
Mixed Observability Markov Decision Processes (Chadès et al.,
2012) show promise for developing near-optimal management
schedules. These approaches assume discrete population model
transitions between time steps; thus appropriate discretization of
population models will require a trade-off of predictive accuracy
against the computational burden of optimizing over a large state-
space, although in some cases few states really matter (Nicol and
Chadès, 2012).

VALUE OF INFORMATION ANALYSIS
Within the idea of “learning while managing” sits the concept of
acquiring new information to improve the decision-making pro-
cess. A set of quantitative tools from decision theory, collectively
called “Value of Information analysis” (VOI), allow investigation
of the value of collecting additional information to resolve or
reduce uncertainty (Runge et al., 2011). The most common tech-
niques are Expected Value of Perfect Information (EVPI; resolving
all uncertainty), Expected Value of Partial Information (EVPI;
resolving a subset of uncertainty, e.g., one particular hypothe-
sis) and Expected Value of Sample Information (EVSI; for a data
sample of a given size).

Analyzing the value of information can help: (1) concentrate
the learning to specific aspects of uncertainty that will improve
decision-making more quickly (high EVPI) and/or avoid doing
research on those aspects that do not contribute significantly (low
EVPI); (2) decide the amount of information that has to be col-
lected to achieve a given level of improvement in decision-making
(EVSI); or (3) indicate when overall it is not worth attempting to
learn about the system (low EVPI) or at least given the available
resources or capabilities to monitor (low EVSI for realistic sam-
ple sizes). After all, the value of AM hinges on having high value
of information and the means to acquire enough data to achieve
sufficient power (Runge, 2011). VOI analysis could be conducted
before committing to an AM program and at the beginning of
each management cycle if our knowledge has changed substan-
tially; sequential VOI analysis has been proposed (Griffin et al.,
2010) but we are not aware of any application in environmental
management.

Population models can play a key role in conducting VOI
analyses, which require quantifying the effect of alternative man-
agement actions on some parameter(s) of interest, under alter-
native hypotheses about the system. Population modelers must
therefore translate these hypotheses into different model struc-
tures or parameter values so that the impact of actions can be
predicted. For example, in Runge et al. (2011) expert elicitation
provided expected survival probabilities under several reproduc-
tive failure hypotheses and management strategies; if enough
data were available these probabilities could be estimated using
alternative models. Furthermore, VOI analysis is based on demo-
graphic parameters or population growth, but the managers that
are in a position to decide whether extra data collection is worth

its cost often prefer to work in terms of the population impact
of these demographic processes, e.g., persistence or extinction
risk. Population models can also be used to convert between
these currencies, e.g., translating a change in expected survival
probability due to resolving some uncertainty to an expected
change in extinction risk. Population viability analysis (PVA),
which includes a demographic model at their core, is particu-
larly useful for this purpose. In summary, we believe VOI analysis
can play an important role in informing research agendas for
population modeling since it may indicate which aspects of the
demography of a population are worth investigating.

CONCLUSIONS
Adaptive management represents ecological intervention with a
structured plan for learning about key uncertainties in a natu-
ral system of interest (Parma et al., 1998). Issues of harvest, pest
management and conservation all involve fundamental objectives
concerned with future population status: to maintain, reduce or
increase their levels, respectively. Since demographic parameters
govern the fate of the population under management, popula-
tion models can provide the necessary predictive link between
management alternatives and objectives (Converse et al., 2013)
and can therefore be central to adaptive management programs.
Calls to extend the use of AM in decisions regarding wildlife
populations are common in the literature (Parma et al., 1998;
Shea et al., 2002; Williams et al., 2007; Runge, 2011; Williams,
2011a; Converse et al., 2013). We believe a more widespread
application of adaptive management in natural resource manage-
ment and biodiversity conservation will provide opportunities for
stronger collaboration between population modelers, managers
and other stakeholders, to achieve a better integration of science
and management.
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