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Seabirds are vulnerable to incidental harm from human activities in the ocean, and

knowledge of their seasonal distribution is required to assess risk and effectively inform

marine conservation planning. Significant hydrocarbon discoveries and exploration

licenses in the Labrador Sea underscore the need for quantitative information on seabird

seasonal distribution and abundance, as this region is known to provide important

habitat for seabirds year-round. We explore the utility of density surface modeling (DSM)

to improve seabird information available for regional conservation and management

decision making. We, (1) develop seasonal density surface models for seabirds in the

Labrador Sea using data from vessel-based surveys (2006–2014; 13,783 linear km

of surveys), (2) present measures of uncertainty in model predictions, (3) discuss how

density surface models can inform conservation and management decision making,

and 4) explore challenges and potential pitfalls associated with using these modeling

procedures. Models predicted large areas of high seabird density in fall over continental

shelf waters (max. ∼80 birds·km−2) driven largely by the southward migration of murres

(Uria spp.) and dovekies (Alle alle) from Arctic breeding colonies. The continental

shelf break was also highlighted as an important habitat feature, with predictions of

high seabird densities particularly during summer (max. ∼70 birds·km−2). Notable

concentrations of seabirds overlapped with several significant hydrocarbon discoveries

on the continental shelf and large areas in the vicinity of the southern shelf break, which

are in the early stages of exploration. Some, but not all, areas of high seabird density

were within current Ecologically and Biologically Significant Area (EBSA) boundaries.

Building predictive spatial models required knowledge of Distance Sampling and GAMs,

and significant investments of time and computational power—resource needs that are

becoming more common in ecological modeling. Visualization of predictions and their

uncertainty needed to be considered for appropriate interpretation by end users. Model

uncertainty tended to be greater where survey effort was limited or where predictor

covariates exceeded the range of those observed. Predictive spatial models proved

useful in generating defensible estimates of seabird densities in many areas of interest to

the oil and gas industry in the Labrador Sea, and will have continued use in marine risk

assessments and spatial planning activities in the region and beyond.
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INTRODUCTION

Offshore resource development has led to an increased need
for understanding marine living resource abundance and
distribution, and the effects of these activities on biota (Kark et al.,
2015). These effects range from point sources and direct mortality
(i.e., ship strikes, bottom draggers) to more generalized effects
such as eutrophication, pollution, and ocean acidification (Jones,
1992; Laist et al., 2001; Shahidul Islam and Tanaka, 2004; Orr
et al., 2005; Rabalais et al., 2009). However, obtaining the needed
biological information is logistically challenging, especially in
remote regions such as the Arctic (Arctic Council, 2009).
Among marine organisms, seabirds are particularly vulnerable
to a number of effects from marine industries, including being
especially vulnerable to the effects of oil at sea (Wiese and
Robertson, 2004; Votier et al., 2005) and other threats such
as mortality in fisheries as bycatch (Žydelis et al., 2013; Hedd
et al., 2016). Specific to oil pollution, determining the effect of a
hydrocarbon release in remote marine environments is difficult
when seabird densities in a particular area and season are not
known (Wilhelm et al., 2007; Haney et al., 2014).

One such remote region is the Labrador Sea. The Labrador
Sea contains significant oil and gas reserves and has been a focus
of resource exploration for decades (AMAP, 2010). However, the
demand for better baseline biological data to support regional
scale environmental assessments (C-NLOPB, 2008) is more
recent. The Labrador Sea is important to marine birds year-
round supporting breeding seabird colonies during summer and
providing important staging, migration, and wintering habitat
for seabirds from colonies in both the northern and southern
hemisphere (Brown, 1986; Huettmann and Diamond, 2000;
Bakken and Mehlum, 2005). Recent tracking information shows
movements of North Atlantic breeding seabirds to staging and
wintering areas in eastern Canadian and Greenlandic waters
that include the Labrador Sea, highlighting the international
importance of these waters (Frederiksen et al., 2012, 2016;
Mosbech et al., 2012; Fort et al., 2013; Jessopp et al., 2013;
Linnebjerg et al., 2013; McFarlane Tranquilla et al., 2013).
However, explicit local-scale spatial information on seabird
distribution in the Labrador Sea has been limited by patchy
marine survey coverage (Fifield et al., 2009), mostly due to
logistical difficulties. Understanding the spatial and temporal
extent of overlap of seabird populations with offshore resource
activities will be critical to the environmental assessment
process (Camphuysen et al., 2004; Fifield et al., 2009), and to
understanding potential risks to seabirds.

