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Ultraviolet-B (UVB) radiation is a global stressor that has profound impacts on freshwater

and marine ecosystems. However, an analysis of the patterns of sensitivity to UVB

radiation across aquatic photosynthetic organisms has not yet been published. Here,

we performed a meta-analysis on results reported in 214 studies compiled from

the published literature to quantify and compare the magnitude of responses of

aquatic photosynthetic organisms to changes in UVB radiation. The meta-analysis was

conducted on observations of marine (n = 893) and freshwater macroalgae (n = 126)

and of marine (n = 1,087) and freshwater (n = 2,889) microalgae (total n = 4,995).

Most of these studies (85%) analyzed the performance of organisms exposed to natural

solar radiation when UVB was partially or totally reduced compared with the organismal

performance under the full solar radiation spectrum, whereas the remaining 15% of

the studies examined the responses of organisms to elevated UVB radiation mostly

using artificial lamps. We found that marine photosynthetic organisms tend to be more

sensitive than freshwater photosynthetic organisms to UVB radiation; responses to either

decreased or increased UVB radiation vary among taxa; the mortality rate is the most

sensitive of the trait responses to elevated UVB radiation, followed by changes in cellular

and molecular traits; the sensitivity of microalgae to UVB radiation is dependent on

size, with small-celled microalgae more sensitive than large-celled microalgae to UVB

radiation. Thick macroalgae morphotypes were the less sensitive to UVB, but this effect

could not be separated from phylogenetic differences. The high sensitivity of marine

species, particularly the smallest photosynthetic organisms, to increased UVB radiation

suggests that the oligotrophic ocean, a habitat comprising 70% of the world’s oceans

with high UVB penetration and dominated by picoautotrophs, is extremely vulnerable to

changes in UVB radiation.
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INTRODUCTION

The increased use of chlorofluorocarbons (CFCs) as refrigerants and propellants led to an
alarming depletion of stratospheric ozone in the 1980s (Molina and Rowland, 1974) and to a
corresponding increase in ultraviolet-B (UVB) radiation reaching the Earth’s surface (Madronich
et al., 1998). Although the Montreal Protocol led to a dramatic reduction in the emissions of CFCs
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(UNEP, Environmental Effects Assessment Panel, 2010), the
ozone layer will likely not recover to 1980 levels within the
coming decades (Weatherhead and Andersen, 2006). Thus,
increased UVB radiation will continue to reach the biosphere
over the coming years (Weatherhead and Andersen, 2006),
although the healing of Antarctic ozone layer is occurring since
2000 (Solomon et al., 2016).

Increased UVB radiation has profound impacts on terrestrial
and aquatic organisms (Caldwell et al., 1998; Häder et al., 2007).
Bancroft et al. (2007) reported an overall negative effect of UVB
on both survival and growth across species differing in life
history, trophic position, and habitat. Similarly, a meta-analysis
of experimental results showed that the mortality rates of marine
biota increased rapidly in response to increased UVB radiation,
with protists, corals, crustaceans, fish eggs, and larvae the most
sensitive in marine ecosystems to increased UVB radiation
(Llabrés et al., 2013).

Some of the mobile organisms may avoid exposure to UVB
radiation by seeking shelter at depth and/or in shaded habitats.
In contrast, the exposure of photosynthetic organisms to UVB
radiation is dependent on light requirement and habitat. For
example, obligate upper intertidal and supralittoral species (e.g.,
green macroalgae, Prasiola crispa) require exposure to air and
are consequently exposed to high PAR and UVR (Holzinger
et al., 2006). On the other hand, deep-water species (e.g., Eisenia
galapagensis, Laminaria brasiliensis) require minimal PAR and
consequently do not encounter high PAR and UVR in their
habitat (Graham et al., 2007). Depending on their habitat and
depth distribution, photosynthetic organisms have developed
strong protectionmechanisms and/or reparatory systems to avert
damage. Because UVB was believed to be absorbed rapidly in
aquatic ecosystems, the impacts of UVB radiation were believed
to be stronger on terrestrial photosynthetic organisms than
on marine photosynthetic organisms (Rozema et al., 2002).
However, UVB penetrates to considerable depths in freshwater
and marine ecosystems (Llabrés and Agustí, 2006; Tedetti et al.,
2007), thereby impacting marine photosynthetic organisms as
well, although the penetration of UVB varies with latitude, season
and water turbidity (Hanelt et al., 2001; Wiencke et al., 2006).

Indeed, a large number of studies have addressed the effects
of UVB on aquatic photosynthetic organisms including micro-
and macro-algae both in freshwater and marine ecosystems
(e.g., Häder et al., 2007, 2011). Photosynthetic organisms are
more resistant than non-photosynthetic organisms to UVB
(Llabrés et al., 2013; Agustí et al., 2015), suggesting that
photoprotective and reparatory systems designed to counter
UVB exposure operate efficiently in photosynthetic organisms.
However, UVB radiation causes negative effects on the
photosynthetic performance of micro- and macro-algae by
reducing their photosystem II efficiency (e.g., Jiang and Qiu,
2005; Jin et al., 2013; Zhang et al., 2013), electron transport
rate (e.g., Figueroa et al., 2014; Zhu et al., 2015) as well as
photosynthetic carbon fixation rate (e.g., Villafañe et al., 2007;
Helbling et al., 2008; Li et al., 2012). Photosynthetic organisms
have thus evolved a range of strategies to mitigate UVB damage
including increasing non-photochemical quenching (NPQ)
(e.g., Jin et al., 2013), UVB-screening pigments (e.g., Klisch

et al., 2002), UVB-absorbing/blocking secondary metabolites
(e.g., phlorotannin compounds) and DNA repair systems as
photolyase activity against UVB-induced DNA damage (e.g., van
de Poll et al., 2001; Roleda et al., 2004). Despite these strategies,
large variability in responses is found across photosynthetic taxa
because the variety of damage induced by UVB is also large,
with nucleic acids, proteins and lipids the primary targets of
UVB (Buma et al., 2003), all of which can interfere with various
cellular processes and metabolisms. For instance, one study
reported that nitrogenase activity was completely inactivated
under UVB exposure whereas nitrate reductase activity was
doubled when compared with the same activities in the control
in an N2-fixing cyanobacterium, suggesting diverse effects of
UVB on nitrogen metabolisms (Kumar et al., 1996). At the
organismal level, damage to specific proteins of photoreceptor
and motor organelles may result in a variety of effects on
motile behaviors (Zündorf and Häder, 1991). Moroz et al. (1999)
reported that increased UVB decreased the number of gliding
cells in the diatom Nitzschia lineariz whereas increased UVB
exposure increased the number of immobile and oscillating cells.

