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Ecosystem based fisheries management will benefit from assessment of how various

pressures affect the fish community, including delayed responses. The objective of this

study was to identify which pressures are most directly related to changes in the fish

community of the Grand Bank, Northwest Atlantic. These changes are characterized

by a collapse and partial recovery of fish biomass and shifting trophic structure over

the past three decades. All possible subsets of nine fishing and environmental pressure

indicators were evaluated as predictors of the fish community structure (represented by

the biomasses of six fish functional-feeding groups), for periods Before (1985–1995) and

After (1996–2013) the collapse, and the Full time series. We modeled these relationships

using redundancy analysis, an extension of multiple linear regression that simultaneously

evaluates the effect of one or more predictors on several response variables. The analysis

was repeated with different lengths (0–5 years) and types (moving average vs. lags) of

time delays imposed on the predictors. Both fishing and environmental indicators were

included in the best models for all types and length of time delays, reinforcing that there

is no single type of pressure impacting the fish community in this region. Results show

notable differences in the most influential pressures Before and After the collapse, which

reflects the changes in harvester behavior in response to the groundfish moratoria in

the mid-1990s. The best models for Before the collapse had strikingly high explanatory

power when compared to the other periods, which we speculate is because of changes

in the relationships among and within the pressures and responses. Moving average

predictor sets generally had higher explanatory power than lagged sets, implying that

trends in pressures are important for predicting changes in the fish community. Assigning

a carefully chosen delay to each predictor further improved the explanatory power,

which is indicative of the complexity of interactions between pressures and responses.

Here we add to the current understanding of this ecosystem, while demonstrating a

method for selecting pressures that could be useful to scientists and managers in other

ecosystems.

Keywords: redundancy analysis, ecosystem indicators, moving average, lag, time delay, Northwest Atlantic,

regression analysis
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INTRODUCTION

Marine fisheries collapses worldwide have important socio-
economic and ecological consequences, highlighting the need for
ecosystem based fisheries management (EBFM; e.g., Misund and
Skjoldal, 2005; DFO, 2007). EBFM supplements conventional
single species approaches by explicitly considering interactions
among species (target and non-target) in the context of changing
human activities and environmental conditions. Implementation
of EBFM requires information about the whole ecosystem, which
can be provided in part by data-based indicators, i.e., measured
or derived proxies of biological status and ecological pressures
(Larkin, 1996; Jennings, 2005). Biological indicators include
measures of the fish community structure (e.g., biomass, mean
length, and trophic level of the community). Both fishing and
the environment are external pressures on the fish community,
and can be quantified by a range of indicators (e.g., Link et al.,
2010b; Shannon et al., 2010). Fishing indicators can refer to
metrics of landings (e.g., total or species aggregates), effort (e.g.,
hours fished), and fishing mortality (e.g., landings/community
biomass), while environmental indicators can include large-
scale metrics of atmospheric forcing, such as the North Atlantic
Oscillation (NAO), and region-specific features such as annual
mean temperature and salinity. Managers can regulate (at least
partially) fishing pressures, but not environmental pressures (on
relevant timescales; Elliott, 2011), and yet their decisions must
account for future changes in the environment. It is generally
accepted that a suite of indicators from several categories (e.g.,
biological, fishing, and environmental) is required for successful
EBFM (e.g., Jennings, 2005; Link et al., 2010b). Considerable
effort has focussed on determining which of the hundreds of
proposed biological indicators are the most informative (Rice,
2003; Jennings, 2005; Rice and Rochet, 2005; Shin et al., 2010),
but there remains a pressing need to determine which sets of
pressures are best predictors of change (e.g., Ojaveer and Eero,
2011; Large et al., 2015).

Improving scientific understanding of multivariate pressure-

response relationships can contribute to implementation of
EBFM. Identifying which pressures are most directly related to

changes in the fish community can help focus investigations of

thresholds, guide modeling, plan management scenarios, and
direct monitoring efforts. Determining which pressures are the
most informative is challenging because of the range ways to
quantify them, and because the mechanistic relationships are
currently not well-defined. For example, there has been fierce
debate about whether fishing or poor environmental conditions
caused the infamous collapse of cod and other species on the
Grand Banks in the 1990s (e.g., Myers et al., 1996; Bundy, 2001;
Halliday and Pinhorn, 2009). Furthermore, changes in pressures
can have both immediate and delayed effects on fish communities
(e.g., Greenstreet et al., 2011; Gröger and Fogarty, 2011; Dempsey
et al., 2017), adding an additional layer of complexity to the
analysis of pressures and biological responses. For example,
immediate effects of fishing include the removal of biomass,
while delayed effects include changes in the size structure of
the community (Daan et al., 2005; Devine et al., 2007). While
previous studies have acknowledged delays (e.g., Chen andWare,

1999; Large et al., 2015), more investigation into appropriate
types and lengths of delays is warranted (Large et al., 2015).