Previous assessments of seabird distributions at sea were
limited to the time and place where survey data were actually
collected. Recent statistical advances in density surface modeling
(DSM) provide an emerging framework that is capable of
overcoming many of the constraints of earlier approaches while
accounting for imperfect detection (Miller et al., 2013). Now,
at-sea survey data are used directly to examine relationships
between environmental covariates (generally collected by remote
sensing) and seabird densities. Once these relationships are
understood, predictions of seabird densities in areas of
comparable environmental conditions are possible—even when

there is no survey coverage in the immediate area (Miller et al.,
2013).

The purpose of this paper is to explore the utility of DSM to
meet the demand for better baseline biological data to inform
conservation and management decision-making in the Labrador
Sea. Specifically, we (1) develop seasonal DSMs for all seabird
species combined in the Labrador Sea, (2) present measures of
uncertainty in model predictions, (3) discuss how DSMs can aid
in conservation and management decision making in the region,
and (4) explore some of the challenges and potential pitfalls
associated with using these complex modeling procedures.

MATERIALS AND METHODS

Study Area
The study area (464,104 km2) is aligned with the Labrador Shelf
Strategic Environmental Assessment (SEA) Area (C-NLOPB,
2008), defined using North Atlantic Fisheries Organization
(NAFO) regions (2G, 2H, 2J) within the Canadian Exclusive
Economic Zone (Figure 1).

Ship-Based Surveys
Surveys were conducted within the purview of CanadianWildlife
Service’s Eastern Canada Seabirds At Sea (ECSAS) program,
which follows a standardized protocol that incorporates Distance
Sampling methods (Buckland et al., 2001; Fifield et al., 2009;
Gjerdrum et al., 2012). Briefly, surveys consisted of a series
of sequential observation periods (nominally 5-min duration)
along a continuous line-transect, providing segments of mean
length 1.64 km (SD: 0.61 km) as the sample unit for the DSM
(see below). GPS coordinates were recorded at the beginning
and end of each segment. Environmental variables that might
be expected to affect bird detection such as wind speed and
wave height were collected and updated at the beginning of
each segment (Gjerdrum et al., 2012). We recorded observations
of birds on the water continuously along each segment, and
used a snapshot approach for flying birds (Tasker et al., 1984;
Gjerdrum et al., 2012). Distance categories (0–50, 5–100, 100–
200, 200–300m; Gjerdrum et al., 2012) for each observation
were assigned by estimating the perpendicular distance to each
individual bird (or the centroid of each group of birds) with the
help of a pre-marked custom ruler constructed for each observer-
vessel combination (Gjerdrum et al., 2012). Data were entered
directly into the ECSAS Microsoft Access database using voice
recognition software or recorded on datasheets and entered into
the database (Fifield et al., 2009).

Data Analysis
Data Extraction and Filtering
Survey data consistent with the methods described in Section
Ship-Based Surveys were extracted from ECSAS database version
3.38. Only data collected from moving vessels whose speed
exceeded 4 knots were included (Gjerdrum et al., 2012). Certain
seabird species are attracted to fishing vessels, which can
artificially inflate densities of these birds around such vessels.
Therefore, observations of these taxa (i.e., gulls, Northern
fulmar, shearwaters, and black-legged kittiwake) collected during
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FIGURE 1 | Labrador Sea study area, which encompasses the area of the Labrador Sea delineated by NAFO regions 2G, 2H, 2J, out to the Canadian

EEZ (Exclusive Economic Zone). Significant discovery licenses and active C-NLOPB land issuance sectors in the Labrador Sea are also indicated.

Fisheries and Oceans Canada (DFO) scientific trawl surveys were
removed prior to analysis (10 of 35 trips, see Supplementary
Tables 1, 2).

Environmental covariates used in modeling
Wemodeled the density (or equivalently, abundance) of seabirds
in the Labrador Sea relative to environmental variables (Table 1).
These were chosen because each has been demonstrated to
correlate with the distribution or abundance of seabirds at
sea, or could be expected to correlate (Louzao et al., 2006,

2011; Wakefield et al., 2009; Oppel et al., 2012). To extract (or
interpolate) values for all of the dynamic and most of the static
variables associated with the starting position of each segment,
we used Marine Geospatial Ecology Tools (MGET; Roberts et al.,
2010) within ArcGIS (Table 1). Values of sea surface temperature
(SST; JPL MUR MEaSUREs Project, 2010), and anomalies in
both sea surface height (SSH), and eddy kinetic energy (EKE;
AVISO, 2016) were extracted directly usingMGETData Products
tools. To estimate spatial gradients in SST (SSTG), monthly
rasters of SST climatology were first created, and gradients
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TABLE 1 | List of environmental variables used to model the density of seabirds within the Labrador Sea.