The responses of macroalgae to UVB radiation may be
dependent on life-history stages. Comparison between different
early life-history stages of various kelp species of macroalgae
from the Northern Hemisphere showed that spores are more
susceptible to UVR damage compared with their corresponding
juvenile sporophytic and gametophytic life stages (Dring et al.,
1996; Roleda et al., 2007 and references therein). Roleda
et al. (2009) also reported that the early life stages, e.g.,
propagules of a green macroalgae, Urospora penicilliformis,
are more susceptible to UVB radiation than the adult life
stages. In addition, Swanson and Druehl (2000) reported that
kelp species of macroalgae with different meiospore sizes
respond differently to UVR. The meiospore size difference was
correlated with the depth distribution of adult plants, with the
largest meiospores origination from shallow-dwelling adult kelp
exposed to high UVR levels. Meiospores from adults growing
in high UVR environments displayed greater germination and
survival rates than the progeny of adult kelp occupying lower
UVR environments. The responses of macroalgae to UVB
radiation may be also dependent on thallus thickness and
absorption spectra characteristics of the pigments (Roleda et al.,
2006). Increasing thallus thickness minimizes UVR damage
because the longer pathlength for UVR absorption across the
thallus leads to outer cell layers shading inner cells (Franklin
and Foster, 1997). Likewise, the vulnerability of microalgae to
UVR damage may be dependent on cell size, which determines
light absorption properties (Agustí, 1991). Photosynthetic carbon
fixation of small phytoplankton species was reported to be
much more sensitive to UVB radiation than that of large
species in a coastal ecosystem (Li and Gao, 2013), and a
recent laboratory study also revealed that the UVB sensitivity
of diatoms decreased with increasing cell size (Wu et al.,
2015). Small cells are also vulnerable to the accumulation
of cyclobutane pyrimidine dimers but photosynthesis is less
inhibited by UVB radiation, which may be caused by faster
photo-repair in small cells (Buma et al., 2003). However, other
factors such as bio-optical characteristics (Figueroa et al., 1997)
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and intraspecific differences (Halac et al., 2014) may outweigh
the effects of cell size. As a consequence, there is currently
no agreement on the generality of the relationship between
cell size and UVB sensitivity across freshwater and marine
microalgae.

The responses of aquatic photosynthetic organisms to UVB
also depend on the dose of harmful radiation to which an
individual organism is exposed. UVB dose is affected by
latitude, altitude and the optical characteristics (i.e., UVB
transmittance) of the water body. UVB radiation underwater is
primarily absorbed by dissolved organic carbon (DOC) including
chromophoric dissolved organic matter (CDOM) (Kirk, 1994)
and particles. Since the concentrations of DOC and suspended
particles that play key roles in absorbing UVB are much higher
in freshwater ecosystems than in marine ecosystems, lower levels
of UVB in the water column are expected in freshwater habitats.
Thus, the impacts of UVB radiation on photosynthetic organisms
are expected be the highest in marine ecosystems and alpine lakes
(which have the lowest concentrations of DOC and suspended
particles among freshwater habitats; Bancroft et al., 2007).

However, the analysis of the patterns of sensitivity to UVB
radiation across aquatic photosynthetic organisms has not yet
been published. We hypothesize that differences in responses
of photosynthetic organisms to UVB radiation are associated
with changes in molecular or metabolic pathways associated to
taxa, as well as the differences in cell size of photosynthetic
individuals. We also hypothesize that these differences may also
be due to major habitat differences between freshwater and
marine ecosystems.

Here, we compare the responses of photosynthetic organisms
both in freshwater and marine ecosystems to UVB radiation.
Specifically, we examine the variability in these responses
across phyla and response traits, as well as the variability
in responses due to cell size for unicellular algae and form-
functional categories for macroalgae, to UVB radiation. We do
so through a quantitativemeta-analysis of the results of published
studies on the responses of aquatic photosynthetic organisms to
experimentally increased and reduced UVB. Not all traits that
may affect the vulnerability of aquatic photosynthetic organisms
to UVB radiation could be considered, because the number of
reports providing information on traits such as life-history stages,
habit, and thickness of macroalgae was too low to support a
quantitative analysis.

MATERIALS AND METHODS

Data Selection
We compiled data from experimental studies testing the
responses of aquatic photosynthetic organisms to UVB radiation
from the published literature. Our analysis focused onmicro- and
macro-algae due to their comparable and relatively large datasets,
as data on responses of aquatic angiosperms are sparse. The
resulting dataset of marine photosynthetic organisms included
previous compilations [Agustí et al. (2015) and Llabrés et al.
(2013), microalgae: n= 454, macroalgae: n= 432] and additional
data published from April 2013 to July 2015 (microalgae: n =

633, macroalgae: n = 461) by a search on Web of Science and

Google Scholar for the relevant keywords: UV radiation, aquatic
and marine. Agustí et al. (2015) and Llabrés et al. (2013) reported
data only for marine photosynthetic organisms, so the dataset
on freshwater photosynthetic organisms, was produced entirely
from reports retrieved from searches in the Web of Science and
Google Scholar from 1950s to July 2015. The search used the
keywords: UV radiation, aquatic, freshwater, and marine. Studies
were selected when they met the following criteria outlined by
Llabrés et al. (2013): (1) include assessments of the performance
of aquatic microalgae and macroalgae under ambient irradiance
levels, (2) report a treatment corresponding to the ambient solar
radiation (i.e., control), and (3) include additional treatments
by either removing or enhancing UVB radiation relative to
ambient levels [e.g., control: PAR+ ultraviolet-A (UVA)+UVB,
treatment: PAR+UVA]. Papers not distinguishing the effects
of UVA from that UVB were not included (e.g., PAR, and
PAR + UVR). For the studies examined responses within time
courses, we either collected the data at the end point (e.g.,
cellular/molecular traits) or derived, using the time trend, a rate
(e.g., growth andmortality rate). Responses in the literatures were
referred, by the authors, to either UVB doses, which consider
exposure, or UVB intensity. Because our analysis is based, to
allow for comparisons, on effect sizes, and relative change in
UVB radiation, we followed the choice of the author so the
relative change in UVB radiation reflect either change in doses
or intensity as per the choice of the original study. Our search
resulted in 214 papers reporting experimental results meeting
these requirements. The authors are solely responsible for the
accuracy of the dataset.

Data Analysis
We determined if the microalgae or macroalgae assessed in these
papers had been classified at the phylum level to differentiate
sensitivities to UVB and if the cell volume of the particular
microalgae species had been reported. When microalgae cell
volume was not reported, we derived the cell volume of
the species from other published reports. The taxonomic
classification followed AlgaeBase (www.algaebase.org). As thallus
thickness was not reported for macroalgal species, we tested
whether the response size of macroalgae to changes in UVB
radiation differed among form-functional groups, which are
related to thallus thickness (Duarte et al., 1995). Macroalgae
were classified into the following morpho-functional groups, as
described by Steneck and Dethier (1994): articulated calcareous,
corticated, filamentous, foliose, foliose corticated, and leathery.
Functional-form classifications, unlike taxonomic classifications,
are not absolute and involve some degree of subjectivity in
assigning a species to a category, as species display plasticity in
growth dependent on growth conditions. Hence, we conferred
our classification with that independently provided by two
experts (D. Krause-Jensen, Aarhus University, Denmark, and
Beatriz Martinez-Daranas, Univ. of La Habana, Cuba), and
used the consensus classification for the statistical test. The
wide range of response traits assessed in the literature were
classified into the categories described by Llabrés et al. (2013),
including: (1) Cellular/molecular, including a range of properties
such as chlorophyll a, total lipids, carbohydrate, glutathione,
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and cyclobutane-pyrimidine dimers (CPDs) concentrations;
(2) metabolic responses included photosynthetic rates (i.e.,
photosynthetic carbon fixation rate and photosynthetic oxygen
evolution rate) and parameters (e.g., maximum photosystem II
efficiency and non-photochemical quenching, NPQ); (3) growth;
(4) mortality; and (5) motility, such as gliding and oscillating.

