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Changing marine temperatures modify the distributional ranges of natural populations,
but the success of invasion of new areas depends on local physical and ecological
conditions. We explore the invasion by thermophilic species and their ecosystem effects
by simulating a sea surface temperature (SST) increase using a trophodynamic model
for the northern Adriatic Sea (NAS), in which thermal and trophic niches are explicitly
represented for each thermophilic non-indigenous species (NIS) and native species. The
NAS acts as a cul-de-sac for local species, preventing a further poleward migration
as a response to temperature rise. In this situation, model results showed that effects
of warming and invasion produced complex, non-linear changes on biomasses but
never resulted in a complete overturn of a group of native species and/or a bloom
of invasive ones. Despite this, the diversity index stabilizes at increased values after
simulating invasion, possibly indicating that in such enclosed systems the establishment
of invasive species could represent an enrichment in ecosystem structure. In addition,
the absence of complete species substitution clearly showed the contribution of resident
species toward increasing the resilience, i.e., the capability of the system to cope with
invasion without changing substantially. Contrasting scenarios highlighted that changes
in ecosystem primary production and species adaptation had secondary effects in
ecosystem structure, while results for scenarios with different exploitation levels indicated
that fishing can destabilize community structure in these change contexts, e.g., reducing
community resilience. The results confirmed the importance of an ecological niche
approach to analyze possible effects of invasion and highlighted the complexity of
dynamics linked to temperature-driven species invasion’, in terms of both the predicted
strength of impacts and the direction of biomass change.

Keywords: non-indigenous species, ecological niche, warming scenarios, community structure, food web,
Mediterranean Sea

Introduction

Global ocean temperatures have risen by 0.11◦C per decade over the period 1971–2010 (Jones
et al., 2013). This tendency is predicted to continue in the future, in particular for the
Mediterranean Sea where warming scenarios project a mean annual temperature rise 1.25
times higher than the global average long term predictions for 2081–2100 (Jones et al., 2013).
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Changing marine temperatures play a role in modifying the
distributional ranges and density of natural populations. The
poleward shift of thermal habitats makes previously inhospitable
areas accessible to more thermophilic (warmer-water) species,
and makes the same areas less suitable for the native ones
(Walther et al., 2002, 2009; Parmesan, 2006; Bazairi et al.,
2010). These two processes are expected to open the so-called
“invasion window,” changing an ecosystem’s susceptibility to
invasion (Carlton, 1996; Drake et al., 2006; Caplat et al., 2009).
Climatic changes thus ultimately influence biodiversity (Bianchi
andMorri, 2000), increase the risk of extinction for less adaptable
species (Bazairi et al., 2010) and affect fisheries (Cheung et al.,
2010). An increasing trend of non-indigenous thermophilic
species has already been recorded in the Mediterranean Sea (Ben
Rais Lasram and Mouillot, 2009; Zenetos et al., 2012), possibly
resulting in an irreversible marine ecosystem shift (Ruiz et al.,
1997).

Thermal and trophic opportunities, disadvantages and
competition within ecological niches all play a role in
determining a species’ potential for successful invasion.
Successfully invading thermophilic species are expected to take
advantage of increased average temperatures (Dulčić and Grbec,
2000; UNEP - MAP - RAC/SPA, 2008; Dulčić et al., 2010, 2011;
Brotz and Pauly, 2012; Zenetos et al., 2012; Pecarevič et al, 2013)
but they also need to either find or make trophic niche space,
such as by outcompeting native species (e.g., Pranovi et al.,
2003). Meanwhile, some local native species might be negatively
affected by higher temperatures, but may be able to exploit new
trophic opportunities as a trade-off. It is therefore not trivial to
predict the potential invasion of non-indigenous species (NIS)
and their impacts (Jones et al., 2013; Pinnegar et al., 2014).

In this work we explore which are the potential thermophilic
invaders and their ecosystem effects by representing combined
thermal and trophic niches for both native and non-indigenous
species. Dynamic thermal and trophic niches have been described
using a trophodynamics model wherein water temperature is
simulated to rise according to global and local sea surface
temperature (SST) scenarios (Somot et al., 2006; Jones et al.,
2013).

We used the northern Adriatic Sea (NAS) basin as the ideal
hotspot to investigate the effects of climate change. This semi-
enclosed and shallow basin (Figure 1) is exposed to cold north-
easterly winds and receives cold waters from many alpine rivers
that contribute to create a sub-atlantic climate, and therefore
hosts several species adapted to boreal conditions (Tortonese,
1964). Moreover, its position within the Mediterranean, makes
the NAS a cul-de-sac for these species, preventing further
poleward migration as a response to temperature rise (Ben
Rais Lasram et al., 2010). Multiple gears target several marine
demersal and pelagic species living in the shallow and highly
productive grounds of NAS (Pranovi et al., 2001; Pranovi and
Link, 2009) with documented historical changes and effects on
the marine communities (Fortibuoni et al., 2010; Barausse et al.,
2011).

Within this context, some questions arise in relation to the
potential arrival of thermophilic non-indigenous species (NIS),
such as:

FIGURE 1 | Map of the Northern Adriatic Sea. (A) Localization of the basin
within the Mediterranean Sea; panel (B): detail of the area highlighting the main
features determining a subatlantic climate, i.e., the north-easterly cold winds
and the main rivers discharging in the Northern Adriatic Sea the cold waters
from northern alpine areas.

– Are changes in community structure simply linear with
temperature, implying easier predictability? How uncertain are
our estimated biomass changes due to temperature changes?

– What is the combined effect of trophic and thermal
opportunities in the dynamically changing environment both
for native and non-indigenous species? Can we characterize
species that benefit from climatic changes as those that show
biomass increases (winners) and species harmed by climatic
changes as those that show biomass decreases (losers) for both
native and non-indigenous species?