Variable Product/Dataset Spatial resolution Temporal resolution Description

DYNAMIC VARIABLES

Sea surface temperature (SST, ◦C) GHRSST

L4/JPL-L4UHfnd-GLOB-MUR

0.01◦ Daily L4 interpolated sea surface

temperature

SST gradient (SSTG) Derived from GHRSST

L4/JPL-L4UHfnd-GLOB-MUR

0.01◦ Monthly Spatial gradient in sea surface

temperature, derived from

monthly climatologies

Sea surface height anomaly (SSH, m) AVISO 0.25◦ Monthly Anomaly in sea surface height

Eddy kinetic energy (EKE, m2/s2) AVISO 0.25◦ Monthly Anomaly in eddy kinetic energy

STATIC VARIABLES

Bathymetry (m) ETOPO2 0.03◦ – Water depth

Bathymetry gradient (BathyG) Derived from ETOPO2 0.03◦ – Spatial gradient (slope) in water

depth

Distance to 1000m contour (Dist1000) Derived from ETOPO2 – – Distance to the 1000m depth

contour

subsequently estimated as a proportional change (PC) within a
surrounding 3 × 3 cell moving window following Louzao et al.
(2006): PC = [(SST maximum value − SST minimum value)
× 100]/(SST maximum value). SST minimum and maximum
rasters were created from monthly climatologies using the
Focal Statistics tool, with subsequent algebra executed using
the Raster Calculator. Static environmental variables including
bathymetry and its derivatives were determined from ETOPO2
grids (National Geophysical Data Center, 2006) which is based on
satellite altimetry and shipborne ground-truthingmeasurements.
The spatial gradient in bathymetry (BathyG) was estimated
as indicated above for the gradient in SST, and distance to
the continental shelf break (Dist1000, defined as the 1,000m
contour) was calculated using the Near tool within ArcGIS
Analysis toolset. To avoid collinearity among these covariates,
we assessed both seasonal and overall variance inflation factors to
ensure that they were all below 3 (Zuur et al., 2010), and to ensure
that the absolute value of all Pearson correlation coefficients
between pairs of explanatory variables were<0.52 which is below
the 0.7 threshold where collinearity has been shown to severely
effect model predictions (Dormann et al., 2013).

Environmental data used to predict seabird abundance or

density
Each cell within a 2 × 2 km prediction grid covering the
study area was populated with the static variables listed in
Table 1, along with seasonally-averaged values for the dynamic
covariates recorded over the 10-year period between 2005 and
2014. Seasons were defined as Summer (June–August), Fall
(September–October), Winter (November–March), and Spring
(April–May). To generate these dynamic covariate layers, we
first used MGET Data Products tools to create monthly rasters
for the period January 2005 to December 2014, and then
the ArcGIS Raster calculator tool (Spatial Analyst toolset) to
create seasonal averages. Seasonal spatial gradients in SST were
calculated as indicated above for the modeling step, but using
the seasonally averaged SST rasters as input. Values for the
prediction grid were obtained using an MGET Spatial and

Temporal Analysis tool (“Project Raster to Template”), which
projected each environmental raster to the coordinate system, cell
size and extent of the prediction grid (Lambert Azimuthal Equal
Area projection).

Modeling Approach
We conducted an analysis for all seabird species combined
(Fifield et al., 2016) producing a seasonal spatial predictive model
in R 3.2.3 (R Core Team, 2016) following a two-stage DSM
approach (Hedley and Buckland, 2004; Miller et al., 2013) using
the Distance v. 0.9.4 (Miller, 2015), dsm v. 2.2.13 (Miller et al.,
2015), and mgcv v. 1.8–17 R packages.

Stage 1
In Distance Sampling, the process of fitting a detection function
accounts for the fact that some birds are unavoidably missed
during surveys (Buckland et al., 2001). A detection function was
fitted by modeling detectability as a function of distance from the
observer and other covariates including observer identity, species
(or guild), flock size, wind speed, wave height, season, and bird
behavior (i.e., flying or on the water). The best detection function
model was selected using Akaike Information Criteria (AIC), and
model fit was assessed using plots of detection function fit to the
distance histogram, and through χ

2 goodness-of-fit tests. The
best detection function was then used to correct the estimated
density of seabirds present in each survey segment (Hedley and
Buckland, 2004).