The response traits were standardized to allow comparisons
across organisms. Responses across experiments assessing
different traits were compared through the log-effect size,
calculated as the natural log of the ratio of the response value
in the control over that in the experimental treatment. We
differentiated between the effect size of response traits that
indicated stress (e.g., mortality rates, DNA damage, calculated as
the ratio of the value in the treatment relative to the control)
and that of response traits that signaled improved organism
performance (e.g., growth, calculated as the ratio of the response
value in the control over that in the experimental treatment)
following Llabrés et al. (2013). A Ln effect size >0 signaled
adverse effects on the organisms and a Ln effect size <0 signaled
improved organism performance (Llabrés et al., 2013).

We calculated UVB relative as the ratio of UVBtreatment to
UVBcontrol, as described by Llabrés et al. (2013). UVB relative
values higher and lower than 1 indicated experimental treatments
in which UVB was respectively increased or reduced relative to
the irradiance received by the organism in situ. The experiments
described in the papers were classified into two broad categories:
(1) experiments that UVB was partially or totally removed
under natural solar radiation, which dominated the data set
(85.6% of the experiments) and (2) experiments that assessed
responses to increased UVB radiation in experimental lab and
in situ experiments with artificially supplemented UVB, which
comprised 14.4% of the experiments in the data set.

We used one-way analysis of variance (ANOVA) to test for
significant differences (p= 0.05) in the Ln effect size between two
comparisons (e.g., freshwater microalgae vs. marine microalgae).
We also used general linear models to test for significant
differences in the Ln effect size between phyla or response
traits in the sensitivity of organisms to UVB. We describe the
relationships between responses from the Ln effect size and UVB
dose and the UVB relative. The slope of the fitted regression
equation between the Ln effect size and the UVB relative ratio
indicates the sensitivity of organism examined to UVB radiation.
A slope of 1 indicates that the relative biological response to
UVB radiation is proportional to the relative change in UVB,
whereas slopes significantly greater than and less than 1 indicate
that the biological response respectively amplifies or buffers the
relative change in UVB. The interactions between UVB relative
levels and the habitat (marine or freshwater), the phylum of the
organism (e.g., Bacillariophyta,Chlorophyta,Cyanobacteria), and
cell size (for unicellular algae) were also tested using general
linear models.

RESULTS

The assembled data set included 4,995 observations of responses
of aquatic photosynthetic organisms to UVB radiation, including

1980 observations of responses of marine photosynthetic
organisms and 3,015 observations of responses of freshwater
photosynthetic organisms (Table 1). The experiments on marine
photosynthetic organisms reported 1,087 observations on
microalgae and 893 observations on macroalgae, whereas the
experiments on freshwater photosynthetic organisms reported
2,889 observations on microalgae and 126 observations on
macroalgae (Table 1). The phylum Bacillariophyta was the
subject of most of the experiments on marine microalgae (56%),
whereas cyanobacteria dominated the experiments conducted
on freshwater microalgae (79%) (Table S1 in Data Sheet 2).
Most experiments on marine macroalgae focused on Rhodophyta
(59%); most experiments on freshwater macroalgae targeted
Charophyta (59%; Table 2). The overwhelming majority of the
experiments showed that increased UVB radiation decreased the
organism’s performance. Indeed, only 3.06% of the experiments
showed improved performance with increased UVB and
just 5.78% of the experiments showed reduced performance
with reduced UVB. These results demonstrated the expected
dominance of the adverse effects of UVB radiation on the
performance of aquatic photosynthetic organisms.

Assessment of the Ln effect size in response to a change
in UVB radiation indicated that both freshwater and marine
photosynthetic organisms improved their performance when
UVB was reduced; there were no statistically significant
differences between their mean Ln effect size [freshwater: mean
(±SE) Ln effect size = −0.537 ± 0.015; marine: mean (±SE)
Ln effect size = −0.536 ± 0.012; one-way ANOVA, F =

0.00, p = 0.966; Figure 1]. However, closer inspection of the
data revealed that marine microalgae exhibited the greatest
improvement in their performance when UVB was reduced
(Ln effect size = −0.672 ± 0.021, 22.7% higher than that of
freshwater microalgae; one-way ANOVA, F = 25.69, p < 0.0001;
Figure 1). Similarly, the improvement in the performance of
marine macroalgae when UVB was reduced was 40.2% higher
than that of the performance of freshwater macroalgae (one-
way ANOVA, F = 4.88, p = 0.027; Figure 1). Both freshwater
and marine photosynthetic organisms exhibited damage when

TABLE 1 | Numbers of observations of the responses of freshwater and

marine photosynthetic organisms to experimental changes in UVB

radiation.

Total, n n (UVB reduced) n (UVB increased)

Overall 4,995 4,276 719

Marine overall 1,980 1,699 281

Freshwater overall 3,015 2,577 438

Marine microalgae 1,087 967 120

Freshwater microalgae 2,889 2,474 415

Marine macroalgae 893 732 161

Freshwater macroalgae 126 103 23

Cellular/molecular 2,897 2,617 280

Growth 596 450 146

Metabolism 1,402 1,137 265

Mortality 45 35 10

Motility 55 37 18
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TABLE 2 | Summary of meta-analysis results derived from the data set of experimental responses of freshwater and marine photosynthetic organisms to

increased or reduced UVB levels.