– What role does the adaptation of native species to rising
temperatures, changes in primary production, and changes in
fisheries pressure play on the changes in community structure?

– Overall, how does invasion by NIS restructure the biological
community?

We explore emerging ecosystem changes using a dynamic food
web model for the NAS that:

(i) Includes, as initial conditions “seeds” for NIS at extremely
low biomass;

(ii) has defined thermal niche preferences and trophic
interactions for non-indigenous and native species, or
groups of species;

(iii) is subjected to scenarios of water temperature increase.

With such a model structure we intend to simulate the potential
opening of the invasion window due to climatic changes.
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The general goal is to explore the possible broad community
consequences of the establishment of new species under climate
change.

Materials and Methods

The Food-web Model
An existing model representing the NAS ecosystem in the
1990s (Zucchetta, 2002; Pranovi and Link, 2009) was updated
with 2007–2008 data. The ecosystem was modeled with a mid-
complexity structure using 30 living functional groups and 2
non-living groups (“Detritus” and “Carcass”), in order not to
compromise the capability to represent the main trophodynamic
processes, while maintaining an acceptable level of synthesis.
Functional groups were defined by aggregating species with
ecological similarities (Christian and Luczkovich, 1999) such
as food preferences, predators, life history traits and habitat
preferences (Table 1 and Supplementary Materials, Table S1).
Some taxa were described by dedicated groups because of
their importance as target species for local fisheries, namely
Thunnus thynnus (Bluefin Tuna, BFT group), Platichthys flesus,
Scophthalmus maximus, Scophthalmus rhombus, and Solea solea
as a Flatfish group (FFS), Aequipecten opercularis and Pecten
jacobeus as a Pectinidae group (PEC), and the venus clams
Chamelea gallina and Venus verrucosa as a Veneridae group
(VEN) (Table 1). Fishing activity was represented through five
fleets: tuna fisheries (that include longline and purse seine), mid-
water trawl, otter-trawl, hydraulic dredge, and rapido trawl (a
typical fishing gear used in the Adriatic to harvest flatfish and
scallops—see Pranovi et al., 2001). These fisheries are modeled
by representing both commercial catches (landings) and by-catch
of non-commercial species: this latter constitutes the discard,
which makes up a particularly large fraction of catches for
otter and rapido trawl (Pranovi et al., 2001). Therefore, the
abiotic compartment “Carcass” has been added to account for
the discard from fishing activities, and the consequent scavenging
processes that are important in the NAS ecosystem dynamics
(Zucchetta, 2002; Pranovi and Link, 2009).

Dedicated functional groups, exclusively composed of
thermophilic non-indigenous species, were introduced at all
trophic levels as potential homologous of some native ones.
The invasive groups represent species recorded recently in the
basin such as the planktivorous fish Sardinella aurita and the
barracuda Sphyraena viridensis, or NIS recorded in other parts
of the Mediterranean and whose arrival in the NAS is likely
to occur in the near future (e.g., the opistobranch Halgerda
willeyi, Zenetos et al., 2012). Parameters for the new groups were
calculated taking into account productivity and consumption
rates of the species composing the group, as well as the specific
diets, which were derived from the data available on SeaLifeBase
(Palomares and Pauly, 2014). The initial biomass for the invasive
groups was set to very low values, so to represent a “pre-invasion”
status.

The modeled functional groups and their main parameters
are summarized in Table 1, while Table S1 in the Supplementary
Materials details the sources used to determine the parameters,
and Table S2 shows the diet composition matrix. A synthetic view

of the model structure and main energy flows are reported in the
Figure 2.

The model, built in Ecopath with Ecosim 6.4 (Christensen
et al., 2000; Christensen andWalters, 2004; Christensen, 2009), is
based on a system of ordinary differential equations, describing
the biomass variation of each functional group over time (t) as
follows:

dBi
dt

=
(
P
Q

)
i

∑
j

Qji(t)−
∑
j

Qij(t)

+Ii−
(
Mi+Fi(t)+ei

) · Bi (t) (1)

where Bi is the total biomass of the ith group composing the
modeled food-web, (P/Q)i is its production/consumption ratio,
Qji is the consumption of group i (predator) on group(s) j,
Qij is the consumption by group j on group i (prey), Ii is the
immigration rate,Mi is the natural mortality rate, Fi is the fishing
mortality rate and ei is the density dependent emigration rate.
Initial conditions and parametrization were set on the basis of
the mass balance Ecopath model (Table 1). In the NAS model
ei and Ii were set as zero, Mi was estimated from Ecopath
production rate (P/B)i and ecotrophic efficiency (EEi) as Mi = (1-
EEi) (P/B)i. Initial estimates of fishing mortality were calculated
from the ratio between the catches [YE

i = Yi(t = 0)] and biomass
[BEi = Bi(t = 0)] in Ecopath, i.e., FEi = YE

i /B
E
i . A time series

multiplier ff(t) was entered in Ecosim to modulate changes of
fishing mortality over time, Fi(t) = ff(t)∗ FEi . It has to be noted
that in EwE, non-living compartments (Detritus and Carcass) are
set to be flow-based so their dynamic is almost insensitive to their
initial biomass.

Each element Q in Equation 1 is based on the foraging arena
(Walters et al., 2000;Walters and Christensen, 2007; Christensen,
2009; Ahrens et al., 2012), which assumes that only a portion of
the prey can be vulnerable to predator: this accessible biomass
is regulated by a vulnerability rate (vij) and the quantity of prey
consumed by a predator will be:

Qij(t) =
f (T, t) · aij · vij · Bi(t) · Bj(t)

2 · vij+aij · Bj(t) (2)

where aij is the search rate and the forcing function f (T,t) can
be used to account for external drivers changing over time,
such as temperature T (Ainsworth et al., 2011). Ecopath mass
balance biomasses Bi and Bj, predator consumption rate (Q/B)j
and diet proportion DCij, are used to estimate aij. More details
on Ecopath and Ecosim parametrization can be found elsewhere
(Christensen and Walters, 2004b).