Stage 2
We constructed seasonal Generalized Additive Models (GAMs,
Wood, 2006) of density as a function of environmental covariates
in surveyed areas. GAMs were fitted to the density data
using quassiPoisson, negative binomial and Tweedie response
distributions.

For each distribution, an initial full model was fitted
containing seasonal thin-plate regression spline smooths (Wood,
2006). Dynamic variables (EKE, SSH, SST, SSTG; Table 1) were
fitted with a single smooth to allow the natural variation within
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and across seasons to inform the fit. We allowed for a seasonal
time component for static variables (Bathy, BathyG, Dist1000),
which have no natural seasonal variation, in GAM fitting
(through use of the mgcv “by = Season” option). A parametric
(i.e., non-smooth) term for each season was also initially included
in all models. QQ-plots of initial full models using each of
the three response distributions indicated the negative binomial
distribution provided a superior fit and the other distributions
were not considered further.

Model refinement progressed by iterative backwards selection
of the full negative binomial model refining all smooth terms first,
followed by parametric terms. At each iteration, the remaining
smooth term with the lowest estimated degrees of freedom
(EDF; or sum of the four individual component EDFs for
seasonal smooths) less than 1.5 was considered for removal, or
replacement by a linear parametric term. The term was replaced
by a parametric one if the slope of the coefficient was significantly
different from 0 (i.e., if its p ≤ 0.01) or removed otherwise.
Seasonal smooth terms were replaced by parametric terms with
an interaction with season to allow the slope of the linear
relationship to vary seasonally. Refinement of parametric terms
consisted of removing those whose p ≥ 0.01, and interactions
were removed before main effects.

Autocorrelation was assessed via a plot of correlations in the
residuals at lags of 1–20 consecutive segments, by inspection of
variograms of the residuals at scales of 2, 5, 10, and 100 km, and
visual inspection of spatial plots of residuals (bubble plots from R
package sp v. 1.2-4).

We used the final fitted model to predict and map seasonal
density in a 2 × 2 km grid-cell matrix over the entire study area
using the same environmental covariates. The spatial resolution
of this grid was chosen to match the segment length. Mapping
of model uncertainty in individual grid cells, as measured by the
coefficient of variation (CV), was computed at a lesser resolution
of 6× 6 km due to computer memory constraints.

Seasonal Densities and Population Estimates
Two seasonal density (birds·km−2) and population estimates
were produced: one for the entire study area and a second
excluding areas of environmental extrapolation beyond the
range of sampled covariates used to build the models.
Extrapolations outside these ranges are largely speculative and
such areas have been indicated in Figure 2 with crosshatches
to appropriately caution the reader (Mannocci et al., 2016).
These areas varied seasonally. Further, large portions of the
study area may be covered by ice in winter, spring, and
summer and therefore be unavailable for seabirds. We removed
these areas from density and population estimates by obtaining
ArcGIS shapefiles containing weekly climatologies of median ice
concentration for the East Coast and Northern Canadian Waters
for the period 1981–2010, as compiled by the Canadian Ice
Service (http://ec.gc.ca/glaces-ice/). To be conservative, we were
interested in the maximum seasonal median ice extent where
ice concentrations exceeded 9−9+ (i.e., waters that were >90%
ice covered), and so these concentrations were selected and the
ArcGIS Merge tool (Data Management Tools) was used to create
a single polygon for each season.

Sensitivity Analysis
We conducted a sensitivity analysis by individually removing
each covariate from the final fitted DSM. For each reduced
model, a new set of seasonal maps and population estimates were
produced and compared with the results from the full model.

RESULTS

From May 2006 to November 2014, observers surveyed 13,783
linear km, or 4,135 km2 (8,392 segments) for seabirds within the
Labrador Sea study area, with the most intensive effort occurring
between 2012 and 2014. Surveys were conducted during all
seasons; however, as survey platforms were largely ships of
opportunity, effort was distributed unevenly across the study area
by season (Figure 3). The most complete spatial coverage was
achieved in summer, when surveys were conducted from Saglek
Bank in the north to Hamilton Bank in the south, both on and off
the Labrador Shelf, while the poorest spatial coverage occurred in
winter when most surveys were concentrated in the south in the
vicinity of Hamilton Bank (Figure 3). Effort was most intense in
fall, with shelf waters south of and including the Nain Bank being
well-surveyed. Seasonal differences in the spatial distribution and
intensity of survey effort have implications for the precision of
seabird density estimates, as demonstrated below.