Our objective here was to identify sets of pressures most
directly related to three decades of changes in the structure
of the fish community of the Grand Bank, Northwest Atlantic
(Figure 1). This will add to the current understanding of this
ecosystem, while demonstrating a method that could be useful
to scientists and managers for other areas. This region provides
a valuable case study because it experienced complex ecological
changes resulting in two distinct periods, which are spanned
by our suite of indicators (Dempsey et al., 2017). We identify
pressure indicators from within this suite that can best predict
fish community state over the full time series as well as for the
two periods, and use our analysis to examine the past and present
dynamics of this ecosystem. We also investigate models with
different delay lengths (0–5 years) and types (moving average and
lags) to determine which delays have the best explanatory power.

METHODS

Study Area
Here we provide historical context for our study area
to highlight some of the ecological changes that have
occurred in the region over our period of interest. The
Grand Bank, within the Northwest Atlantic Fisheries
Organization (NAFO) statistical division 3LNO, and the
adjacent southern Labrador and northeast Newfoundland shelf
(NAFO Division 2J3K) are recognized as major subunits within
the Newfoundland-Labrador shelf in the Northwest Atlantic

FIGURE 1 | Map of the study area, showing the Grand Bank (NAFO division

3LNO), Station 27, and the Canadian exclusive economic zone (dashed lines).
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(Figure 1; NAFO, 2014). The shelf is partly within the Canadian
exclusive economic zone (EEZ) established in 1977, but extends
into international waters (Figure 1).

For centuries, this region was one of the most productive
fishing grounds in the world, with global fisheries for many
species including Atlantic cod, flounder, and capelin (Rose,
2007). Fisheries management in the region is the responsibility
of Fisheries and Oceans Canada (DFO) within the EEZ, and
NAFO in international waters. Throughout the 1980s the primary
management strategy for both DFO and NAFO was to set
independent quotas for each fish stock; however, these measures
were largely ineffective because the limits were ignored by
some vessels, and there was error in calculating sustainable
exploitation rates (e.g., Rose, 2007). In the 1990s prolonged
heavy fishing pressure combined with an environmental regime
shift precipitated complex ecological changes, characterized by
a collapse of fish biomass. This is commonly referred to as “the
collapse of the cod” even though many other species were also
impacted (e.g., Atkinson, 1994; NAFO, 2010b). In response to
the low biomass of many stocks, groundfish moratoria were
enforced for 2J3KL in 1994 and the southern Grand Bank in
1994. Harvesters adapted by targeting different species (e.g.,
shrimp and crab), retiring from fishing, or leaving the province
to find other employment (e.g., Hamilton and Butler, 2001). Over
20 years after imposition of these moratoria, many remain in
place (see Annex I.A in NAFO, 2017). The total fish biomass
has recovered slowly, although different species are recovering
at different rates such that the structure of the ecosystem has
shifted from piscivore dominated to include more species at
lower trophic levels (Figure 2; Pedersen et al., 2017).

Both DFO and NAFO are working toward ecosystem
approaches to management (Oceans Act, 1996; DFO, 2009;
NAFO, 2010a,b). Current management strategies include the
At-Sea Observer Program (DFO, 2014), National Vessel

FIGURE 2 | Fish functional group biomass in NAFO division 3LNO, illustrating

the collapse of total biomass and changing structure of the community. All

functional groups except shellfish are included as response variables. The

Before period is from 1985 to 1995, the After period is from 1996 to 2013, and

the Full period includes 1985–2013 (Before + After).

Monitoring System (DFO, 2016), restrictions on total allowable
catches (e.g., for redfish and yellowtail flounder; NAFO, 2017),
gear restrictions, and restricted entry programs.

Indicators
The indicator time series used here were synthesized and
presented in Dempsey et al. (2017). Fish community indicators
are annual values for 1985–2013, and pressures used to predict
them additionally extend to 1980–1984 for use with our time
delay analysis. Below we present a general overview of these
indicators to facilitate the reader’s appreciation of our current
multivariate analysis, and refer interested readers to Dempsey
et al. (2017) for more details on indicator trends and data
sources.

Indicators of Fish Community Status
The structure of the fish community was represented by the
mean annual biomass indices of six fish functional feeding groups
(aggregated species), which have been analyzed by Dempsey
et al. (2017) and others (e.g., NAFO, 2010b, 2014; Table 1). Such
functional groups are meaningful units to fisheries scientists and
managers (NAFO, 2014), are compatible with modern ecosystem
models (e.g., Link et al., 2010a; Heymans et al., 2016), and
benefit the present analysis by reducing the number of response
variables when compared to the use of individual species
(Fogarty, 2014). The annual biomass index of each functional
group was calculated from DFO spring scientific bottom trawl
surveys for NAFO area 3LNO by summing the average catch
per tow of the species included in the group. In 1996, the
survey gear changed from a commercial Engels to a finer-meshed
Campelen trawl, such that the biomass indices cannot be directly
compared before and after the gear change due to differing
capture efficiencies (McCallum and Walsh, 1997; Belgrano and
Fowler, 2011). Scaling factors have been developed to coarsely
compare the Engels and Campelen biomasses for most species;
however, it was not possible to scale the biomasses of invertebrate
species (i.e., shellfish) because they were not sampled consistently
by the Engels trawl (Koen-Alonso, unpublished data).