For consumer groups, to relate the growth rate of a population
to temperature, we set the forcing function as the one initially
proposed by (Lassiter and Kearns, 1974):

f (T, t) =

⎧⎪⎨
⎪⎩

(
Tmax−T(t)
Tmax−Topt

)c(Tmax−Topt)
if T < Tmax

·ec(T(t)−Topt)

0 if T ≥ Tmax

(3)

where T is the SST, Topt is the optimum temperature for a given
species, at which, with other factors constant, the consumption
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FIGURE 2 | Scheme of the structure of the food-web model.
Functional groups and fisheries are arranged clockwise in decreasing
order of trophic level (TL). Barplots of the outer circle represent
optimal temperature and maximum temperature (Topt and Tmax
values in cyan and red bars, respectively) in the scale 0–30◦C for
the functional groups, which are represented in the inner circle as

labeled boxes (group codes are reported in Table 1). The width of
the boxes is proportional to the group biomass, and the color
indicates the group type (Green = Native, Orange = Invasive,
Blue = Fishery, Gray = Non-living). Links, representing trophic
interactions, are proportional to the flow between two groups;
inbound flows are those closest to each box.

and growth is maximum; Tmax is the maximum tolerated
temperature, above which the consumption and growth is null,
and c is a parameter accounting for the sensitivity of a species’
consumption (i.e., its productivity) to temperature variations.

For primary producers, two types of forcing functions were
considered to modify productivity, a linear variation with
temperature, and an exponential one (Eppley, 1972):

f (T, t) = 100.0275·T(t)−0.07 (4)

Estimating Temperature Dependence Parameters
Although, some empirical data regarding thermal preferences
and effects of temperature on physiological processes are
available in literature or datasets (e.g., Coutant, 1977; Block
et al., 2001; Roessig and Woodley, 2004) few of them regard
Mediterranean marine species and potential invaders. Therefore,

in order to be consistent across the many species that we
included in the model, temperature dependence parameters were
estimated using a geographical distribution approach similar to
what has been adopted in other cases (Dulvy et al., 2008; Cheung
et al., 2013; Parravicini et al., 2015).

The parameters Topt, Tmax, and c were estimated for each
species on the basis of their latitudinal distribution in the
northern hemisphere and by reconstructing a mean latitudinal
SST profile to relate latitude to temperature. Species latitudinal
distribution was derived from Global Biodiversity Information
Facility database (www.gbif.org) considering occurrences up to
year 2000 to exclude possible recent range modifications due to
climate change. A yearly mean latitudinal SST profile for the
northern Atlantic Ocean was reconstructed using SST data from
1945 to 2000 of the online NOAA database (nodc.noaa.gov). The
Topt for each species was defined as the mean annual SST at the
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latitude corresponding to the median of the species’ latitudinal
range. Similarly, Tmax was defined as the mean annual SST at
the latitude corresponding to the 5th percentile of the species
latitudinal distribution. The parameter c, that indicates the rate of
change of a group’s consumption and productivity with changes
in SST, was applied considering a species preferred habitat and
its possible relation to the surface. Thus, high values of c were
assigned to pelagic species, intermediate values to demersal ones,
and lowest values of c were assigned to benthic species in order
to represent decreasing response of species to SST changes. This
parametrization permits to represent the fact that a species that
can move and adjust its location quickly will maintain the highest
productivity relative to its specified base rate.

Once estimated for all species, the temperature parameters for
each functional group were calculated using biomass weighted
averages of the values of the species composing the group.
Our resulting temperature parameters were compared also with
values of Topt and Tmax from (Cheung et al., 2013) for validation
(see Table S2, Supplementary Material).

Sensitivity Tests and Scenario Analysis
The model was tested for sensitivity to SST trend changes, and to
the parameters of temperature forcing function in Equation 3.

The initial temperature was set to the mean SST registered
in the basin in 2007 (Tstart = 18.4◦C); the final temperature
change was comprised between +0.8 and +1.2◦C in 10 years,
and then kept constant for 20 years to reach steady state (Tend =
19.2 ∼ 19.6◦C). A set of 20 simulations over 30 years was run
each with a different Tend at regular intervals of 0.02◦C. For
each simulation, the final biomass (Bend), the relative biomass
variation (Bend/Bstart) and the value of the forcing function (f (T))
were calculated for each group; further, the relative sensitivity, S
(Campolongo et al., 2000), was calculated as follows:

S = �B
Bstart

· Tstart

�T
(5)

where �B = Bend – Bstart and �T = Tend – Tstart. This relative
sensitivity is a measure of expected changes around the starting
conditions (local sensitivity) and it indicates the expected relative
change in biomass (% change) due to a unit relative change in
temperature (i.e., 1%) (Zádor et al., 2006).

Moreover, in order to test the sensitivity of the model to the
uncertainty on temperature parameters, 100 simulations were
performed assuming a linear temperature rise of+1◦C in 10 years
and using different combinations of Topt, Tmax, and c for every
functional group. Parameter values were randomly extracted
from normal distributions centered on the actual estimated
parameter and having SD = 0.7. The distribution of results in
terms of relative biomass variation (Bend/Bstart) was used to
evaluate the uncertainty of predicted changes.