In total, ship surveys detected 33,469 seabirds (12,379 flocks)
in 4,638 of 8,392 (55%) segments, with dovekie (Alle alle),
northern fulmar (Fulmarus glacialis), black-legged kittiwake
(Rissa tridactyla), and murres (Uria spp.) being the taxa most
frequently observed (see Supplementary Tables 3, 4 for a
complete list of observed species).

Modeling
The best detection function model contained a hazard-rate
key function and covariates for taxon, wind, wave height, bird
behavior (flying or on water), season, and flock size. Average
detection probability was 38% (CV = 0.26), indicating that
failure to adopt a distance sampling methodology would have
underestimated seabird densities in each surveyed segment by an
average of 2.6 times. For the density surface model, a negative
binomial distribution with dispersion parameter k = 0.248
provided the best fit to the data explaining 17.6% of the deviance.
Retained smooth terms included Bathymetry, BathyG, Dist1000,
EKE, SST, and SSH, along with the parametric Season term (see
Supplementary Figure 1 model output and plots of regression
splines).

Residual autocorrelation at lags of 1–20 segments was
relatively low (all r < 0.2), and variograms and spatial plots of
residuals showed no obvious patterns.

Predicted Densities and Population Estimates
The Labrador Shelf and adjacent portions of the Labrador Sea are
clearly important regions for seabirds, particularly during fall and
winter, when densities were 33.9 (CV = 0.26) birds·km−2 and
21.6 (CV = 0.37) birds·km−2, respectively (Table 2, Figure 2).
During fall and winter, the estimated number of seabirds in
the region (to the nearest 100,000) were 15.4 million (95% CI:
9.3–25.5 million) and 5.3 million (95% CI: 2.6–10.9 million),
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FIGURE 2 | Seasonal predicted densities of all seabirds based on Generalized Additive Models (GAMs). Areas of extrapolation beyond the range of model

covariates are indicated with crosshatching. Seasons are defined as Summer (June–August), Fall (September–October), Winter (November–March), and Spring

(April–May).

respectively. During fall, relatively high densities were predicted
throughout the Labrador Shelf, from the Saglek and Nain Banks
south to the Labrador Trough. Predicted densities in a substantial

portion of the Saglek Bank and Labrador Trough exceeded
50–75 birds·km−2 in fall. Areas with high predicted densities in
fall overlapped with several significant hydrocarbon discoveries
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FIGURE 3 | Seasonal bird observations and coefficient of variation (CV) for predicted densities of all seabirds based on Generalized Additive Models

(GAMs). Seasons were defined as Summer (June-August), Fall (September-October), Winter (November-March), and Spring (April-May).

on the Labrador Shelf (Figures 1, 2). Somewhat lower bird
densities were predicted in offshore regions in fall; however,
the lack of survey coverage in these areas lowers confidence

in the predictions. During winter, the model predicted high
densities (>25 birds·km−2) all along the continental shelf break.
In summer, mean density was 15.3 (0.25) birds·km−2 and

Frontiers in Marine Science | www.frontiersin.org 7 May 2017 | Volume 4 | Article 149

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Fifield et al. Predictive Models Inform Conservation Planning

TABLE 2 | Seasonal densities and population estimates (to the nearest 100,000) excluding ice-covered areas for the entire study area and for the area

without extrapolation beyond range of model covariates (see Figure 2).

Whole study area Area without extrapolation beyond covariate limits

Season Density (CV)

(95% CI) (birds·km−2)

Population Estimate (CV)

(95% CI)

Density (CV)

(95% CI) (birds·km−2)

Population estimate (CV)

(95% CI)

Spring 9.0 (0.26)

(5.5–14.8)

2,700,000 (0.26)

(1,600,000–4,400,000)

9.2 (0.26)

(5.6–15.0)

2,600,000 (0.26)

(1,600,000–4,300,000)

Summer 15.3 (0.25)

(9.4–25.0)

6,400,000 (0.25)

(3,900,000–10,500,000)

15.4 (0.25)

(9.4–25.2)

6,300,000 (0.26)

(3,900,000–10,300,000)

Fall 33.9 (0.26)

(20.4–56.2)

15,400,000 (0.26)