The mid-1990s also correspond to the minimum total fish
biomass in the region, marking the end of the rapid collapse
of biomass and the beginning of the recovery. These have been
characterized as two ecologically different periods (e.g., Buren
et al., 2014; Dempsey et al., 2017). Here we analyzed three time
periods: the Full period (1985–2013; using the scaled Engels data)
as well as Before (1985–1995) and After (1996–2013) the collapse.
“Before” and “After” also correspond to the survey gear change
to eliminate the reliance on the coarse scaling factors. Note
that because there is no appropriate biomass index for shellfish
prior to 1996 (NAFO, 2010b), this functional group had to be
excluded from the Full and Before analyses. We do not expect
this exclusion to affect results because even though the build-up
of shrimp (the major species by biomass in this group) is believed
to have started in the mid 1980s, it only peaked on the Grand
Bank in the 2000s (Lilly et al., 2000; NAFO, 2014). As discussed
later, some After analyses were completed with and without the
shellfish index to determine the effect of including this functional
group.
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TABLE 1 | Functional groups used to represent the fish community structure of

the Grand Bank, Newfoundland.

Functional

groupa
Number of

species

Size range

(cm)

Dominant species (by

biomass)

Large

Benthivores

22 max sizeb

> 80

American plaice

(Hippoglossoides platessoides)

Medium

Benthivores

33 45 < max

size <80

Yellowtail flounder

(Limanda ferruginea)

Small

Benthivores

44 max size

< 45

Common grenadierc

(Nezumia bairdi)

Mailed sculpinsd

(Triglops sp.)

Piscivores 25 All Atlantic cod

(Gadus morhua)

Plank-

piscivores

9 All Redfish

(Sebastes mentella)

Planktivores 14 All Capelin

(Mallotus villosus)

Shellfishe 3 All Shrimp

(Panda borealis)

aSee Supplementary Table S.2 fromDempsey et al. (2017) for the species included in each

group. Table adapted from NAFO (2010b). bMax size is the maximum length recorded for

a given species. cBefore the collapse. dAfter the collapse. eBiomass index begins in 1996;

not included in most analyses in this paper.

Indicators of Fishing and Environmental Pressures
The nine pressure indicators chosen as predictors for this analysis
were based on the results of Dempsey et al. (2017; Figure 3). Note
that we do not distinguish “pressures” from “drivers,” as some
authors do (e.g., in the DPSIR framework, see Gari et al., 2015
and references therein), because they both ultimately influence
the fish community and as such it would be a matter of semantics
for this analysis.

Four fishing indicators were included (Figure 3): total,
pelagic, and shellfish landings, as well as the marine trophic
index (MTI; denoted “MTILand” in Dempsey et al., 2017). Total
landings are the sum of groundfish, pelagic, shellfish, and “other”
species landings, and provide a metric of fishing pressure on the
entire community. Pelagic landings are dominated by capelin,
which is a key forage species in the system, and shellfish landings
are dominated by shrimp and queen crab (also known as snow
crab). MTI is the mean trophic level of the landings weighted by
the biomass of species landed, including only species with trophic
level ≥ 3.25 (e.g., Atlantic cod, haddock). MTI reflects evolving
fishing practices as fishers target different species to adapt to
changes in fishing technologies, the ecosystem, and end markets
(Caddy and Garibaldi, 2000).

In general, the fishing indicators were highly correlated
Before the collapse and for the Full period (Pearson correlation
coefficient > 0.60, not shown), but not After the collapse
(not shown). Total and pelagic landings both increased in the
early 1980s, and then decreased from the late 1980s until the
mid-1990s, and to this day remain lower than in the late 1970s
and 1980s. MTI also decreased throughout the Before period, but
has no trend in the After. Shellfish landings increased over the
Full period due to the proliferation of shrimp and crab stocks
in the 1980s and a shift in target species after the groundfish

moratoria (Schrank, 2005; Dempsey et al., 2017), but have been
declining since the mid-2000s (Figure 3; Department of Fisheries
Aquaculture, 2014; Dempsey et al., 2017).

Five environmental indicators were included as predictors
(Figure 3): the North Atlantic Oscillation (NAO), sea surface
salinity (SSS), salinity at 150m (S150), sea surface temperature
(SST), and the timing of the sea ice melt (TimeIce). The NAO
represents basin scale atmospheric circulation patterns that
influence winds, salinity, temperature, and sea ice (Hurrell, 1995;
Petrie, 2007). The remaining indicators characterize physical
environmental factors local to the Grand Bank, which are
thought to have played a critical role in the collapse of fish
biomass in the 1990s (e.g., Halliday and Pinhorn, 2009). TimeIce
was included as a proxy of the timing of the spring phytoplankton
bloom (Wu et al., 2007) because there are no other suitable
measures of phytoplankton biomass or productivity over the
required historical time frame.