In order to test ecological changes induced by adaptation,
changes in primary productivity (PP) and fisheries and their
combined effects a set of 24 scenarios (Table 2) grouped into six
groups were implemented. The reference scenario with current
PP and fisheries pressure was run for 50 years under the IPCC
A2 that implies a 0.03◦C SST rise per year (applied for the first

30 years) on the basis of temperature projections by Somot et al.
(2006).

Then the capability of autochthonous groups to adapt
to temperature changes was represented by applying the
temperature-based forcing functions to the search rates of every
group in the system (non-adaptation; scenarios 1–3) or to all
groups but with a delay for native groups (adaptation, scenarios
4–6) on the assumption that the search rate of the native is
affected by T rise only after a few years after T starts changing
(Table 2). Specifically, a delay of 5 years was assumed for groups
with Topt <= 10◦C (FFS, PEC, VEN, MHR), and a delay of 10
years was applied to all the others.

PP was represented by (i) no change (scenarios 1 and 4), (ii) an
exponential increase in production with temperature (scenarios 2
and 5), and (ii) a linear decrease of 20% in 30 years representing
the oligotrophication trend actually detected in the basin (Giani
et al., 2012; scenarios 3 and 6) (Table 2).

Moreover, the reference simulation (current fishing effort
exerted on native species only; scenarios C) was compared with
simulations representing as effort reduction to zero (no fishing;
scenarios A), an effort reduction by 20% (fishery on all groups;
scenarios B), and the new invasive species as an opportunity for
fishermen (F for invasive species equal to the native counterpart;
scenarios D) (Table 2).

Ecosystem Structure, Functioning, and
Ecological Niches
Ecosystem effects of invasion in combination to other factors
represented under different scenarios were evaluated by looking
at changes in biomass of functional groups and by analysing
the Kempton’s Q75, an index that synthesizes the community
structure in the form of biodiversity index (Ainsworth and
Pitcher, 2006). The Q75 index is calculated as:

Q75 = S
2
log(

R75
R25

) (6)

where S is the total number of functional groups and R75 and R25
are the biomasses at the 75th and 25th percentile, respectively.
Moreover, for distinguishing the prevalence of trophic effects or
of temperature-related effects on the various groups, the Mixed
Trophic Impact (MTI) index was used (Ulanowicz and Puccia,
1990). MTI results from the application of the input-output
analysis on the food web flows and quantifies the direct and
indirect trophic effects that one group has on each other of the
food web (See Supplementary Materials, Figure S1). The sum
of MTI by row represents the overall effect (MTIj) of a group
on the food web and it is a prediction of biomass changes as
a consequence of the biomass variation of all the other groups
in the system (Libralato et al., 2006). Therefore, by plotting
biomass changes obtained from simulations of increasing SST
againstMTIj (that do not include temperature effects) enables to
distinguish results that are fairly in line with MTIj predictions
and that are therefore mainly driven by trophic (direct and
indirect) opportunities and disadvantages, from results that
contrast with MTIj, for which direct and indirect effect of
temperature rise can be considered to be dominant.
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TABLE 2 | Conditions and drivers used in the scenario analysis on top of the reference climatic change.

# Group Scenario Native species adaptation Primary Production Fishery

1 1 1A NO Constant NO

2 1 1B NO Constant Effort reduction to 20% in 5 years

3 1 1C NO Constant Only resident groups targeted

4 1 1D NO Constant All groups targeted

5 2 2A NO Increase NO

6 2 2B NO Increase Effort reduction to 20% in 5 years

7 2 2C NO Increase Only resident groups targeted

8 2 2D NO Increase All groups targeted

9 3 3A NO Decrease NO

10 3 3B NO Decrease Effort reduction to 20% in 5 years

11 3 3C NO Decrease Only resident groups targeted

12 3 3D NO Decrease All groups targeted

13 4 4A YES Constant NO

14 4 4B YES Constant Effort reduction to 20% in 5 years

15 4 4C YES Constant Only resident groups targeted

16 4 4D YES Constant All groups targeted

17 5 5A YES Increase NO

18 5 5B YES Increase Effort reduction to 20% in 5 years

19 5 5C YES Increase Only resident groups targeted

20 5 5D YES Increase All groups targeted

21 6 6A YES Decrease NO

22 6 6B YES Decrease Effort reduction to 20% in 5 years

23 6 6C YES Decrease Only resident groups targeted

24 6 6D YES Decrease All groups targeted

Each scenario is run to represent 50 years under the IPCC A2 (Somot et al., 2006) that implies a 0.03◦C SST rise per year (applied for the first 30 years) used as reference. Conditions
represent adaptation or not to temperature changes by native functional groups; drivers are represented by primary production and fishery changes.

Results in terms of biomass change with SST change scenarios
allows us to distinguish between groups with positive (winners)
and negative (losers) biomass change: these were compared
with predator and prey niche overlap (Christensen et al.,
2000) to identify possible trophic niche shifts and partial niche
substitutions.

Results

The analysis of sensitivity to the variability of T highlights the
existence of nonlinear effects within the modeled food web
(some example functional groups are represented in Figure 3).
In particular, analyzing the relationship between the value of f (T)
(Equation 3) calculated for Tend and the biomass (Figure 3A) or
the relative sensitivity index S (Equation 5, Figure 3B), nonlinear
changing rates emerged for every functional group.

