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Areas beyond national jurisdiction (ABNJ) lie outside the 200 nautical mile limits of national

sovereignty and cover 58% of the ocean surface. Global conservation agreements

recognize biodiversity loss in ABNJ and aim to protect ≥10% of oceans in marine

protected areas (MPAs) by 2020. However, limited mechanisms to create MPAs in ABNJ

currently exist, and existing management is widely regarded as inadequate to safeguard

biodiversity. Negotiations are therefore underway for an “internationally legally binding

instrument” (ILBI) to the United Nations Convention on the Law of the Sea to enable

biodiversity conservation beyond national jurisdiction. While this agreement will, hopefully,

establish a mechanism to create MPAs in ABNJ, discussions to date highlight a further

problem: namely, defining what to protect. We have a good framework for terrestrial

and coastal habitats, however habitats in ABNJ, particularly the open ocean, are less

understood and poorly defined. Often, predictable broad oceanographic features are

used to define open ocean habitats. But what exactly, constitutes the habitat—the

water, or the species that live there? Complicating matters, species in the open sea

are often highly mobile. Here, we argue that mobile marine organisms provide the

structure-forming biomass and constitute “habitat” in the open ocean. For an ABNJ ILBI

to offer effective protection to marine biodiversity it must consider habitats a function

of their inhabitants and represent all marine life within its scope. Only by enabling

strong protection for every element of biodiversity can we hope to be fully successful

in conserving it.

Keywords: areas beyond national jurisdiction, ABNJ, area-based management, biodiversity beyond national

jurisdiction, BBNJ, high seas, marine protected areas, UNCLOS

INTRODUCTION

Areas beyond national jurisdiction (ABNJ) cover 58% of the ocean surface and lie outside the
200 nautical mile limits of national sovereignty (exclusive economic zones). International concern
has steadily increased over the multiplication and intensification of threats to marine biodiversity
in ABNJ, fragmented and uncoordinated management, and the lack of a comprehensive legal
framework to properly address threats (Ban et al., 2014; Merrie et al., 2014; Gjerde et al., 2016;
Wright et al., 2016). Global agreements on environmental protection recognize steep biodiversity
losses in ABNJ and have set targets to protect>10% of coastal andmarine areas inmarine protected
areas (MPAs) (Convention on Biological Diversity, 2010; United Nations, 2015). However, there is
presently no agreed mechanism to protect biodiversity in ABNJ.
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Following 10 years of informal negotiations, in March 2016
delegates from 193 countries, and representatives from numerous
intergovernmental and non-governmental organizations, met at
the United Nations (UN) in New York for the first of four
meetings to negotiate the elements of an “international legally
binding instrument” (ILBI) for the conservation and sustainable
use of biodiversity beyond national jurisdiction under the UN
Convention on the Law of the Sea (UNCLOS). These negotiations
are framed by four issues which delegates have agreed must
be considered “together and as a whole”: (1) marine genetic
resources, including benefit sharing; (2) area-based management
tools, including MPAs; (3) environmental impact assessments;
and (4) capacity building and the transfer of marine technology
(UNGA, 2015; Gjerde et al., 2016; Wright et al., 2016) This
process should result in recommendations to the UN General
Assembly by the end of 2017.

If successful, these negotiations will lead to an
intergovernmental negotiating conference in 2018 to improve
governance and management of biodiversity beyond national
jurisdiction. However, while the ILBI will, hopefully, facilitate
conservation and sustainable use of biodiversity in ABNJ,
including a mechanism for establishing MPAs, these discussions
highlight a further problem: namely, defining what to protect.

Existing global targets measure progress toward biodiversity
conservation using the extent of ecosystems and habitats covered
by protected areas (Convention on Biological Diversity, 2010).
However, while we have a good working framework for terrestrial
and coastal habitats, habitats in ABNJ, and particularly the open
ocean, are less understood and poorly defined (e.g., IUCN,
2017). To inform these discussions we consider what constitutes
“habitat” in the largely fluid environment of the open ocean.

RELATING HABITAT CONCEPTS TO AREAS
BEYOND NATIONAL JURISDICTION

Habitat or ecosystem concepts overlap substantially. The
Convention on Biological Diversity (CBD) (Article 2) defines
“ecosystem” as “a dynamic complex of plant, animal and
micro-organism communities and their non-living environment
interacting as a functional unit,” and “habitat” as “the place or
type of site where an organism or population naturally occurs”
(Convention on Biological Diversity, 2010). The definitions are
therefore interrelated, and application of the terms is scale-
dependent.