In general, the environmental pressures were not highly
correlated with each other or the fishing pressures for any period
(not shown). SST was the only environmental pressure with clear
trends: it decreased until 1991, and has generally increased since.
The remaining indicators were characterized by inter-annual
variability. Notably, the NAO was well above its average in the
early 1990s, leading to cooler and fresher water at this time, which
has been characterized as a regime shift (Buren et al., 2014). The
salinity indicators had higher variability Before the collapse, with
extreme minimum values in the mid-1990s. In contrast, TimeIce
had higher variability After the collapse (Figure 3).

Method of Data Analysis
Redundancy Analysis
Redundancy analysis (RDA) was used to assess how well different
sets of the pressures described above simultaneously modeled the
biomasses of all six functional groups over a period of n years.
RDA is a multivariate extension of linear regression that uses
p predictors in matrix X[n x p] to model r responses in matrix
Y[n x r]. The explanatory power is characterized using goodness
of fit metrics related to variances in the responses, the model,
and/or the residuals. Commonly used metrics are the coefficient
of determination (R2) and the adjusted-R2. The R2 measures the
fraction of the total variance in the response(s) that is explained
by the variance in predictor matrix X. The adjusted-R2 is a
modification to R2, which enables comparison among models
using different numbers of predictors (see below; Legendre and
Legendre, 2012).

The first step in RDA is a multiple linear regression of each
response variable (r multiple regressions), which are typically
done simultaneously for computational efficiency. The modeled

values are stored in the matrix Ŷ[n x r], while matrix β̂[p x r] holds
the coefficients for linear combinations of the columns of X, and
result in the smallest sum of squares of the residuals for each
response:

Ŷ = Xβ̂ = X
(

XTX
)−1

XTY (1)

where the superscript symbols “T” and “−1” respectively
denote the matrix transpose and inverse. It is assumed that
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FIGURE 3 | Pressure indicators used as predictors in this analysis. Fishing indicators: (A–D); Environmental indicators: (E–I). The thick dashed line indicates the

beginning of the After period.

the columns of X are linearly related to the columns of

Y, and so appropriate transformations must be applied if

necessary. Commonly, predictors and responses are normalized

by centering and scaling them by their respective mean and

standard deviation to minimize numerical error in solving for

Ŷ (Legendre and Legendre, 2012). Due to the skewed nature of
the fish biomass data, in this analysis responses were the log-
transformed, normalized biomass indicators, and the predictors
were normalized pressure indicators. A goodness of fit value
for each multiple regression can be calculated. R2 for a single

response is given by

R2 =
SSM

SST
=

∑n
i= 1

(

ŷi − y
)2

∑n
i= 1

(

yi − y
)2

(2)

where SSM is the sum of squares of the model, and SST is the
sum of squares of the response. The adjusted-R2 “penalizes”
models with more predictors (for models with the same number
of predictors, the relative change in adjusted-R2 is the same for
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that of the R2; Equation 3).

adjusted− R2
= 1−

(

1− R2
) n− 1

n− p− 1
(3)

The second step of RDA as it is used here is to calculate a
single goodness of fit metric that simultaneously evaluates the r
separate regressions. R2

Total
(also called the “bivariate redundancy

statistic”; Legendre and Legendre, 2012) is given by:

R2
Total =

SSM, Total

SST, Total
=

∑r
j= 1

∑n
i= 1

(

ŷi − y
)2

∑r
j= 1

∑n
i= 1

(

yi − y
)2

(4)

where SSM, Total is the total sum of squares of the model, and
SST, Total is the total sum of squares of Y. This is also equal
to the average of the R2’s for each multiple regression when
the responses are normalized (Legendre et al., 2011). The R2

Total

can be modified as in Equation 3 to give adjusted-R2
Total

. The

adjusted-R2 metrics were used to evaluate models in this analysis
because we examined subsets of different numbers of indicators.
We designated changes in adjusted-R2

>0.05 as “notable.”

All Possible Models
An RDA model was fit for each possible combination of our
nine predictors so that a total of 511 models were evaluated for
each period (Full, Before, and After). Models were ranked by
their adjusted-R2

Total
, with a rank of 1 indicating the predictor

set with the highest explanatory power. We chose to evaluate
all possible models vs. stepwise methods to avoid sensitivity of
our results to the selection algorithm (e.g., forward/backward; see
Whittingham et al., 2006 and references therein). Additionally,
identifying and focussing on a single model ignores the potential
that other subsets of predictors may have similar explanatory
power (Whittingham et al., 2006). Here, we are not interested
in one “best” model; rather, we evaluated a range of models that
include different types and numbers of predictors to see if there
are multiple sets with similarly high explanatory power.

We repeated the analysis using different lengths and types
of time delays in the predictors. We considered two types of
delays: lags and moving averages, for delay length from k = 1 to
k= 5 years (Figure 4). For the lag analysis predictors were shifted
forward k years to simulate a delayed response. For an analysis of
the Before period, the response time series was from 1985 – 1995,
and the predictor time series was from 1984 to 1994 for k = 1,
1983–1993 for k = 2, etc. For the moving average analysis, the
predictor value at year i was the average of the current year and
the previous k years (resulting in a k+1 year moving average).
We were therefore able to compare the explanatory power of past
predictor values (lags) and low-pass filter (moving average). All
predictors were normalized after the delay was applied, which
resulted in minor differences in the values of the lag predictors,
and less damping of the moving average predictors as seen in
Figure 4. These methods of incorporating time delays did not
reduce the length of the time series because the predictors have
longer historical data records than the responses. For clarity,
“zero delay” (ZD) refers to the original predictors, while Lagk and

FIGURE 4 | Illustration of the different types of time delays for surface

temperature (SST) at k = 3: (A) moving average; (B) forward lag shift.