The results of uncertainty tests on the parameters of
temperature equation by species (Equation 3) showed
considerable changes and variability in the functional group
biomass estimated by the model after 30 years of simulation
(Figure 4). Although, as expected, all invasive species benefited
of environmental changes, the resulting positive biomass change
was different for each functional group. Moreover, uncertainty
analysis showed that new ecosystem conditions might have
non-zero probabilities to result in negative effects for some

invasive thermophilic groups such as MOI, MMI, JEI, and MZI
(Figure 4). Some native groups showed large probability of
increasing biomasses (BFT, PLT, MEI, JEL, MIZ, BPL), whereas
others (NFD, CPH, FFS, MOP, PEC, VEN, MZP, MHR) had
higher probabilities of decreasing their biomass in the new
environmental conditions. Some groups, such as BFD, MMF,
MFF, and MDT, had very large probabilities of maintaining
current densities even with new climatic conditions. Variability
rarely exceeded±30% of the median value (Figure 4). In general,
medium-high TL groups showed larger dispersion of results
than low TL groups. Moreover, although MOI and MMI had
the largest variability in final biomass, several native groups
(BFT, BFD, PEC, VEN, MHR) were more sensitive to simulated
changes than any other invasive groups.

Comparing biomass changes for both native and invasive
functional groups for simulations based on the SST increase
scenarios with simulations where the SST increase is combined
with modifications of the primary production and fishery
(Figure 5) permits us to disentangle climate from the
other sources of perturbation. Results seem to confirm the
heterogeneity in terms of responses of different groups to the
SST increase, with positive, negative and neutral “behavior”
(Figure 5, top left panel). Given a fishery scenario, the increase
or decrease in PP produced a unidirectional shift of all groups
toward higher or lower biomass (Figure 5, panels in central and
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right columns respectively) compared to constant PP (panels
in the left column). For the current fishing conditions (lowest
row of panels, D), this translates in a shift above and below the
reference 1:1 line. Fishing seems to produce a strong effect on

FIGURE 3 | Relationship between T increase and relative biomass
change (A), Temperature forcing function (see Equation 3) and relative
biomass change (B), T increase and relative sensitivity as from
equation 5 (C) and temperature forcing and relative sensitivity (D). For
the sake of clarity, results are reported only for some representative groups,
i.e., the BFD, Benthic Feeders group; MMF, Macrobenthic Mixed Feeders; NFI,
Nekton Feeders Invasive; MFI, Macrobenthic Filter Feeders Invasive.

the ecosystem: current fishing conditions including (row D) or
excluding (row C) fishing on invasive species have prevailing
and dominating effect on biomass changes, regardless of PP
changes. Reducing (row B) or eliminating fishing (rows A)
implies considerable restructure of the food web due to the
biomass increases of both invasive and native functional groups.

Changes in the ecosystem structure, due to thermophilic
species invasion, were well captured by the Kempton’s Q75
index, showing a common pattern that supports the ecosystem
development theory (Odum, 1969): the initial steady rise due
both to the increase of invasive biomass and initial reduction
of the most abundant native species, is followed by a maximum
plateau (generally, attained before the forcing function stops
acting, vertical dotted line) and then a drop, after which the
index tends to stabilize at a value higher than the initial one
(Figure 6). It is worthy to note that the adaptation of native
species (scenarios 4–6) produced a more gradual variation,
with a reduction and shift of the peak. Changes in PP slightly
affected the peak (both in term of position and value; scenarios
2, 3, 5, and 6). Finally, modifications in the fishing pressure
regime exacerbated the effects in terms of changes in the
community structure, amplifying the peak and shifting it in
the time and leading to ultimate reductions in biodiversity
(Figures 6C,D).

By comparing the MTI with the biomass changes resulting
from the sensitivity tests, it was possible to highlight the model
capabilities to distinguish the prevalence of climate-related or
trophic-web related effects. Plotting the relative biomass variation
index against the MTI index (Figure 7), different groups can be
detected:

FIGURE 4 | Sensitivity tests on the temperature forcing function
parameters [f(T,t), Equation 3]. Results are reported in terms of
biomass at the end of the simulations (Bend) relative to initial biomass
(Bstart). Box plots represent the median (black line) and interquartile

range (gray box) for relative biomass of each functional group. Native
groups are reported on the left, invasive groups on the right. The solid
line (Bend/Bstart = 1) represents no change. See Table 1 for
explanation of functional groups codes.
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FIGURE 5 | Results of the simulations based on simultaneous SST
increase, changes in primary production and fishing activities.
Results for all scenarios are reported in terms of relative biomass
variation with respect to initial conditions for each functional group. In all
these scenarios, the native species are allowed to adapt to the SST
increase, at least in the first phase of the simulation (analogous

scenarios with no adaptation are reported in the Supplementary
Material). According to the scenario definitions in Table 2, A = no
fishery, B = fishery on all groups, but reduced to 20% of the present
effort level, C = fishery only on native species, D = fishery on all
species at the present effort level. Functional group codes are defined
in Table 1.

• (A) those for which trophic effects were indicated to be
negligible (MTI < 2), but the high biomass variation [positive
or negative, (Bend/Bstart) > 1.5 or <0.5], highlighted that their
changes were driven mainly by temperature (e.g., FFS, MHR,
MHI, PLI, MDI);

• (B) those with little/intermediate biomass variation 0.5 <

(Bend/Bstart) < 1.5, but with large expected trophic effects,
e.g., MTI >> 2 (BFT, MMI, CPH), for which it seems that
temperature and trophic effects act in an antagonistic way;

• (C) groups with high biomass change [(Bend/Bstart) > 1.5 or
< 0.5] and high trophic effects (MTI >> 2) were indicated
(NFI, MOI, PEC), for which a synergistic effect of trophic and
temperature impacts can be hypothesized;

• (D) those groups with low intermediate changes in biomass
and low expected trophic effects that showed mixed somewhat
small effects (most functional groups).