Even without clear definitions, the idea that the world is
divided into a series of ecosystems and habitats is most easily
grasped when fixed entities comprise a habitat with discrete
boundaries (although visible boundaries often conceal complex
networks of wider connections that may be overlooked–Box 1).
For instance, on land it is easy to conceive where a lake
or forest end and a different habitat or ecosystem begins.
This principle clearly translates to coastal systems where, for
example, mangrove trees, seagrass meadows, or coral and oyster
reefs act as easily defined structuring elements. Similarly, some
habitats in ABNJ, especially seabed features such as seamounts,
hydrothermal vents, and ocean ridges, offer defined features

around which boundaries can be drawn using traditional
principles.

Fluid realms, such as the open ocean (Norse, 2005) and
airspace (Diehl, 2013), challenge our conception and application
of habitat and ecosystem ideas. Predictable, broad oceanographic
features, such as frontal zones, which aggregate nutrients and
food and attract predators, offer opportunities to delineate
boundaries (Scales et al., 2014). But what exactly defines the
habitat? Is it the water, or the species that live there? With the
exception of floating Sargassum weed (Hemphill, 2005), there is
little structure-forming biomass in pelagic systems and even this
is not fixed in space. The biomass present is held in the bodies
of the creatures that live in the water and is highly mobile. It is
those creatures, and the ecological roles they fulfill, we argue, that
constitute “habitat” in the open sea.

HABITATS AS A FUNCTION OF THEIR
INHABITANTS

Living and non-living realms interact to characterize ecosystems.
The occupants of any habitat create and alter the system
they live within. Species that create more complex habitat by
modulating the availability of resources to other species are
known as “ecosystem engineers” (Jones et al., 1994). Most
research identifying marine organisms as ecosystem engineers
has focused on species that either attach or interact with seabed
communities, such as corals, bivalves, seagrasses, and species
that modify sediments (e.g., Soetaert et al., 2016). Only recently
have some begun to explore the potential for other marine
organisms to act as ecosystem engineers. Examples in the open
ocean include phytoplankton and zooplankton (Jones et al., 1994;
Breitburg et al., 2010), and baleen and sperm whales (Roman
et al., 2014).

The structuring role of plankton in pelagic food-webs has long
been recognized. They are critical to ecosystem function, and
their abundance and biomass determines the distribution and
productivity of marine life (Chassot et al., 2010; Watson et al.,
2015). However, plankton may also be considered ecosystem
engineers—affecting the photic, chemical and thermal regimes
of water and consequently the suitability of that habitat for
other life (Haury et al., 1978; Duffy and Stachowicz, 2006;
Breitburg et al., 2010). For example, Antarctic krill (Euphausia
superba) are a fundamental food source for predators from
squid to baleen whales (Constable et al., 2000), play a major
role in ocean productivity by recycling iron in surface waters
(Nicol et al., 2010), alter organic matter and trace element
concentrations in surface waters duringmolting (Nicol and Stolp,
1989), and may be an important carbon sink (Swadling, 2006;
Tarling and Johnson, 2006). However, most research examines
krill-based food-webs or environmental factors affecting their
populations rather than their influence on the non-living realm.
Advances in technology and increased demand are anticipated
to expand zooplankton fisheries in the future leading to calls
for precautionary management to avert adverse ecosystem and
habitat consequences of exploitation (Nicol et al., 2012; Brotz,
2016; Kawaguchi and Melle, 2016).
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BOX 1 | Considering complex connections amongst ecosystems in the MPA context.

Whether on land or in the sea, ecosystems are an interconnected continuum in space and time across living and non-living realms. While ecosystems on land may be

easier to perceive and define as distinct entities, it is increasingly understood that successful management and conservation must incorporate connectivity with the

surrounding environment. For example, migratory salmon are an important mediator of marine-derived nutrients to freshwater and riparian habitats and the animals

that rely on them; without considering the underlying ecology and importance of salmon in these systems, management is unlikely to achieve desired outcomes

of maintaining habitat diversity, structure and function (Darimont et al., 2010; Artelle et al., 2016). Similarly, anthropogenic nutrient inputs from land may result in

eutrophication of freshwater, estuarine, and coastal ecosystems leading to dead zones (Diaz and Rosenberg, 2008), harmful algal blooms (Heisler et al., 2008),

contaminated water and seafood (Heisler et al., 2008), and increased mortality of wildlife (Fey et al., 2015). Broader considerations than simply the apparent spatial

footprint of a habitat are therefore needed to attain management and conservation objectives.