Avgk refer to lagged and moving average predictors, respectively,
that incorporate k years of past data.

We first used a simple approach of incorporating delays by
evaluating all combinations of predictors with the same type
and length of delay (e.g., all predictors either Avgk or Lagk;
Chen and Ware, 1999). Because pressures may manifest in the
fish community biomass on different timescales (i.e., fishing acts
immediately, environment generally takes longer), we repeated
the analysis using strategically chosen delay types and lengths for
each predictor.

RESULTS

Zero Delay Models
The results for the three time periods using the ZD predictors are
illustrated in Figure 5. Tables S1–S3 show which pressures were
included in the top 50 models (i.e., top 10%) for each period.
Inclusion of shellfish as a response in the After models had
minimal effects, increasing the explanatory power only slightly,
and highlighting the same number and most frequent indicators.

In general, the Before models had notably higher adjusted-
R2
Total

than the After models, and the Full models had
intermediate values (Figure 5). The best Before models had
strikingly high explanatory power when compared to the other
periods (adjusted-R2

Total
= 0.94 vs. ∼0.60); however, lower-

ranked (smaller adjusted-R2
Total

) Before and Full models had

similar explanatory power. The high adjusted-R2
Total

of the best
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FIGURE 5 | (A) Adjusted-R2
Totalfor zero-delay indicators of the three time periods; (B) The range of adjusted-R2

Total for a given number of predictors for each time

period; (C) Proportion of times each predictor appeared in the top 50 models of each time period. (“After_shell” indicates analysis that included the community

shellfish biomass index as a response).

Before models highlights the common signal among functional
groups and the external pressures during this period. Most of
the functional group biomasses decreased (Figure 2), as did total
landings and MTI, while shellfish landings increased (Figure 3).
The environmental pressures were more variable, but SST had a
strong decreasing trend from the late 1980s until the early 1990s
(Figure 3; Dempsey et al., 2017).

The adjusted-R2
Total

of the top 50 models and the

corresponding adjusted-R2 for each functional group further
highlighted differences between the two periods (Figure 6). The
high explanatory power for large benthivores and piscivores
(average adjusted-R2 of 0.95 and 0.91, respectively) contributed
to the remarkably high overall explanatory power for the Before
period. The adjusted-R2 for medium and small benthivores
was also notably higher than the adjusted-R2

Total
for this

period, while planktivores and plank-piscivores had the lowest
average explanatory power. In contrast, plank-piscivores and
medium benthivores had the highest explanatory power
for the After period. Piscivores and small benthivores,
which were among the best predicted in the Before period,
had the lowest average adjusted-R2 for the top 50 After
models.

There is a clear plateau in the overall explanatory power of the
Full models, with the best set of three predictors (total landings,
MTI and SST; see Table S1) having only a marginally different
adjusted-R2

Total
than sets with more predictors (Figure 5B). Six

predictors were used in the best model for the Full period,
(adjusted-R2

Total
= 0.60), although all top 50 sets had adjusted-

R2
Total

within 0.05 (sets of 3–9 predictors). In contrast, the Before
models did not plateau, with the best set requiring all 9 predictors
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FIGURE 6 | The adjusted-R2
Total of the top 50 models and corresponding adjusted-R2 of each functional group for (A) Before models, ZD predictors; (B) After

models, ZD predictors; (C) Before models, Avg1 predictors; (D) After models, Avg1 predictors. The legend is the same for each panel.

(adjusted-R2
Total

= 0.94). All of the top 50 Before models have
higher explanatory power than the best Full and After models.
The best After model used 8 predictors (adjusted-R2

Total
= 0.59

including shellfish as a response, and 0.56 excluding shellfish),
although there were sets of 6, 7, and 9 predictors with similar
explanatory power. The lower adjusted-R2

Total
of the After (and

Full) models suggests that there is at least one pressure not
included here that could improve the explanatory power for
these periods. In general, using less predictors in the Before and
After models sacrificed more explanatory power than for the
Full models. The range of adjusted-R2

Total
for a given number of

predictors is generally smaller for the Full time series compared to
the Before and After models (Figure 5B). For example, the range
for 6-predictor Before models is over three times larger than that
of 6-predictor Full time series models. This suggests that for the
Full models, the number of predictors included ismore important
than which predictors are included. For the other two periods,

a specific set of p predictors has high explanatory power, while
other sets of p predictors do not.