n a SEa b SEb R2 F p

Overall 1,099 −0.23 0.03 0.23 0.01 0.26 376.54 <0.0001

Marine 379 −0.30 0.05 0.35 0.02 0.41 263.34 <0.0001

Freshwater 720 −0.23 0.03 0.18 0.01 0.20 179.77 <0.0001

Marine microalgae 159 −0.27 0.08 0.33 0.03 0.38 96.67 <0.0001

Freshwater microalgae 672 −0.24 0.03 0.18 0.01 0.20 164.65 <0.0001

Marine macroalgae 220 −0.34 0.06 0.37 0.03 0.45 175.27 <0.0001

Freshwater macroalgae 48 −0.25 0.05 0.26 0.05 0.40 30.68 <0.0001

Marine microalgae Bacillariophyta 40 −0.35 0.18 0.32 0.07 0.36 21.40 <0.0001

Chlorophyta 24 −0.07 0.24 0.30 0.08 0.40 14.83 0.0009

Cyanobacteria 7 0.04 0.33 0.17 0.11 0.32 2.32 0.1881

Haptophyta 10 −1.00 0.20 1.58 0.29 0.78 28.97 0.0007

Community 73 −0.35 0.12 0.40 0.07 0.32 32.70 <0.0001

Freshwater microalgae Bacillariophyta 30 −0.92 0.26 0.86 0.19 0.42 20.44 0.0001

Chlorophyta 136 −0.43 0.07 0.25 0.03 0.29 54.53 <0.0001

Chromophyta 4 −0.98 0.36 1.05 0.37 0.80 8.17 0.1038

Cryptophyta 18 0.10 0.17 0.08 0.08 0.07 1.14 0.3016

Cyanobacteria 458 −0.22 0.04 0.18 0.02 0.20 113.15 <0.0001

Community 26 −0.19 0.15 0.08 0.04 0.12 3.41 0.0772

Marine macroalgae Chlorophyta 17 −0.28 0.22 0.19 0.08 0.29 6.07 0.0263

Community 3 0.48 0 0 1

Ochrophyta 31 0.02 0.15 0.23 0.06 0.32 13.71 0.0009

Rhodophyta 169 −0.55 0.06 0.50 0.03 0.59 238.64 <0.0001

Freshwater macroalgae Charophyta 24 −0.10 0.03 0.10 0.03 0.39 14.14 0.0011

Chlorophyta 18 −0.36 0.10 0.41 0.10 0.50 16.20 0.001

Community 6 −0.47 0.09 0.42 0.07 0.90 37.88 0.0035

Overall Cellular/molecular 468 −0.15 0.03 0.20 0.02 0.28 178.69 <0.0001

Metabolism 390 −0.43 0.05 0.28 0.02 0.28 147.17 <0.0001

Growth 206 −0.13 0.06 0.21 0.03 0.25 66.41 <0.0001

Mortality 12 −0.20 0.37 0.27 0.14 0.29 4.07 0.0713

Motility 23 −0.10 0.12 0.33 0.09 0.37 12.48 0.002

Marine overall Cellular/molecular 116 −0.25 0.08 0.33 0.04 0.42 84.21 <0.0001

Metabolism 144 −0.38 0.08 0.34 0.04 0.37 84.14 <0.0001

Growth 102 −0.39 0.08 0.47 0.04 0.56 127.87 <0.0001

Mortality 12 −0.20 0.37 0.27 0.14 0.29 4.07 0.0713

Freshwater overall Cellular/molecular 352 −0.11 0.03 0.14 0.02 0.19 81.49 <0.0001

Metabolism 246 −0.49 0.07 0.26 0.03 0.26 83.88 <0.0001

Growth 104 −0.23 0.08 0.17 0.03 0.24 31.40 <0.0001

Motility 18 0.68 0.54 −0.19 0.36 0.02 0.28 0.6059

Marine microalgae Cellular/molecular 34 −0.06 0.10 0.23 0.03 0.58 43.67 <0.0001

Metabolism 55 −0.53 0.16 0.45 0.10 0.30 22.27 <0.0001

Growth 53 −0.17 0.12 0.37 0.06 0.47 44.62 <0.0001

Mortality 12 −0.20 0.37 0.27 0.14 0.29 4.07 0.0713

Freshwater microalgae Cellular/molecular 318 −0.11 0.03 0.14 0.02 0.18 69.34 <0.0001

Metabolism 240 −0.50 0.07 0.26 0.03 0.26 82.04 <0.0001

Growth 96 −0.22 0.09 0.17 0.03 0.23 27.73 <0.0001

Motility 18 0.68 0.54 −0.19 0.36 0.02 0.28 0.6059

(Continued)
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TABLE 2 | Continued

n a SEa b SEb R2 F p

Marine macroalgae Cellular/molecular 82 −0.52 0.12 0.50 0.06 0.47 71.16 <0.0001

Metabolism 89 −0.25 0.07 0.28 0.03 0.49 83.71 <0.0001

Growth 49 −0.61 0.11 0.62 0.07 0.63 79.87 <0.0001

Freshwater macroalgae Cellular/molecular 34 −0.21 0.07 0.24 0.06 0.34 16.14 0.0003

Metabolism 6 −0.40 0.14 0.37 0.11 0.74 11.27 0.0284

Growth 8 −0.33 0.09 0.27 0.07 0.69 13.50 0.0104

The regression equation is the Ln effect size = a + b × UVB relative. “n” is the number of observations.

FIGURE 1 | The mean ± SE Ln effect size quantifying the response of freshwater (FW) and marine (Mar) photosynthetic organisms to experimentally

reduced or increased UVB radiation (relative to control). A Ln effect size <0 indicates an improvement in the trait and a Ln effect size >0 indicates a

deterioration in performance. “n” is the number of observations.

FIGURE 2 | The mean ± SE Ln effect size for different taxonomic groups in response to experimentally reduced or increased UVB radiation for

freshwater macroalgae (a) , marine macroalgae (b), freshwater microalgae (c), and marine microalgae (d). A Ln effect size <0 indicates an improvement in the trait

and a Ln effect size >0 indicates a deterioration in performance. “n” is the number of observations.

UVBwas elevated above ambient levels, with the greatest damage
observed in marine microalgae (Ln effect size = 0.572 ± 0.037,
which was 72.3% higher than that of freshwater microalgae;

one-way ANOVA, F = 32.15, p < 0.0001; Figure 1b). In
general, marine photosynthetic organisms were more sensitive
(by 73.2%) to elevated UVB radiation than were freshwater
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FIGURE 3 | The mean ± SE Ln effect size for different response traits in response to experimentally reduced or increased UVB radiation for overall (a),

marine (b) and freshwater photosynthetic organisms (c). A Ln effect size <0 indicates an improvement in the trait and a Ln effect size >0 indicates a deterioration in

performance. “n” is the number of observations.

photosynthetic organisms (one-way ANOVA, F = 55.41, p <

0.0001; Figure 1).
Rhodophyta showed the greatest improvement in their

performance when UVB was reduced (Ln effect size = −0.411
± 0.079; Figure 2a). Charophyta was more resistance than
Chlorophyta to increased UVB radiation (Charophyta: Ln
effect size = 0.078 ± 0.059; Chlorophyta: Ln effect size =

0.273 ± 0.072; Figure 2a). The responses to increased UVB
were generally consistent across marine macroalgae groups

(Figure 2b). Diatoms exhibited the largest positive responses
to reduced UVB radiation among all aquatic photosynthetic
organisms (Ln effect size ∼ −0.80), while whole communities
exhibited the smallest positive responses (Ln effect size ∼

−0.36; Figures 2c,d). Marine green microalgae experienced the
greatest impact from increased UVB radiation among all aquatic
photosynthetic organisms (Ln effect size∼ 0.79; Figure 2d).