This analysis (Figure 7) allows discriminating between trophic
and thermal drivers and resulting identification of winners
(biomass change >1) and losers (<1). Combining this analysis

with the niche overlapping index permits us to describe
possible trophic substitutions and adjustments in the biological
community (Figure 8). High values of index of predation overlap
between losers and winners (dark blue cells in Figure 8) suggest,
for example, that NFI and PLI (invasive winners) can substitute
as predator NFD, FFS, and CPH (native losers); the invasive MOI
potentially substitutes (at least in part) the native groups MOP
and MDT as predator. As prey, the invasive NFI substitutes the
native NFD, invasive PLI takes advantage of decreasing VEN and
PEC, and MOI substitutes FFS (Figure 8).

Discussion

Changes in species distributions is a climate change effect
of primary interest and can integrate changes in phenology,
condition, and biological communities (e.g., Parmesan, 2006;
Lejeusne et al., 2010). However, previous analysis already showed
that thermal niche alone cannot completely explain invasive
species distributions (e.g., Parravicini et al., 2015). Combining
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FIGURE 6 | The Kempton’s Q75 index, estimated for different tested
scenarios. Reference scenario with current primary productivity PP and
fisheries pressure was run for 50 years under the IPCC A2 that implies a
0.03◦C SST rise per year (applied for the first 30 years) on the basis of
temperature projections by Somot et al. (2006). Scenarios 1–3 are simulated
with no adaptation of native species to changes in SST, while in scenarios 4–6
adaptation to SST is simulated. Scenarios 1 and 4, represent no changes in
PP, while scenario 2 and 5 increase, and 3 and 6 decrease of PP. (A–D) refers
to scenarios with increasing fishing pressure: (A) no fishing; (B) actual effort
reduced by 20% in 5 years; (C) only resident species are targeted at actual
effort; (D) all species are targeted at actual fishing effort. All scenarios are
summarized in Table 2. The vertical dashed line represents the point beyond
which the forcing stops acting.

thermal and trophic niche, for both native and non-indigenous
species, in the food web model resulted a successful approach
to represent the invasion and explore ecological effects of NIS.
Niche availability, indeed, has been demonstrated as one of the

FIGURE 7 | Relationship between relative biomass variation
(Bend/Bstart) from reference simulation (whiskers indicate range of
variability from sensitivity tests) and overall impact index (MTIj ) for all
the trophic groups. Native groups are in blue and invasive groups are in red.
The solid line (Bend/Bstart = 1) defines winners (above the line) and losers
(below the line) in a context of climate change. Dotted lines separate areas of
the graph with different dominance of trophic and thermic effects.

most important aspects in determining the invasion success of
NIS (Ward and Master, 2007). The so-called “invasion window”
(Carlton, 1996; Drake et al., 2006; Caplat et al., 2009), depends on
the niche availability, i.e., the set of ecological conditions that can
transform an invasive species into “the right species at the right
moment” (Pranovi et al., 2006).

Climatic changes, and in particular ocean warming, are
expected to act as a factor contributing to the opening of the
invasion window beyond the direct favoring of thermophilic
species. In fact, thermal regime modifications that negatively
affect native species might destabilize community structure,
increasing niche availability and so further favoring the success
of invasive species establishment (Wolkovich and Cleland, 2014).
In this context, an explicit and “open” modeling scheme was
developed instead of the ordinary approach of comparing
characteristics of marine food web models with and without
the addition of one or more invasive species (Arias-González
et al., 2011; Pinnegar et al., 2014). Here, the SST was used as a
forcing function driving the ecological dynamics of the different
groups in the model, which includes a “seed bank” of non-
indigenous species, thus permitting us to represent the invasion
window opening and the establishment of invaders to emerge
as a combined result of both direct and indirect trophic and
thermic opportunities. Results of simulations representing an
increase in the range of 0.8–1.2◦C over 30 years and accounting
for the uncertainty in the biological thermal preferences, robustly
highlighted complex non-linear and non-homogeneous changes
across groups of species. The establishment of invaders according
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FIGURE 8 | Prey and predator niche overlap (lower and upper
diagonal part of the matrix, respectively). Intensity of the color
represents strength of the niche overlap (light = low niche overlap;
dark = high niche overlap). Groups (codes are explained in Table 1;
invasive groups are bold) are ordered in terms of relative biomass
change (y-axis of Figure 7), thus to distinguish losers (A) from

winners (B, see also colors). The high value of niche overlap for
winners and losers permits the identification of niche substitution. For
example, NFI is a winner and as prey, substitutes mainly the niche
of the loser NFD (lower diagonal matrix). As predator, instead (upper
diagonal matrix) the winner NFI occupies the niche of a few losers
such as FFS, CPH, and NFD.

to better thermal and trophic fitness, in fact, was accompanied
by highly variable effects (biomass changes) on native species.
Overall the biomasses of some species with boreal affinity, i.e.,
more sensitive to increasing temperature, such as the flatfishes
(FFS), were importantly reduced, and the trophic overlap index
permitted us to see that such trophic niche depletion provides
opportunities for invasive groups even if taxonomically and
ecologically very distant, such as the Planktivorous fish Invasive
group (PLI, Figure 8). This exemplifies the complex processes
involved in the reorganization of the entire food web due to
community structure modifications that can be manifested by
combining trophic with thermal niche changes. This increases
the number of dimensions explicitly accounted for, thus
approximating the real world multidimensional hypervolume of
niche space (Pianka, 1981; Rosenfeld, 2002; Okey, 2003).

The combination of increase/decrease of species in relation
to their thermal affinity is expected to produce a more or
less gradual (depending on the rate of warming) substitution
of temperate and boreal species with warmer-water species, as
constrained also by variables such as pH, dissolved oxygen,
and other habitat variables. Poleward shifts in distributional
areas were predicted (Albouy et al., 2012) and already recorded
(Parmesan, 2006; Cheung et al., 2013), all around the world.
According to the shifting scheme just reported, every species

can simultaneously act as native loser and non-indigenous
winner, depending on the perspective (original or new ecosystem,
respectively), and the phenomenon of native species substitution
with thermophilic non-indigenous invaders (eulerian view) can
be seen as a simple species shifts (lagrangian view point).
However, at the “end of the line,” i.e., where no further Northward
shift (in the boreal hemisphere) is possible due to the cul-
de-sac effect, or other expressions of poleward boundedness,
the destabilization and resistance of the native community that
cannot shift may be more evident, leading to a more complex
opening of invasion windows.