Several predictors have much different inclusion frequencies
Before and After the collapse, suggesting that different pressures
were most influential in these two periods (Figure 5C). These
differences are obscured by considering only the Full time
series, underscoring the importance of selecting an ecologically
coherent time frame for indicator analysis (Dempsey et al.,
2017). As expected, the frequency of landings indicators
reflects the change in target species after the collapse and
subsequent groundfish moratoria. Total landings (which are
highly correlated with groundfish landings; Dempsey et al.,
2017), are more frequent in the Before models, while pelagic
and shellfish landings are more frequent in the After models.
The MTI was included in almost all of the Full and After
models, but less than half of the Before models. This may be
explained by the changes in fishing pressures after the collapse
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and moratoria. Before the collapse, MTI was highly correlated
with the other fishing predictors because most of the landings
were high trophic level species. After the collapse, MTI was not
highly correlated with the other fishing predictors, indicating
that it provides different information, which may be why it
is included in so many of the best After models. The most
notable differences in the environmental predictors were NAO
and SST, which were included in all or most of the Before models,
respectively, but in only about 60% of the After models. This
suggests that environmental conditions were more influential
Before the collapse, and/or that relationships between the fish
functional groups and these specific environmental pressures
were more linear before the collapse.

Delay Models
The above analysis showed that there are ecologic differences
between the Before and After periods, and that the relationships
for Full period do not represent either. As such, for the delay
analysis we focussed on the two periods separately. In general,
the moving average predictors improved the explanatory power
more than the lag predictors (Figure 7). The delay with the
highest explanatory power for both periods was Avg1, a 2-year
moving average including the current year, i and year i−1. The
Before Avg1 models were marginally better than the top 10
ZD models, and were notably better for most of the remaining
models. The other Before moving average models had lower
or marginally higher explanatory power than ZD models (until
worse ranks). The After Avg1 models were marginally different
than the top 25 ZD models, and notably better for the rest of the
models.

We investigated how delays affect the explanatory power
of individual functional groups using the Avg1 predictors (i.e.,
the best delay type and length). In general, the adjusted-R2

for each functional group increased for the Avg1 predictors
compared to the ZD predictors (Figure 6). The most notable
improvements were for plank-piscivores and planktivores in the
Before period, and large benthivores for the After (adjusted-R2

increased by ∼0.30 for each). The explanatory power for several
functional groups decreased with the Avg1 predictors (small and
medium benthivores Before; small benthivores, plank-piscivores,
and planktivores After), but these changes were minor when
compared to the improvements of the other groups. Another
striking feature of Figure 6 is the reduced variance in the
adjusted-R2 for each functional group (except large benthivores)
for the Avg1 predictors. This is most noticeable for the adjusted-
R2 of the planktivores in the Before period, which had a
standard deviation of 0.29 with ZD predictors vs. 0.08 with Avg1
predictors.

The results of the lag analysis were less consistent between
the two periods. All the models with lag predictors for the
Before period had notably lower explanatory power than with
ZD predictors. This could suggest that the major pressures
on the fish community during this time were related to
fisheries removals, which have immediate primary effects on
the ecosystem. In contrast, the After Lag4 models had similar
explanatory power as the ZD models, while the Lag5 predictors
were similar or marginally better for the top 50 models, and

notably better for some models at worse ranks. This suggests that
the fish community could also be experiencing indirect effects
of fishing (e.g., Daan et al., 2005; Koen-Alonso et al., 2010), or
environmental effects that require time to manifest in the system.

Formost delays, subsets of the predictors had similar or higher
explanatory power than the full suite (Figure 8; Supplementary
Figures). In general, the range of adjusted-R2

Total
for a given

number of predictors was larger for the Before models than the
After, suggesting that which pressures included in the subset was
more important Before, and the number of pressures included
was more important After. For all delays (except Before Avg1 and
Avg3), the adjusted-R2

Total
plateaued or decreased after a certain

number of predictors were used.
There are some notable differences in the patterns of most

frequent predictors between the two delay types (Figure 9). In
the Before models, total landings were most frequent at ZD,
which was expected because the ecosystem was heavily exploited
during this period, especially for groundfish (represented by total
landings, Dempsey et al., 2017). Pelagic and shellfish landings
were also expected to be most frequent at ZD, but were more
frequent at higher delays, which suggests indirect effects of
fishing. Shellfish landings were included in about 80% of the
ZD and Avg2 models, and almost all the Lag1, Lag2, and
Lag3 models. This was unexpected because there were limited
commercial shellfish landings at this time, and because shellfish
was not included as a functional group response. One possible
interpretation is that because shellfish landings were increasing
approximately linearly with time (Figure 3), they were highly
negatively correlated with the declines in the other functional
groups, and therefore contributed to explaining variance in the
responses. Both MTI and NAO were included in almost all of
the top Lag3 models, but only about 60% of the Avg3 models.
In contrast, SST was included in all of the Avg2 and Avg3 models,
but less than half of the lag models at these same k. S150 and
TimeIce were also included in notably more Avg models than Lag
models.

In the After models, total landings were more frequent at
delays (Avg3 and Lag1; Figure 9), which could indicate delayed
effects of fishing on the fish community structure. Pelagic
landings were most frequent at ZD (closely followed by Lag2),
and shellfish landings were included in almost all the ZD and
Lag1 models, which is curious because the community shellfish
index was not included as a response for that analysis. MTI
was included in most of the ZD, Avg1, and Avg2 models.
NAO was included in all the Lag2 models, but only about
80% of the Avg models, while SST was most frequent at
delays of 2 and 3 years for both delay types. SSS was not
particularly frequent in any of the lag models, but was included
in about 70% of of Avg1. S150 and TimeIce were most frequent
at the same k for both delay types (k = 1 and k = 3,
respectively).