Cellular/molecular traits changed the most and growth
rates changed the least when UVB radiation was reduced
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(Cellular/molecular: Ln effect size −0.599 ± 0.012 for overall
dataset, −0.611 ± 0.024 for marine, and −0.594 ± 0.013
for freshwater photosynthetic organisms, Figures 3a–c, 4),
although they did not differ to other response traits in some
cases. Mortality changed the most in response to increased
UVB radiation in marine photosynthetic organisms (0.677
± 0.135, Figure 3b); no data were available assessing the
change in mortality among freshwater photosynthetic freshwater
organisms. Chlorophyll a concentrations changed the least
in response to either increased or reduced UVB radiation
(Figures 5a–c, 6), whereas photosynthetic parameters were more
responsive, greatly deteriorating under increased UVB radiation
and dramatically improving under reduced UVB radiation
(Figures 5a–c, 6).

The response traits were, in general, relative insensitively
to changes in UVB radiation [slope (Ln effect size vs. UVB
relative) <1; Figures 7, 8], indicating that response traits
tend to buffer, rather than to amplify changes in UVB
radiation. However, marine photosynthetic organisms exhibited
much higher sensitivity to UVB radiation than did freshwater
organisms (marine: slope = 0.351 ± 0.021; freshwater: slope
= 0.181 ± 0.013; ANOVA, t-test, p < 0.0001; Table 2;
Figure 5a), as reflected in a significant interaction between the
UVB relative ratio and habitat (marine/freshwater; ANOVA,
t-test, p < 0.0001; Table 3, Figure 7a). Specifically, marine
microalgae exhibited a similar sensitivity to UVB radiation across
phyla (Figure 7a, Table 3). However, freshwater Bacillariophyta
(diatoms) exhibited greater sensitivity to increasing UVB
radiation (ANOVA, t-test, p = 0.05; Table 3; Figure 7c) than did
other freshwater microalgae taxa. Red algae (Rhodophyta) were
the most sensitive among the marine macroalgae phyla to UVB
radiation with the slope of the Ln effect size in relation to the
UVB relative ratio = 0.507 ± 0.023 (Figure 7d), although this

result may be influenced by the fewer number of experiments on
other taxa in which UVB radiation was increased (Figures 2a,b).

The sensitivity of different response traits to changes in UVB
radiation was doubled for marine photosynthetic organisms
(slope ∼ 0.35) compared with freshwater photosynthetic (slope
∼ 0.18) organisms (including microalgae and macroalgae;
Figures 8a,b). Furthermore, no significant interactions were
found between any response trait and the UVB relative ratio,
except for the growth of marine macroalgae, where the Ln effect
size was higher under a higher UVB relative ratio than it was for
other traits (ANOVA, t-test, p= 0.0148; Table 4; Figure 8e).

The morphology of macroalgae influenced their responses
to ultraviolet radiation. When the UVB was reduced, foliose
macroalgae (44% of Chlorophyta, 49% of Rhodophyta and 7% of
Ochrophyta) exhibited a relatively higher improvement in their
performance (foliose: Ln effect size −0.449 ± 0.035 for overall
dataset; Figure 9a). Articulated calcareous macroalgae (100% of
Rhodophyta) showed a relatively lower response to reduced UVB
radiation, especially for marine algae (articulated calcareous:
Ln effect size −0.174 ± 0.062; Figure 9b). No differences
were observed in responses to reduced UVB radiation between
the two freshwater morpho-functional groups (Figure 9c).
In addition, no significant differences in the responses to
increased UVB radiation were detected among different morpho-
functional groups either in marine or freshwater ecosystem.
This result is robust against the particularly functional-form
classification chosen, as similar results were obtained when the
macroalgae were classified according to Steneck and Watling
(1982) and Littler and Littler (1980). However, the functional
forms of marine macroalgae were not independent, in this
data set, of the phylogenetic membership (R2 = 0.32, χ

2-
test, p < 0.0001), as all articulated calcareous algae and most
corticated algae were red algae, most leathery algae were brown

FIGURE 4 | The mean ± SE Ln effect size for response traits in response to experimentally reduced or increased UVB radiation for freshwater

macroalgae (a) , marine macroalgae (b), freshwater microalgae (c), and marine microalgae (d). A Ln effect size <0 indicates an improvement in the trait and a Ln

effect size >0 indicates a deterioration in performance. “n” is the number of observations.
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FIGURE 5 | The mean ± SE Ln effect size for response traits of chlorophyll a, photosynthetic rate and photosynthetic parameters in response to

experimentally reduced or increased UVB radiation for overall (a), marine (b) and freshwater photosynthetic organisms (c). A Ln effect size <0 indicates an

improvement in the trait and a Ln effect size >0 indicates a deterioration in performance. “n” is the number of observations.

algae, and most filamentous algae were green algae, so the
attribution of differences in response to UVB radiation among
marine macroalgae to functional form maybe confounded by
phylogenetic differences.

The results confirmed our hypothesis that the response
of microalgae to UVB radiation is dependent on cell size
(Figure 10). Small-celled microalgae exhibited a much greater
sensitivity to changes in UVB radiation than did large-celled

Frontiers in Marine Science | www.frontiersin.org 9 February 2017 | Volume 4 | Article 45

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Jin et al. Impacts of UVB on Aquatic Photosynthetic Organisms

FIGURE 6 | The mean ± SE Ln effect size for response traits of chlorophyll a, photosynthetic rate and photosynthetic parameters in response to

experimentally reduced or increased UVB radiation for freshwater macroalgae (a) , marine macroalgae (b), freshwater microalgae (c), and marine microalgae

(d). A Ln effect size <0 indicates an improvement in the trait and a Ln effect size >0 indicates a deterioration in performance. “n” is the number of observations.

microalgae (Figure 10). Indeed, the significant interaction of
the log10 of the cell volume and the relative change in UVB
radiation suggests that small-celled microalgae are more sensitive
to changes in UVB radiation than are large-celled microalgae
(ANOVA, p= 0.0074; Table 3; Figure 10).

DISCUSSION

It has been documented that photosynthetic organisms are, on
average, more resistant to UVB radiation than other marine
organisms in general (Llabrés et al., 2013). This meta-analysis
further found that (1) marine photosynthetic organisms tend to
be more sensitive than freshwater photosynthetic organisms to
UVB radiation (Figures 1, 7); (2) responses to either decreased
or increased UVB radiation vary among taxa (Figure 2); (3)
the mortality rate is the most sensitive of the trait responses
to elevated UVB radiation, followed by changes in cellular
and molecular traits (Figure 3); and (4) as hypothesized, the
sensitivity of microalgae to UVB radiation is dependent on size,
with small-celled microalgae more sensitive than large-celled
microalgae to UVB radiation (Figure 10).