The same broad approach applies to management in ABNJ. A seamount or hydrothermal vent ecosystem, for example, is not just a reflection of the bathymetric

feature but rather a combination of influences which includes the water column and the creatures on and within it (Clark et al., 2010; Levin et al., 2016). Nutrient and

food subsidies from seeps and vents influence surrounding fish and fisheries (Grupe et al., 2015) in a similar manner to coastal habitats such as seagrass meadows

(Heck et al., 2008), although quantification is still limited. Other seabed features likely exert similar influences (Morato et al., 2010; Letessier et al., 2016). The vertical

and horizontal footprint of such ecosystems is therefore much larger than simply where the physical habitat manifests, with the extent and scales of influence varying

from place to place and among ecosystems (e.g., Levin et al., 2016). At the sea surface, distinctive habitats based on oceanographic features and areas of high

productivity and biodiversity are identifiable using sea surface temperature, temperature at depth, chlorophyll, and nitrates among other variables (e.g., Hobday et al.,

2011). Beneath these areas often lie diverse seabed ecosystems (Woolley et al., 2016) with nutrients, dissolved organic matter, and minerals moved through the

water column, mediated by marine life as well as topographically induced currents, which influence both seabed and water column habitat characteristics (Turner,

2015; Soetaert et al., 2016).

For an international legally binding instrument for biodiversity protection beyond national jurisdiction under the UN Convention on the Law of the Sea to be effective,

it needs to ensure these broader considerations are incorporated. To achieve this, species and habitat conservation need to be integrated, recognizing that habitats

will not be protected if their component species are not.

Emerging evidence suggests that mobile marine species can
transform the environment as they move through it, transferring
nutrients within the water column (deep to shallow and vice
versa) and across oceans (Wilson et al., 2009; Pershing et al.,
2010; Roman and McCarthy, 2010; Roman et al., 2014; St John
et al., 2016). For example, depletion of whales due to commercial
whaling resulted in substantial deep-sea habitat loss through a
reduction in dead whale “falls” (Smith, 2007), declines in primary
productivity due to reduced nutrient shuttling (Nicol et al., 2010;
Roman and McCarthy, 2010), changes in food-web structure and
biogeochemical cycles (Lavery et al., 2010; Roman andMcCarthy,
2010), and reduced potential for organic carbon sequestration
(Lavery et al., 2010; Pershing et al., 2010). The consequences of
extraction therefore extended far beyond the decline of individual
whale species.

Similar ecosystem-wide changes can be expected from
exploitation of other large-bodied or highly abundant marine
animals. For instance, mesopelagic fish (200–1,000 m) undertake
daily migrations between near-surface and deep water (Robinson
et al., 2010). Estimates suggest the global biomass of mesopelagic
fish is on the order of 10 billion tones and, while there is
uncertainty in this number, they likely represent the most
abundant vertebrates on Earth (Irigoien et al., 2014) and the
largest structuring biomass in the open sea. Their mass migration
provides critical links in biogeochemical cycles across the water
column, promoting carbon uptake and storage, thereby affecting
climate regulation (Robinson et al., 2010; Giering et al., 2014;
St John et al., 2016), modifies fluxes of nutrients and oxygen
(Robinson et al., 2010; Bianchi et al., 2013a,b), and helps sustain
the metabolic requirements of mesopelagic ecosystems (Burd
et al., 2010; Bianchi et al., 2013b). They are also a key resource
for higher trophic levels such as tunas and billfish (Potier et al.,
2007; Duffy et al., 2017). There is increasing interest in exploiting
mesopelagic fish, particularly for fishmeal and oil, but technical
and economic constraints still prevent large-scale commercial

activity (St John et al., 2016). Nonetheless, licenses to fish
mesopelagics have been issued by Norway and Pakistan (The
Economist, 2017), although the US has proactively prohibited
directed commercial fisheries in its Pacific Ocean due to concerns
over potential adverse ecosystem consequences (NOAA, 2016).