(9,300,000–25,500,000)

37.2 (0.25)

(22.3–60.6)

9,500,000 (0.25)

(5,800,000–15,400,000)

Winter 21.6 (0.37)

(10.6–43.7)

5,300,000 (0.38)

(2,600,000–10,900,000)

22.8 (0.35)

(11.8–44.0)

4,100,000 (0.35)

(2,100,000–8,000,000)

particularly high densities were also predicted along the shelf
break, with a noticeable peak in the very north. The regional
seabird population estimate in summer was 6.4 million (95%
CI: 3.9–10.5 million). Predicted densities and numbers of birds
were lower overall during spring, and averaged 9.0 (CV = 0.26)
birds·km−2 and 2.7 million (95% CI: 1.6–4.4 million) birds
(Table 2). Mean (range) CVs (6 × 6 km cells) were 0.19 (0.13–
1.14) in spring, 0.20 (0.14–1.50) in summer, 0.19 (0.11–0.52) in
fall, and 0.36 (0.16–0.85) in winter (Figure 3).

Sensitivity Analysis
Density and abundance estimates were insensitive to removal of
individual model terms; confidence intervals for these quantities
all overlapped extensively for all models (Supplementary
Figure 2). The spatial density pattern was also similar across
all models, with the greatest differences evident in fall for
models without Dist1000 and Season (Supplementary Figure 3).
Likewise, spatial uncertainty patterns were similar across all
models except during fall for the model without Dist1000
where uncertainty off the continental shelf (where there was
no sampling) was greater than in other models (Supplementary
Figure 4).

Modeling and Interpretation Challenges
Areas of extrapolation where the values of environmental
predictors were beyond the range of those covariates in the
model occurred to varying degrees across seasons (crosshatched
in Figure 2). In the majority of cases, this was caused by a lack
of vessel-survey coverage in those water depths during those
seasons. Predicted densities in these areas must be interpreted
with extreme caution. This is of particular interest to the current
application sincemuch of the continental slope and deep offshore
area, particularly in the southeast, is in the early stages of
hydrocarbon exploration. The lack of survey coverage in these
regions highlights a priority data gap.

DSM fitting, spatial prediction and variance computation was
both CPU and memory intensive. For example, this process
typically required 1–2 h for a single run to complete on a Lenovo
laptop with an Intel Core i5-3320M processor running at 2.6 GHz
with 8 GB ram utilizing all four processors in parallel. During the
per-cell prediction and variance calculation steps the R process

memory requirements typically grew to more than 4 GB at a 6×
6 km scale. Attempts to compute the variance at a 2× 2 km scale
failed when R attempted to allocate more than 96 GB of memory.

DISCUSSION

The purpose of this study was to explore the utility of DSM
to inform conservation and management needs of seabirds
in the Labrador Sea. This is of particular importance given
domestic and international commitments to protect 10% of
coastal and ocean areas by 2020 (CBD, 2010) and the regional
increase in industrial activity. Using at-sea seabird survey data
collected onboard ships of opportunity, seasonal models of
seabird distribution and abundance were built throughout the
region. These will contribute to the baseline information needed
for quantitative environmental assessments which precede
development of the offshore hydrocarbon industry. While data
collection within oil and gas significant discovery license areas
themselves was sometimes sparse, by utilizing this relatively
recent statistical approach (Miller et al., 2013), models built from
data collected in nearby regions enabled plausible predictions
of seabird densities throughout much of the area of interest.
We expect these outputs will inform future conservation and
management decisionmaking in the Labrador Sea and contribute
to conservation targets. In addition to marine protected area
planning and offshore oil and gas exploration and production,
understanding risks from shipping (and associated risk of
hydrocarbon releases) and mortality from fishing activities can
all be improved by these models.

Our results indicate millions of seabirds use the Labrador
Sea at all times of year, with especially high concentrations
over the shelf regions in the fall. This is consistent with known
migration patterns of seabirds in the North Atlantic. Many of the
3 million breeding thick-billed murres from Canadian colonies
(Gaston et al., 2012) migrate along the Labrador Shelf to winter
in low arctic regions (McFarlane Tranquilla et al., 2013) and
large numbers (∼850,000) of thick-billed murres from colonies
spanning the eastern and western North Atlantic winter in the
Labrador Sea (Frederiksen et al., 2016). Similarly, black-legged
kittiwakes from colonies spanning the North Atlantic use the
Labrador Sea in winter, especially waters off the shelf edge
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FIGURE 4 | Ecologically and Biologically Significant Areas (EBSA) within the study area (DFO, 2013).