UVB radiation that causes significant mortality among
photosynthetic plankton has been reported to penetrate as
deep as 60m in the subtropical Atlantic Ocean (Llabrés and
Agustí, 2006). However, the penetration of UVB in freshwater
is generally much shallower than in marine waters because
the concentrations of DOC and suspended particles, which
attenuate UVB penetration in the water column, are typically
much higher in freshwater than in marine water (Kirk, 1994).
As a consequence, Bancroft et al. (2007) hypothesized that
marine photosynthetic organisms experience greater risk of
exposure to damaging UVB radiation than do freshwater

photosynthetic organisms. Evidence of differential responses
of marine and freshwater photosynthetic organisms to UVB
radiation has not yet been reported. Indeed, Bancroft et al. (2007)
did not find evidence of such differing responses. Although
our meta-analysis results show that there were no significant
differences between freshwater and marine photosynthetic
organisms when UVB was reduced, they do show that marine
photosynthetic organisms exhibited stronger sensitivity than
freshwater photosynthetic organisms to increased UVB radiation
(Figure 1). The discrepancy between Bancroft et al. (2007) results
and our results is likely attributable to the vast difference
in the scope of the two meta-analyses. We investigated 4995
responses to changes in UVB radiation, whereas the analysis of
Bancroft et al. (2007) was based on six observations. Moreover,
Bancroft et al. (2007) analyzed primary and secondary producers,
whereas we studied micro- and macroalgae. Given our results,
we expect that increased UVB radiation due to depletion of the
stratospheric ozone layer (SOL) exerts a larger impact on marine
primary producers than on freshwater primary producers. The
impact on marine primary producers is likely to have been
increased by the fact that the oligotrophic ocean, characterized
by deep penetration of high UVB doses (Llabrés and Agustí,
2006; Tedetti et al., 2007) encompasses 70% of the surfaces of
world’s oceans and, thereby, a large fraction of the biosphere.
However, ecosystem buffers may include many other factors
(such as species-specific resistance, photo-adaptation capacities,
nutrient levels, species habit), which were not assessed here, and
these may add to the uncertainty in evaluating the impacts of
elevated UVB radiation on marine ecosystems.

The Montreal Protocol largely halted further damage to the
SOL, with a recovery of the SOL expected in the coming decades.
Furthermore, it was reported that the healing of the Antarctic
ozone layer is occurring nowadays since 2000 (Solomon et al.,
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FIGURE 7 | The relationship between biological responses and the relative change in UVB radiation with reference to different taxonomic groups. The

relationship between the responses to experimental UVB manipulation, as indicated by the Ln effect size, and the change in UVB radiation relative to the ambient

levels experienced by the photosynthetic organisms. Symbol colors identify different habitats (a) or taxonomic groups (b–e), and line colors represent the fitted

regression equations. For the studies that UVB was totally removed, UVB relative was coded as 0.01, to allow log transformation of this variable. Each point

represents an independent observation.

2016). The relationship between the reduction in UVB radiation
and the performance of primary producers might, thus, help to
forecast the expected response of marine primary producers in a
future scenario of ozone recovery (Bais et al., 2011). Although our
comprehensive analysis showed that photosynthetic organisms in
marine ecosystems are more sensitive than those in freshwater
ecosystems to increased UVB, the photosynthetic organisms in

alpine lakes, which were characterized by high UVB penetration
and transparency, should be at higher risk of exposure to
damaging UVB radiation than photosynthetic organisms in
lowland freshwater ecosystems or in coastal waters of marine
ecosystems.

UVB radiation affects pigment synthesis in aquatic
photosynthetic organisms, stimulating the production of
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FIGURE 8 | The relationship between changes in response traits and the change in UVB radiation. The relationship between the responses to experimental

UVB manipulation, as indicated by the Ln effect size, and the change in UVB radiation relative to the ambient levels experienced by the photosynthetic organisms.

Symbol colors identify different response traits for overall (a,b), microalgae (c,d), and macroalgae (e,f), and line colors identify the fitted regression equations. For the

studies that UVB was totally removed, UVB relative was coded as 0.01, to allow log transformation of this variable. Each point represents an independent observation.

UVB-screening pigments (Klisch et al., 2002). However, the
concentration of chlorophyll a was less sensitive to changes in
UVB radiation than were photosynthetic traits (Figure 6). This
finding is in contrast to reports that elevated UVB radiation
reduces the chlorophyll a content of photosynthetic organisms
through photo-bleaching (Agrawal, 1992, 1996) or that, in
contrast, UVB radiation leads to increased chlorophyll a
concentration in other organisms (Grobe and Murphy, 1998;
Zhang et al., 2013). However, the underlying mechanism for
these changes has not been documented (Grobe and Murphy,
1998). Phytoplankton have developed several mechanisms to
cope with a wide range of light densities as well as different
spectra of irradiance, including massive changes in the cellular
content of both light-harvesting and photo-protective pigments,
adjustments in their ultrastructures (Berner et al., 1989;
Fisher et al., 1998) and regulation of the absorption cross
section of photosystem II (σPSII) (e.g., Six et al., 2007).
Specifically, photosynthetic parameters are sensitive to changes
in UVB radiation, suggesting that downstream photosynthesis
processes (e.g., photosynthetic electron transport) are more
vulnerable than upstream processes to UVB radiation (e.g.,

light capture by chlorophyll a). Several studies report declines
in photosynthetic activity (e.g., a decline in the maximum
photosystem II efficiency) with increased UVB radiation (Rai
and Mallick, 1998; Sinha et al., 2008; Zhang et al., 2013).
However, it has also been documented that photosynthetic
activity varies independently from the photosystem II
content (Jeans et al., 2014), which is in agreement with our
findings.

Cell size has long been proposed as a determinant of sensitivity
to ultraviolet radiation (UVR) in phytoplankton. Larger cells are
thought to be more resistant to UVR-induced damage due to
their smaller surface-area-to-volume ratio, i.e., a. longer path
length to the nucleus, which makes them more resistant to
accumulation of cyclobutane pyrimidine dimers (CPD) and other
forms of damage due to molecular self-shading (Garcia-Pichel,
1994). However, there are also a number of exceptions have been
reported (Laurion and Vincent, 1998; Ferreyra et al., 2006). For
example, Laurion and Vincent (1998) found that the smallest-
celled phytoplankton are relatively resistant to UVR, and this
may due to the fact that smaller cells are more vulnerable
to DNA damage but more resistant to photosystem damage
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TABLE 3 | General linear models showing the effect of the interaction

between relative UVB radiation and habitat and between taxonomic

groups and cell size.