This is the case of semi-enclosed basins, such as the
Mediterranean Sea and its northern sub-basins, or the high
latitude systems, as for example the Barents Sea, which act as a
cul-de-sac for the native species (Ben Rais Lasram et al., 2010),
and prevent further migration. The direct and indirect effects
of warming and invasion estimated using the food web model
for the Northern Adriatic Sea, never resulted in a complete
overturn of a group of native species or in a bloom of an
invasive species, at least within the projected perturbations.
Possibly the cul-de-sac regions represent areas where climate-
induced changes are more complex than a simple poleward
shift. These areas, therefore, provide good case studies to explore
the ecological dynamics related to the simultaneous change of
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the environmental conditions (due to water warming) and of
community structure (due to species invasion and native species
contraction).

Invasion by thermophilic NIS implies important changes in
the marine ecosystem structure that are confirmed by our results
in terms of changes in biomass of ecosystem components after the
establishment of non-indigenous species. However, the results
obtained in the present study showed that the direction of change
is not always as expected, as indicated by the increase of the
diversity index (after a transient period with large increase of
diversity).

The consistent increase of diversity, both under changes in
productivity of the system and adaptation of the residents, was
not only due to the increase in biomass of invasive groups
but primarily by the reduction of biomass of residents, which
increased the evenness among groups. Despite a complex set of
biomass changes, the fact that the diversity index stabilizes at
increased values after invasion indicates that in such enclosed
systems, the establishment of invasive species represents an
enrichment in ecosystem structure. This is not necessarily a
positive change since the increase of biodiversity might be
accompanied by loss of non-trophic function or habitat (Galil,
2007) that are not included in the analysis here. Overall the
absence of complete species substitution suggests a possible
contribution of resident species in increasing the resilience of the
system to invasion. As highlighted by Carey and Wahl (2010),
indeed, the biodiversity of native species can mitigate the impact
of NIS, for instance by saturating niche availability.

Within this context, results obtained at different fishing
pressure illustrate how much fisheries can destabilize ecosystem
structure and processes in terms of dynamics of the diversity
index. In particular current fishing pressure (only on native
species; or on both native and invasive species) represents a
constraint stronger than invasion for density changes and it
has a sort of “homogenization effect” on almost all the groups,
strongly diminishing effects of both SST and primary production
changes. In contrast, high fishing pressure on native or both
on native and invasive influenced the synthetic diversity index
by simply delaying the effects of invasion (Figure 6). Reducing
fishing pressure in the context of invasion, instead, resulted in
a complete restructure of the food web, with significant biomass
changes (Figure 5) and with limited effects on the diversity index
(Figure 6).

Overall these results indicate that invasion affects both
the structure, with possible effects on the functioning of the
ecosystem. Adaptation of native species has minor effects on
density but results in delaying dynamics of the diversity index,
while fisheries substantially impact species biomass changes and
thus ecosystem structure.

The combination of thermal and trophic niches in the food
web model of species invasion suggests that, due to direct and
indirect effects, it is fairly difficult to predict winners and losers
a priori. Although for some species the effect of temperature is
dominant (such as FFS), while others have a dominant trophic
effect (such as BFT), the majority of modeled groups indicate
that they are affected by a combinations of the two factors, with
varying interactions of the two effects. This is confirmed by the

fact that in only a few cases the winners occupy similar niche of a
loser.

In conclusion, the results indicated the utility of an enhanced
and explicit ecological niche approach for advancing in the
analysis of possible effects of species invasion. Moreover,
results highlighted the complexity of dynamics linked to
an invasion by thermophilic non-indigenous species, not
only in terms of predicted impacts and their strengths,
but also in terms of the directions of resulting changes in
biomass.

Within the context of habitat modifications induced by
climate change (e.g., SST increase), the thermophilic NIS
invasion is generally viewed as a gradual substitution between
native and invading species, both shifting northward (Cheung
et al., 2010). In semi-enclosed basins, however, the two groups
are forced to compete, with the native species able to partially
counteract (resist) the invasion, or at least persist after invasion,
as indicated also by the predicted delay of native species
adaptation to the SST increase.

These findings highlight the importance of native species for
ecosystem resilience, facilitating the system’s ability to cope with
the modifications induced by climate changes. In this respect,
fishing operations play an important role in shaping community
structure as it was also emerging from previous analyses of
historical data (Fortibuoni et al., 2010; Barausse et al., 2011). In
light of the fact that anthropogenic pressure (here exemplified by
fisheries) is themain stressor responsible for the loss of ecosystem
resilience (Fortibuoni et al., 2015) to climate-related changes, the
process of defining management strategy that policy makers and
managers would normally consider are those that reduce fishing
pressures that disproportionately degrade the system, or reduce
the resilience. However, the present approach could be useful
for evaluating management strategies that include deliberate
and profitable counteraction of climate effects, such as targeting
newly arriving species in a way that maximize or preserve the
historical values or other values in the overall social-ecological
system.
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Dulčić, J., and Grbec, B. (2000). Climate changes and Adriatic ichthyofauna. Fish.
Oceanogr. 9, 187–191. doi: 10.1046/j.1365-2419.2000.00128.x
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Introduced marine species in Croatian waters (Eastern Adriatic Sea).Mediterr.
Mar. Sci. 14, 224–237. doi: 10.12681/mms.383

Pianka, E. R. (1981). “Competition and niche theory,” in Theoretical
Ecology Principles and Applications, ed R. M. May (Oxford, UK: Ariel),
167–196.