(Frederiksen et al., 2012). Dovekie are themost numerous seabird
in Northwest Atlantic waters, andmillions of breeding birds from
West Greenland colonies migrate south through the Labrador
Sea to wintering grounds off Newfoundland (Fort et al., 2013).

In terms of conservation planning, our models have the
ability to inform and refine the boundaries of Ecologically and
Biologically Significant Areas (EBSAs) recently defined for the
Newfoundland and Labrador Shelves Bioregion (DFO, 2013;
Figure 4). The most recent EBSA delineation process for the
Labrador Shelf included seabird data collected from pelagic
surveys (DFO, 2013), but this data was very coarse and lacked

spatial and temporal coverage across much of the Labrador Sea
(Fifield et al., 2009). Our analysis shows the importance of the
fall migration period for seabirds, especially along the northern
parts of the shelf. Portions of this region are covered by the
Northern Labrador and the Hopedale Saddle EBSAs (DFO, 2013)
but important areas of ocean for seabirds between these two
EBSAs are not included. A portion of the important summer
concentration of seabirds along the shelf break at the northern
part of the study area is included in the Outer Shelf Saglek Bank
EBSA, and concentrations of wintering seabirds are within the
Labrador Slope EBSA, which covers a large stretch of ocean along
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the shelf edge in the middle of the study area (DFO, 2013).
As Canada progresses with Marine Protected Area planning
exercises to meet Convention on Biological Diversity (CBD)
targets (Secretariat of the Convention on Biological Diversity the
Scientific Technical Advisory Panel—GEF, 2012), our results can
be used to further refine EBSA and subsequent Marine Protected
Area boundaries. Since thesemodels have a temporal component,
boundaries can be created that are dynamic, for example they
may change with seasons, or can be changed if future data
indicates a significant shift in marine bird concentrations.

Our analysis considered all seabirds in the Labrador Sea
combined. However, different seabird guilds have different
relative risks to specific types of threats in the marine
environment (e.g., Wiese and Robertson, 2004; Good et al., 2009;
O’Hara et al., 2009; Hedd et al., 2016). Predictive modeling at
the guild or species level is important to inform risk and damage
assessments for seabirds (Le Rest et al., 2016; Fox et al., 2017).
Future studies should address this gap by constructing DSMs on
a per guild (or species) basis to better inform management and
conservation for marine birds in the Labrador Sea.

A number of static (Bathymetry, BathyG, Dist1000) and
dynamic (EKE, SST, SSTG, SSH) oceanographic features we
selected were retained in the model as predictors of seabird
densities and explained 18% of deviation in the data. Previously,
several of these features had been identified as important
predictors of at-sea densities for other top predators (Mannocci
et al., 2016). This clearly, and not unexpectedly, indicates that
the density of seabirds are not uniform in time or space on the
Labrador Sea, and smaller scale estimation will provide better
estimates of seabird density at scales relevant to marine resource
planners and to development of conservation policy. During fall,
high predicted densities occurred in relatively shallow waters
throughout the continental shelf. In both the summer and winter,
however, highest predicted densities occurred along the shelf
break and slope, habitat features which have been shown to
be important for seabirds in other regions (Catard et al., 2000;
Croxall and Wood, 2002). Specific to oil and gas exploration,
significant discovery licenses which are on the continental shelf
midway along the Labrador coast, overlap with high predicted
densities of seabirds, notably in the fall. Predicted seabird
densities in areas of interest to the oil and gas sector in the
southeastern part of the Labrador Sea identified large areas where
birds concentrated during fall and winter, and to a lesser extent
during spring and summer. However, in the fall, surveys were
restricted to the continental shelf, precluding us from obtaining
high confidence in the density estimates in these areas of interest
to the oil and gas industry. The best approach for addressing these
remaining data gaps would be a designed survey approach that
targets high priority areas, as opposed to opportunistic surveys.

Caution and an understanding of the uncertainty associated
with model predictions is vital when interpreting DSM-predicted
density output. To facilitate appropriate interpretation we
produced companion maps of associated uncertainty (in our
case, using the CV or coefficient of variation; see also Winiarski
et al., 2014; Mannocci et al., 2016), to be viewed alongside
fine-scale maps of predicted seabird densities. These maps are
to be interpreted in tandem, to highlight seasons and areas

where model predictions are associated with higher degrees of
uncertainty. In modeling seabirds in the Labrador Sea, the overall
range of per-cell CVs was modest with similar precision achieved
during spring, summer and fall, and lesser precision in winter
with relative differences being driven by seasonal sample sizes.
Within each season, the CV tended to increase toward the edges
of the study area where some covariates approached the limit of
their ranges and so corresponding predictions were less precise.