Many exploited marine species such as billfish, tuna, sharks,
and rays that spend time in ABNJ regularly undertake extensive
horizontal movements and deep-dives into the meso- and even
bathypelagic (1,000–4,000 m) realms (Thorrold et al., 2014;
Abascal et al., 2015; Fuller et al., 2015; Howey et al., 2016). Their
roles in biogeochemical cycles are largely unquantified, but the
movements link surface waters and the deep ocean and are likely
to influence habitat characteristics in a similar manner to whales
and mesopelagic fish.

Mobile, open ocean predators also structure habitats through
their physical presence and behaviors. For example, hunting
pelagic fish such as tuna provide visual cues to seabirds enabling
prey detection over greater distances and enhancing bird foraging
success by forcing prey close to the surface (Maxwell andMorgan,
2013). Other marine organisms may control the abundance of
prey or act as food, either directly or through detritus, influences
that change across life stages (Young et al., 2015). Although
rarely considered this way, these roles are analogous in their
significance to the structuring influence of kelp or seagrass in
coastal habitats.

There are many examples of altered ocean food-web dynamics
following depletion of apex predators. For example, the recent
range expansion of the Humboldt squid into the eastern
North Pacific has been linked to reduced predation and
competition with large predatory fish targeted by fisheries,
and expanded low oxygen waters (Zeidberg and Robison,
2007). Predator depletion has well-known effects on coastal
habitats, e.g., sea otter loss led to kelp decline due to reduced
predation on herbivores (Estes et al., 2011), and overfishing
of apex predators has altered trophic structure leading to
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increased abundance of mid-size predators (Heithaus et al.,
2008; Ritchie and Johnson, 2009; Ferretti et al., 2010; Ortuño
Crespo and Dunn, 2017). In the open ocean, where ecosystems
are defined by their inhabitants, community level impacts
equate to ecosystem impacts. While the ecological impacts
of apex predator depletion in ABNJ are poorly understood,
by inference from known cases they can be expected to be
significant.

UNIFYING HABITAT AND SPECIES
PROTECTION IN AREAS BEYOND
NATIONAL JURISDICTION

A habitat is malleable—preserving it in a particular state requires
protection of the things that make it distinctive and recognizable.
A woodland will not remain a woodland without protection
for trees. It is easy to understand this because we can see the
difference cutting down trees makes. However, protecting trees
does not produce the same forest as protecting trees and all the
species that live in and around them (Brodie, 2016), although
the assumption is often made that it does. Similarly, protecting
a seafloor habitat without protecting the species that regulate it,
such as parrotfish in coral reefs (Mumby, 2009) or spiny lobster
in kelp forests (Halpern et al., 2006), will alter the functioning
and resilience of that habitat if those species are depleted. In
the open ocean it is much harder to understand that removing
big, predatory or highly abundant fish or marine mammals
transforms an open sea habitat because it looks much the same
as before. But the nature of open water habitats is also dictated by
what occupies the space.

Nature conservation often operates on two levels, habitat
and species protection, with protection added in layers through
different laws and in varying mixes. Such an approach can create
perverse outcomes, however, when the inanimate is emphasized
at the expense of the animate. For example, it is unclear to
many, including nature conservation bodies, what protecting
shallow, sub-tidal sandbanks under the EU Habitats Directive
should entail. Does it mean ensuring the sand remains where
it is, or is there some obligation to protect the animals and
plants that live on or around sandbanks? Most people would
assume the latter, yet in many cases, there is no protection
given to Special Areas of Conservation from highly disturbing
and destructive practices like bottom trawling and dredging
(Plumeridge and Roberts, 2017). It is the sand, not wildlife,
that prevails under this stewardship. The physical characteristics
of an area act only as a placeholder for the life that could
or does occupy it. Areas little affected by human activity will
possess the most intact communities (D’agata et al., 2016),
others will need to rebuild their wildlife under protection.
The habitat that results from protection therefore depends
on the level of protection given and even the most diligent
network design schemes will fail if the sites chosen get little
protection. Strongly and fully protected MPAs (Lubchenco and
Grorud-Colvert, 2015) therefore promote the highest levels
of complexity and the most intact ecosystems (Edgar et al.,
2014).