Response Ln effect size

Variable Parameter SE t p

EFFECT OF HABITAT

Intercept −0.27 0.03 −9.82 <0.0001

UVB relative 0.27 0.01 20.66 <0.0001

Marine/Freshwater 0.11 0.02 6.85 <0.0001

UVB relative ×

Marine/Freshwater

0.09 0.01 6.63 <0.0001

ANOVA R2 = 0.31 F-ratio = 167.8 p < 0.0001

EFFECT OF PHYLUM (FW MICROALGAE)

Intercept −0.44 0.13 −3.47 0.0006

UVB relative 0.42 0.12 3.56 0.0004

Phylum-

Bacillariophyta

0.27 0.15 1.8 0.0728

Phylum-Chlorophyta −0.28 0.11 −2.59 0.0099

Phylum-

Chromophyta

0.53 0.48 1.11 0.2665

Phylum-Cryptophyta −0.02 0.14 −0.16 0.8692

Phylum-

Cyanobacteria

−0.18 0.10 −1.68 0.093

Bacillariophyta ×

UVB relative

0.44 0.22 1.96 0.050

Chlorophyta × UVB

relative

−0.17 0.12 −1.43 0.1528

Chromophyta ×

UVB relative

0.64 0.55 1.17 0.2432

Cryptophyta × UVB

relative

−0.33 0.14 −2.41 0.0164

Cyanobacteria ×

UVB relative

−0.23 0.12 −1.98 0.0486

ANOVA R2 = 0.24 F-ratio = 19.4 p < 0.0001

EFFECT OF PHYLUM (FW MACROALGAE)

Intercept −0.31 0.08 −3.94 0.0003

UVB relative 0.31 0.06 5.04 <0.0001

Phylum-Charophyta 0.02 0.05 0.48 0.634

Phylum-Chlorophyta 0.04 0.05 0.86 0.392

Charophyta × UVB

relative

−0.20 0.07 −2.84 0.007

Chlorophyta × UVB

relative

0.10 0.07 1.31 0.1984

ANOVA R2 = 0.53 F-ratio = 9.6 p < 0.0001

EFFECT OF CELL SIZE

Intercept −0.35 0.07 −5.04 <0.0001

UVB relative 0.23 0.02 14.84 <0.0001

Log cell size 0.03 0.03 1.21 0.2264

Log cell size × UVB

relative

−0.05 0.02 −2.69 0.0074

ANOVA R2 = 0.26 F-ratio = 166.9 p < 0.0001

(Villafañe et al., 2003), or to the fact that smaller cells have faster
biosynthetic rates (Peters, 1983). Furthermore, taxon-specific
factors for mitigating UVR photodamage have the potential to
compensate for size-related vulnerability (Laurion and Vincent,

TABLE 4 | General linear models showing the effect of the interaction

between the relative UVB radiation and the response trait.

Response Ln effect size

EFFECT OF RESPONSE TRAIT

Variable Parameter SE t p

FRESHWATER OVERALL

Intercept −0.04 0.26 −0.14 0.8911

UVB relative 0.09 0.18 0.54 0.5899

Cellular/molecular −0.00 0.05 −0.08 0.937

Growth −0.06 0.05 −1.13 0.2603

Metabolism −0.19 0.04 −4.08 <0.0001

Cellular/molecular ×

UVB relative

0.04 0.18 0.25 0.7993

Growth× UVB

relative

0.08 0.18 0.44 0.6593

Metabolism × UVB

relative

0.16 0.18 0.91 0.3645

ANOVA R2 = 0.25 F-ratio = 33.6 p < 0.0001

FRESHWATER MICROALGAE

Intercept −0.04 0.27 −0.13 0.8949

UVB relative 0.09 018 0.52 0.6033

Cellular/molecular 0.00 0.05 0 0.999

Growth −0.06 0.06 −0.9 0.3711

Metabolism −0.19 0.05 −3.47 0.0005

Cellular/molecular ×

UVB relative

0.04 0.18 0.23 0.8175

Growth× UVB

relative

0.08 0.18 0.43 0.6688

Metabolism × UVB

relative

0.16 0.18 0.9 0.3707

ANOVA R2 = 0.5 F-ratio = 31.1 p < 0.0001

MARINE MACROALGAE

Intercept −0.46 0.06 −7.53 <0.0001

UVB relative 0.47 0.03 13.41 <0.0001

Cellular/molecular 0.00 0.04 0.12 0.904

Growth 0.11 0.05 2.23 0.0267

Cellular/molecular ×

UVB relative

0.04 0.05 0.78 0.4355

Growth× UVB

relative

0.15 0.06 2.46 0.0148

ANOVA R2 = 0.51 F-ratio = 44.4 p < 0.0001

FRESHWATER MACROALGAE

Intercept −0.32 0.08 −4.01 0.0002

UVB relative 0.29 0.06 4.6 <0.0001

Cellular/molecular 0.05 0.05 1.11 0.2719

Growth −0.03 0.06 −0.56 0.5773

Cellular/molecular ×

UVB relative

−0.05 0.07 −0.74 0.4656

Growth× UVB

relative

−0.02 0.10 −0.24 0.8089

ANOVA R2 = 0.51 F-ratio = 44.4 p < 0.0001

1998). Our finding that UVB sensitivity in microalgae is
dependent on size is consistent with previous reports of the
size dependence of the optical properties of microalgae (Agustí,
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1991), suggesting higher specific absorption of UVB radiation by
small algae, and a recent report that the UV sensitivity of diatoms
was negatively correlated with cell size (Wu et al., 2015). Our
results also show that the differences in sensitivity between small-
celled and large-celled phytoplankton are less important at low
UVB irradiances, but that they increased with irradiance as the
effect size of UVB radiation increased. Picophytoplankton (cell
diameter <2 µm) live both in freshwaters and marine waters,
but they dominate the oligotrophic ocean (Agawin et al., 2000).
The greater sensitivity of small-celled phytoplankton to UVB
radiation is, therefore, consistent with the reported sensitivity
of Prochlorococcus and Synechococcus to UV radiation in the
oligotrophic ocean, resulting in high cell mortality (Llabrés and
Agustí, 2006; Agustí and Llabrés, 2007). Moreover, our results
suggest that primary producers may have been heavily impacted
by increased UVB radiation due to the erosion of the SOL in
the oligotrophic ocean, consistent with evidence of a recent
trend toward oligotrophication of the subtropical and tropical
ocean (Behrenfeld et al., 2006; Boyce et al., 2010; Henson et al.,
2010; Steinacher et al., 2010; Hofmann et al., 2011). Warming
of the ocean is predicted to lead to a further expansion of
picophytoplankton (Morán et al., 2010; Flombaum et al., 2013;
Chen et al., 2014; Nagelkerken and Connell, 2015), suggesting
an increase in the sensitivity of marine primary producers to
UVB radiation. On the other hand, the predicted recovery of the
SOL, with the associated decline in UVB radiation, may lead to
improved performance of picophytoplankton in the future, but
this improvement may be offset by a deeper penetration of UVB
radiation in a warmer, more oligotrophic ocean.