Large areas of ocean featured environmental extrapolation
beyond the range of model covariates, and predictions in these
areas must be interpreted with caution (e.g., in deep off-shelf
waters during fall and winter). The tendency for GAMs to
produce extreme predictions at or beyond the limits of covariate
values is well-known (Mannocci et al., 2016). For example, in a
previous modeling exercise (Fifield et al., 2016) we included the X
and Y coordinates (projected longitude and latitude, respectively)
as covariates in our GAMs. However, much of the study area was
outside the X and Y range of sampling in one or more seasons
leading to extreme predicted densities and low precision. It is
thus apparent that the choice of model covariates strongly affects
predicted densities and their precision. To draw the reader’s
attention to this fact in the current analysis, areas of extrapolation
have been crosshatched in the prediction surfaces (cf. Mannocci
et al., 2016). It can be important to dig deeper and understand
which environmental predictor(s) cause the extrapolation, and
to what extent they affect predicted densities in such areas. For
example, during fall there is a considerable area of moderately
high predicted densities (up to 50 birds·km−2) in deep off-shelf
waters in the northeast where extrapolation is due to a lack
of seabird survey effort in deep waters. However, examining
the fall regression spline plot for Bathymetry from the GAM
output (Supplementary Figure 1) indicates that water depth
had no effect on predicted density during this season due to
a nearly flat relationship centered at 0. However, Bathymetry
was retained in the model due to a significant interaction effect
in other seasons. This highlights the tradeoffs inherent between
pooling all data in a single model with seasonal interactions vs.
modeling each season separately where data may be sparse in
some seasons. Instead, these high predicted densities are a result
of the Dist1000 model term. Thus an intimate knowledge of
modeled relationships may be required to interpret crosshatched
plots of environmental extrapolation (cf. Mannocci et al., 2016)
and this may guide the degree of caution required in interpreting
predictions in such areas. Nonetheless, a qualitative assessment
of prediction plausibility should be undertaken in the context
of other sources of distribution and abundance information (see
below and Mannocci et al., 2016).

Sensitivity analysis indicated that the model was relatively
insensitive to single-term deletions with density and population
estimate confidence intervals overlapping for all models. Likewise
spatial patterns of density and uncertainty (CV) were similar
across all models except for in deep off-shelf waters during fall
for 2 models; an area where bathymetric extrapolation occurred
due to lack of fall deep-water survey coverage. Improving survey
effort in this area would likely help to limit model sensitivity.

Residual spatial autocorrelation can bias analyses by inflating
Type I error rates, and a variety of statistical methods have
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been proposed to account for this fact (Dormann et al., 2007;
Bivand et al., 2015). Similar to Winiarski et al. (2013), un-
modeled residual autocorrelation was relatively low in this
study and we feel confident that it did not unduly bias our
results. Nonetheless, future work should investigate methods to
accommodate autocorrelation.

When deciding whether to use DSM, considerations include
the non-trivial commitments of time and computer resources
required to execute these complicated techniques. The time
required to fit and visualize prediction and uncertainty outputs
should not be underestimated, especially when comparing many
candidate models across multiple species groups (Fifield et al.,
2016). Computing variance for DSM predictions is memory
intensive, particularly for large study areas with small grid-cell
sizes and may stretch computing resources beyond available
limits. Approaches to streamline the process could involve using
multiple computers running in parallel, using a centralized high
performance computing server environment, or processing the
study area in a series of sub-areas and combining the results
(although this further complicates the analysis). The statistical
approaches involved in DSM are an active area of research
(Hedley and Buckland, 2004; Miller et al., 2013), but all are based
on advanced techniques and extensive experience and training
are required. These are not readily accessible to all and likely
help to explain the gap between having data and using data to
best inform critical environmental assessment processes, both in
the Labrador sea, and in other marine areas of concern where
survey coverage may be limited. These caveats notwithstanding,
we believe DSMs are a valuable approach to inform seabird
conservation over large areas of ocean where survey coverage is
incomplete, and would recommend that management agencies
develop capacity and expertise in this or similar predictive
modeling approaches.
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