CONCLUSIONS AND SUGGESTIONS

Given the horizontal and vertical spread of human activities
through ABNJ (Merrie et al., 2014), the structure and function
of open ocean habitats has certainly altered over time (Ortuño
Crespo and Dunn, 2017). While some land-based habitats retain
high conservation value as a function of human use, e.g., highly
diverse flower meadows from seasonal cutting and grazing
regimes, or understory flowers, insects and birds from coppiced
woodlands, we are not aware of any comparable examples in the
sea. Evidence that mobile species benefit from spatial protection
in national waters is increasing (Jensen et al., 2010; Edgar
et al., 2014; Dunphy-Daly, 2015). Likewise, protection could offer
benefits to such species in ABNJ but the extensive movements of
many of the animals inhabiting these regions reinforce the need
for strong complementary protection measures to be applied
outside MPA boundaries. Such measures could include dynamic
management, effective fisheries regulation and, increasingly,
precautionary regulation of emerging activities (Dunn et al.,
2011, 2016; Maxwell et al., 2015; Jaeckel et al., 2017).

On purely biological grounds, the case is clear for fish and
other exploited species to be an integral part of any agreement to
protect biodiversity in ABNJ. Current negotiations consider what
marine life and activities should be covered by any new protective
legislation, and whether MPAs should be established through a
new overarching mechanism or through existing regional and
sectoral frameworks. The argument frequently made is that
fisheries management bodies have a legal remit and competence
to manage fisheries and are therefore best placed to look after
fish (Vincent et al., 2014). But these bodies have so far failed
to safeguard fisheries or fish (Gilman et al., 2014), are often
limited to certain species, do not comprehensively cover the
oceans, and introduce measures only applicable to members
(Vincent et al., 2014). Furthermore, other activities in ABNJ
affect marine life (e.g., Ramirez-Llodra et al., 2011) over which
fisheries bodies have no remit. Objectives of MPAs go beyond
tackling fishery problems, addressing threats from other activities
such as maritime traffic or oil, mineral and genetic resource
exploration and exploitation, as well as protecting biodiversity
and ecosystem structure and function, and supporting cultural
values and ecosystem services.

Given the indivisibility between species and habitats, and the
potential for cumulative impacts from human activities currently
managed separately, protection of biodiversity in ABNJ will
require comprehensive and strategic management across sectors.
Moving from a regional to global approach would also: promote
universal participation; allow comprehensive environmental
impact assessments to established standards that address
cumulative impacts from different activities; provide a mandate
to implement ecologically representative MPA networks; and
help harmonize the implementation of UNCLOS with the
CBD, Sustainable Development Goals, the Paris Agreement, and
other instruments. Furthermore, the interrelatedness of the four
issues framing the ABNJ ILBI negotiations cannot be addressed
in isolation from each other. For example, environmental
impact assessments will promote informed decisions regarding
acceptable levels of harm from activities on marine life which
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represent genetic and provisioning resources, prior to activities
being undertaken. While negotiations are constrained by the
requirement that any new agreement “should not undermine
existing relevant legal instruments and frameworks and relevant
global, regional and sectoral bodies” (UNGA, 2015), the
opportunity is there to unify existing regulatory and governance
mechanisms and fill gaps where they exist.

Protection of animal life is crucial in the open ocean,
because they structure the habitats there. Therefore, targets
for habitat protection beyond national jurisdiction can only
be fully met by protecting animal and plant communities in
their entirety. Globally, efforts to align habitats and species
conservation have increased in recent years. For example,
66 Ecologically and Biologically Significant Areas have been
defined under the CBD that cover places in ABNJ (Bax et al.,
2016) and the IUCN is developing a Red List for Ecosystems
which includes marine habitats (Keith et al., 2015). Other
efforts are pioneering approaches to identify important areas
based on species distributions (e.g., Key Biodiversity Areas,
Edgar et al., 2008; Important Marine Mammal Areas, Corrigan
et al., 2014). These efforts are designed to inform global policy
and future decisions regarding protection. Achieving habitat
representation under global conservation targets will involve
selecting sites for protection identified through these and similar
efforts. Habitat conservation in whichever places are chosen
for protection, however, will only be successful if MPAs and

other measures safeguard more than just water, offering real

refuges and protection for the creatures that define open sea
habitats.

The ongoing UN negotiations for the conservation and
sustainable use of biodiversity beyond national jurisdiction
present a unique opportunity to move from a sectoral and
fragmented ABNJ management system to one that is holistic and
based on the ecosystem approach. To be effective the ILBI should
consider habitats a function of their inhabitants and represent all
marine life within its scope. To do otherwise will fail to improve
governance andmanagement of ABNJ and undermine our ability
to recover depleted species and repair degraded habitats.
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