We repeated the analysis using specific delays for each
predictor (“Mix” models) based on the idea that fishing pressures
have shorter time delays, while environmental pressures take
longer to manifest in the fish community. None of the
combinations of delay types and lengths we tested had notably
higher explanatory power than the best ZD and Avg1 Before
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FIGURE 7 | Adjusted-R2
Total in decreasing rank for models using predictors with time delays: (A) Before models, moving average predictors; (B) After models, moving

average predictors; (C) Before models, lag predictors; (D) After models, lag predictors.

models (not shown). In contrast, several combinations of mixed
delay pressures were notably better than the best After models
(e.g., Mix1 and Mix2, Figure 10). Mix1 and Mix2 both had
shorter time delays (ZD, k = 1) for most of the fishing pressures
and longer delays (k = 2+) for most of the environmental
pressures. The top 50 Mix1 models included sets of 5–9
predictors, with total landings, MTI, and SST being the most
frequent. The best set used 7 predictors, but there were other
sets of 7–9 with only marginally different explanatory power.
The top 50 Mix2 models included sets of 4–9 predictors, with
pelagic landings, NAO, SST, and TimeIce the most frequent. The
best Mix2 set used 6 predictors, and there were other sets of
5–8 with only marginally different explanatory power. The delays
for Mix3 were chosen to provide a counter-example where all
pressures have longer delays except NAO, which was assigned
ZD. As expected, Mix3 was notably worse than the After ZD
models, and NAO was not present in most of these “best”
models.

DISCUSSION

Our analysis adds to the literature demonstrating that there is no
single type of pressure driving fish community dynamics on the
Newfoundland shelf (e.g., Mann and Drinkwater, 1994; Devine
et al., 2007; Koen-Alonso et al., 2010). In this study, both fishing
and environmental indicators were included in nearly all the top
models for all types and lengths of time delays (exceptions are
five After models with adjusted-R2

Total
≤ 0.40), which highlights

that managers in this area should factor both types of pressures
into their decisions. The dominant pressures Before the collapse
of fish biomass (i.e., those that caused the collapse) in the
Northwest Atlantic have been the subject of debate, especially
for commercially important species such as Atlantic cod. Some
authors conclude that fishing mortality was the sole major cause
of the collapse (e.g., Myers et al., 1996, 1997), even though
non-commercial species were also impacted (e.g., Gomes et al.,
1995 for Division 2J3KL, NAFO, 2010b for Divisions 2K3KL
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FIGURE 8 | The range of adjusted-R2
Total for a given number of predictors all delayed by k for moving average and lag predictors (A) Before models; (B) After models.

Select k are shown here; see Figures S1 and S2 for all k.

FIGURE 9 | Proportion of times each predictor appeared in the top 50 models of the Before and After models for each delay type and length: (A) Before models,

moving average predictors; (B) After models, moving average predictors; (C) Before models, lag predictors; (D) After models, lag predictors.

and 3LNO). Others assert the poor environmental conditions
were an important driving pressure (e.g., Parsons and Lear, 2001;
Rothschild, 2007; Halliday and Pinhorn, 2009), pointing out for
example that the community recovered from a similar collapse
in the 1970s, when fishing pressure was high, but environmental
conditions weremore favorable than the early 1990s. Our analysis

supports a broader argument that the combination of these two
drivers (high fishing and poor environment) were necessary for
the extensive and widespread changes that occurred (e.g., Rose,
2004; Devine et al., 2007; Koen-Alonso et al., 2010). Specifically,
total landings (here also a proxy for groundfish landings), NAO
and SST were the most frequent pressures included the best
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FIGURE 10 | (A) Adjusted-R2
Total in decreasing rank for After models using predictors with mixed time delays; (B) Proportion of times each predictor appeared in the

top 50 models for each set of After mix delays. Refer to table legend for type and length of delay used for each predictor.

(top 50) Before models. The best 1-predictor model was total
landings (adjusted-R2

Total
= 0.55), while the best 2-predictor

model included total landings and NAO (adjusted-R2
Total

= 0.63),
and including SST further improved the explanatory power
(adjusted-R2

Total
= 0.67). The inclusion of both NAO and SST

speaks to the importance of both basin and local environmental
effects on the ecosystem, further strengthening the need to have
regional information to understand and predict changes in the
fish community.