Although the relationships between thickness or spore size
and UVB levels in macroalgae were not determined in our
analysis due to a limited number of studies reporting these,
previous studies showed that these factors also affect their
responses to UVB radiation. As translucence or opacity of thallus
influences optical properties, such as reflection, attenuation,
scattering, absorption, or transmittance of UVB radiation
(Caldwell et al., 1983), UVB can, therefore, be attenuated by
cell walls of the epidermal tissue effectively reducing UVB
effect. For instance, macroalgae with thick thallus offer a longer
pathlength to solar radiation resulting in outer cell layers
shading inner ones (Roleda et al., 2006). Other protection
mechanism described for macroalgae include the development
of phlorotannin-containing paraphysis cells towering above the
sporangial layer and physodes inside the meiospore-containing
sporangium, which protect the soral tissue from UVR exposure
(Gruber et al., 2011; Holzinger et al., 2011). Our results showed
that foliose macroalgae exhibited the greatest improvement in
their performance when UVB is reduced. Gómez and Huovinen
(2011) described that foliose forms were able to acclimate
rapidly to changing light. Therefore, their performance would
be expected to improve rapidly when UVB was reduced, as
showed in the present study. Freshwater macroalgae showed
limited differentiation in morpho-functional groups, restricted
to two groups in our data set, and phyla classification was more
informative on their responses to UVB. For marine macroalgae,
filamentous algae (e.g., Cladophora), which are typically thinner
than the foliose algae (e.g., Porphyra), showed significantly

smaller responses to reduced UVB radiation. Leathery algae (e.g.,
Laminaria), which are much thicker than the filamentous algae,
showed comparable responses when UVB was reduced. Our data
suggest that morpho-functional grouping account for some of
the variation in the responses of marine macroalgae to UVB
radiation, but that their responses may be buffered or amplified
by many other factors besides functional form. Other factors
(e.g., life-history stages, Roleda et al., 2007 and references therein;
meiospore size, Swanson and Druehl, 2000) may also affect the
responses of macroalgae to UVB radiation, but could not be
assessed in present study because of limited number of studies
addressing them. Moreover, the covariation between functional
forms of marine macroalgae and their phylogenetic membership
in our data set implies that the attribution of differences
in response to UVB radiation among marine macroalgae to
functional form maybe confounded by phylogenetic differences,
as functional form classes differ in thallus thickness, which affects
light absorption, but phylogenetic differences are associated with
relevant differences, such as pigmentary compliments, which
may also affect resistance to UVB radiation.

Our analysis provides evidence that sensitivity to UVB
radiation is dependent on the phylum in microalgae. The lower
sensitivity to UVB radiation of Chlorophyta compared with
Chromophyta has been proposed to be due to the larger minimal
cross-cell or cross-colony/cenobium distance of Chlorophyta,
which can provide shading to the internal structures (Xiong
et al., 1996). However, the greater sensitivity of Chlorophyta
compared with Bacillariophyta to increased UVB radiation
identified here remains unexplained, likely conditioned by the
number of experiments (few) and the complex array of UVB
damage that targetsmultiple processes and elicites a large number
of protection mechanisms (Häder et al., 2015). Because UVB
sensitivity differs among different taxa, it likely plays a crucial role
in shaping phytoplankton community composition. Xenopoulos
and Frost (2003) found that phytoplankton assemblages
incubated under photosynthetic active radiation (PAR) had
significantly higher richness, diversity and evenness than those
incubated full spectrum irradiance, suggesting possible selection
of UVR-tolerant taxa. Consequently, the full phytoplankton
community should be more resistant to UVB than a single
species or a taxon would be due to the selected effects of
UVB. Our results showed that the full community exhibited the
smallest responses to UVB (Figure 2). Reports that algal species
originally isolated from high-UV radiation locations (Larson
et al., 1990; Rautenberger et al., 2013) and marine organisms
from the Southern Hemisphere that are subject to higher UVB
radiation (Agustí et al., 2015) are particularly resistant to UVB
radiation indicate that the history of UV radiation experienced
by different taxonomic groups may also account for their diverse
responses to UVB radiation. Furthermore, sensitivity to UVB
will also imply other aspects than those analyzed in this meta-
analysis, as it is expected some responses should be not related to
phylum but show large variability among species within the same
phylum (e.g., Xiong et al., 1996), therefore, we suggest that more
studies on both micro- andmacroalgae sensitivity to UVB should
be conducted, and on the underlying mechanisms resulting in
different responses are worthy of further investigation as well.
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FIGURE 9 | The mean ± SE Ln effect size for different morpho-functional groups in response to experimentally reduced or increased UVB radiation for

overall (a), marine (b) and freshwater macroalgae (c). A Ln effect size <0 indicates an improvement in the trait and a Ln effect size >0 indicates a deterioration in

performance. “n” is the number of observations.

Our study confirmed the expected dominance of adverse
effects of UVB radiation on the performance of aquatic
photosynthetic organisms. However, a small number of
observations showed a positive response to enhanced UVB
(3.06% of the experiments showed improved performance with
increased UVB and 5.78% of the experiments showed reduced
performance with reduced UVB). Similarly, Flores-Moya et al.
(1999) reported that in the marine alga Dictyota dichotoma,
recovery of photoinhibition is delayed if the natural UVB
radiation range is removed from the solar-spectrum. This was
later confirmed in several macroalgae species (e.g Chara fibrosa),

which were collected in shallow waters and have adapted to
high UVB radiation environment (Hanelt et al., 2006; Hanelt
and Roleda, 2009). A positive effect of UVB radiation has
been reported for phytoplankton, where some taxa were most
abundant in treatments of intermediate fluxes of UVB radiation
(Thomson et al., 2008). Mechanistically, UVBmay support repair
or photoprotective processes (Sicora et al., 2003) or function as
a photoreceptor signal (Hanelt and Roleda, 2009), leading to
enhanced recovery of photoinhibition induced by high levels of
solar radiation would be better under full solar radiation. Further
studies are required to examine the molecular/physiological
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FIGURE 10 | The relationship between biological responses and the

change in UVB radiation for microalgae of different cell sizes. The

relationship between the responses to experimental UVB manipulation, as

indicated by the Ln effect size, and the change in UVB radiation relative to the

ambient levels experienced by the photosynthetic organisms. Colour lines

represent the fitted general linear models for microalgae across a range of cell

sizes (log10 cell volume (µm3 ) = −1, 0, 1, 2, 3, and 4).

mechanisms of this photo-physiological function of UVB
radiation.

The ocean is undergoing multiple changes including
acidification, warming and deoxygenation (Gattuso et al.,
2015), which also experiencing elevated UVB levels (Duarte
et al., 2009). A vast number of studies have demonstrated
that these other stressors could interact antagonistically or
synergistically with UVB to influence aquatic biota (e.g.,
UVB and ocean acidification: Li et al., 2012; Jin et al.,
2013; UVB and warming: Banaszak and Lesser, 2009; Xu

et al., 2011; UVB and pollutants: Pelletier et al., 2006; UVB
and nutrients: Li et al., 2015). Hence, the power of the
analysis reported here, focused on the response of aquatic
photosynthetic organisms to UVB radiation, is limited by
current uncertainties owing to the nature and strength of
interactions with other stressors. We, therefore, propose that
more comprehensive analysis aiming at the interactive effects
of multiple stressors with UVB radiation should be conducted
for a better understanding of the consequences stressors for
aquatic ecosystem. Our analysis already points to the great
vulnerability of marine photosynthetic organisms to UVB
radiation, with particularly important consequences for the vast
span of oligotrophic ocean dominated by highly UVB-sensitive
picophytoplankton.
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