Pinnegar, J. K., Tomczak, M. T., and Link, J. S. (2014). How to determine
the likely indirect food-web consequences of a newly introduced non-
native species: a worked example. Ecol. Model. 272, 379–387. doi:
10.1016/j.ecolmodel.2013.09.027

Pranovi, F., Franceschini, G., Casale, M., Zucchetta, M., Torricelli, P., and
Giovanardi, O. (2006). An ecological imbalance induced by a non-native
species: the Manila clam in the Venice Lagoon. Biol. Invasions 8, 595–609. doi:
10.1007/s10530-005-1602-5

Pranovi, F., Libralato, S., Raicevich, S., Granzotto, A., Pastres, R., and Giovanardi,
O. (2003). Mechanical clam dredging in Venice lagoon: Ecosystem effects
evaluated with a trophic mass-balance model. Mar. Biol. 143, 393–403. doi:
10.1007/s00227-003-1072-1

Pranovi, F., and Link, J. S. (2009). Ecosystem exploitation and trophodynamic
indicators: a comparison between the Northern Adriatic Sea and Southern
New England. Prog. Oceanogr. 81, 149–164. doi: 10.1016/j.pocean.2009.
04.008

Pranovi, F., Raicevich, S., Franceschini, G., Torricelli, P., and Giovanardi, O.
(2001). Discard analysis and damage to non-target species in the“ rapido” trawl
fishery.Mar. Biol. 139, 863–875. doi: 10.1007/s002270100646

Roessig, J., andWoodley, C. (2004). Effects of global climate change onmarine and
estuarine fishes and fisheries. Fish Biol. Fish. 14, 251–275. doi: 10.1007/s11160-
004-6749-0

Rosenfeld, J. S. (2002). Functional redundancy in ecology and conservation. Oikos
98, 156–162. doi: 10.1034/j.1600-0706.2002.980116.x

Ruiz, G. M., Carlton, J. T., Grosholz, E. D., and Hines, A. H. (1997).
Global invasions of marine and estuarine habitats by non-indigenous
species: mechanisms, extent, and consequences. Am. Zool. 37, 621–632. doi:
10.1093/icb/37.6.621

Somot, S., Sevault, F., and Déqué, M. (2006). Transient climate change scenario
simulation of the Mediterranean Sea for the twenty-first century using
a high-resolution ocean circulation model. Clim. Dyn. 27, 851–879. doi:
10.1007/s00382-006-0167-z

Tortonese, E. (1964). Main biogeographical features and problems of the
Mediterranean fish fauna. Copeia 1, 98–107. doi: 10.2307/1440837

Ulanowicz, R. E., and Puccia, C. J. (1990). Mixed trophic impacts in ecosystems.
Coenoses 5, 7–16.

UNEP - MAP - RAC/SPA. (2008). Impact of Climate Change on Biodiversity in the
Mediterranean Sea. Tunis: RAC/SPA.

Walters, C. J., and Christensen, V. (2007). Adding realism to foraging
arena predictions of trophic flow rates in Ecosim ecosystem models:
shared foraging arenas and bout feeding. Ecol. Model. 209, 342–350. doi:
10.1016/j.ecolmodel.2007.06.025

Walters, C. J., Pauly, D., Christensen, V., and Kitchell, J. F. (2000). Representing
density dependent consequences of life history strategies in aquatic ecosystems:
EcoSim II. Ecosystems 3, 70–83. doi: 10.1007/s100210000011

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al.
(2002). Ecological responses to recent climate change.Nature 416, 389–395. doi:
10.1038/416389a

Walther, G.-R., Roques, A., Hulme, P. E., Sykes, M. T., Pyaek, P., Kühn, I., et al.
(2009). Alien species in a warmer world: risks and opportunities. Trends Ecol.
Evol. 24, 686–693. doi: 10.1016/j.tree.2009.06.008

Ward, N. L., and Master, G. J. (2007). Linking climate change and species invasion:
an illustration using insect herbivores. Glob. Change Biol. 13, 1605–1615. doi:
10.1111/j.1365-2486.2007.01399.x

Wolkovich, E. M., and Cleland, E. E. (2014). Phenological niches and the
future of invaded ecosystems with climate change. AoB Plants 6, 1–16. doi:
10.1093/aobpla/plu013

Zádor, J., Zsély, I. G., and Turányi, T. (2006). Local and global uncertainty analysis
of complex chemical kinetic systems. Reliab. Eng. Syst. Saf. 91, 1232–1240. doi:
10.1016/j.ress.2005.11.020

Zenetos, A., Gofas, S., Morri, C., Rosso, A., Violanti, D., Garcia Raso, J. E., et al.
(2012). Alien species in the Mediterranean Sea by 2012. A contribution to
the application of European Union’s Marine Strategy Framework Directive
(MSFD). Part 2. Introduction trends and pathways. Mediterr. Mar. Sci. 13,
328–352. doi: 10.12681/mms.327

Zucchetta, M. (2002). La gestione della pesca in Nord Adriatico: un approccio di tipo
ecosistemico. MSc thesis, Università Ca’Foscari Venezia, Venice.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Libralato, Caccin and Pranovi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 14 May 2015 | Volume 2 | Article 29

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

	Modeling species invasions using thermal and trophic niche dynamics under climate change
	Introduction
	Materials and Methods
	The Food-web Model
	Estimating Temperature Dependence Parameters
	Sensitivity Tests and Scenario Analysis
	Ecosystem Structure, Functioning, and Ecological Niches

	Results
	Discussion
	Acknowledgments
	Supplementary Material
	References