Our analysis shows that there was a shift in which fishing
and environmental pressures were most directly related to the
fish community structure Before and After the collapse. The
environment can clearly influence fish community dynamics on
the Grand Bank, but the most frequently included pressures
in the ZD After models are pelagic and shellfish landings
and MTI. This set of three pressures has notably higher
overall explanatory power Before the collapse; however, its
adjusted-R2

Total
represents a higher percentage of the maximum

explanatory power for the After period. This suggests that
the remaining pressures (e.g., environment) add relatively less
predictive information in the After models. This shift reflects
the changes in target species after the groundfish moratoria,
although it is somewhat surprising that shellfish landings were
included in all but two top models, because the community

shellfish biomass was not included as a response. Shellfish
landings consist mainly of snow crab and Pandalus shrimp, while
pelagic landings are mainly capelin. Shrimp and capelin are
considered important forage species on the Grand Bank (DFO,
2015a,b), and are managed conservatively (for example there
is capelin moratorium in 3NO); however, our analysis suggests
landings of these species are impacting the ecosystem. Shellfish
landings increased overall in the After period (despite a slight
decrease in the last several years), and are negatively correlated
with the biomass indices of small benthivores, piscivores, and
plank-piscivores, suggesting that they are hindering the recovery
of these functional groups. The question remains whether this
is indicative of a causal relationship, or is only correlative.
One potential mechanistic explanation is given by Koen-Alonso
et al. (2010), who speculated that fishing may be reducing
food availability for key species on the Grand Banks, and
thus hindering their recovery. Another hypothesis is that there
are secondary effects on the fish community from shrimp
beam trawls. These trawls are considered to have low bycatch
rates (for commercial species; NAFO, 2014), but they could
be negatively impacting the habitat of other species in the
community.

Another striking difference between the two periods is the
remarkably high explanatory power of the best Before models
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compared to the best After models (Figure 5) for any time delay
(type or length) or number of predictors. We can speculate that
the reasons for this relate to changes in relationships among and
within the pressures and responses. For example, there was a
strong signal in the responses Before the collapse. The biomasses
of many functional groups were relatively highly correlated
(Dempsey et al., 2017), such that any set of predictors with high
explanatory power for one particular group was also high for
several of the others (e.g., small, medium, and large benthivores
and piscivores; Figure 6). The weaker signal After the collapse
means prediction of all six functional groups may require a
broader spectrum of pressures.

We showed the pressures that were driving changes Before the
collapse are no longer as influential After, and the relatively lower
adjusted-R2

Total
suggests that theremay be pressures missing from

the After models. Bottom up pressure indicators such as primary
production and trophic transfer efficiencies were not included
here because there was no suitable data for the required time
frame. Our models include the timing of the sea ice melt as a
proxy for the timing of phytoplankton spring bloom, but other
characteristics of the bloom (e.g., duration and magnitude), or
lower trophic level energy transfer may prove better predictors
for this period through some mechanism not identified here.
Other missing pressures are measures of predation by sea birds
and marine mammals that could exert a top-down influence
on the fish community. For example, harp seals migrate from
the Arctic to northern Newfoundland in the Fall, and prey
predominantly on capelin, but also eat other species (e.g., Atlantic
herring, Arctic cod, shrimp, and Atlantic cod; Stenson, 2013).
The Northwest Atlantic harp seal population has been increasing
rapidly since the 1980s (Hammill et al., 2011), and some authors
suggest that seal predation has supressed the recovery of fish
species on the Newfoundland-Labrador shelf (e.g. Bundy, 2001;
Devine et al., 2007). One type of human-related pressure specific
to the After period that wasn’t considered here is oil production.
While oil exploration has occurred on the Grand Banks since
the 1960s, active platforms have only been producing oil since
1997. Related pressures could include chemical pollution from
regular discharge or accidental spills (Templeman, 2010), which
can be especially harmful to early life stages, and can disrupt
development, growth, and reproductive rates (etc., see JWL, 2007
and references therein). These pressures were not included here
because we did not expect them to significantly influence the
Grand Bank fish community; however, our analyses suggest that
future investigations into these pressures are warranted.

Finally, non-linearity in the relationships between pressures
and responses may have a stronger influence during the After
period, through some unidentified mechanism. Predator-prey
relationships, population dynamics, environmental changes,
and human impacts can all result in non-linearity in marine
ecosystems (Liu et al., 2014). Given the significant changes in the
fish community structure and related pressures, we can speculate
that the relationships among them could be less linear After the
collapse, resulting in lower explanatory power because RDA is
based on linear regression. This could be tested by comparing
this analysis to results from a non-linear model such as neural
networks or generalized additive models. These flexible models

don’t require the user to specify the forms of the relationships
between predictors and responses, which affords a potential
advantage of being able to capture the nonlinearity when the
mechanistic forms of these relationships are unknown.

Our analysis showed that incorporating delays can improve
explanatory power, but that the type and length of delay should
be carefully considered. In general, moving average predictors
had higher explanatory power than lagged predictors for both
periods. Since the moving averages incorporate the trend in
the predictors, causing the responses to change gradually over
time (see Figure A1 in Gentleman and Neuheimer, 2008), our
results suggest that trends in these pressures are influencing
the fish community. For the models with the same delay type
and length for each predictor, Avg1 was the best, notably
improving the explanatory power compared to ZD for both
periods. Avg1 also increased the explanatory power and reduced
the variability in the adjusted-R2 for most of the individual
functional groups (Figure 6). Other delays, particularly those
with lagged predictors, had notably worse explanatory power
than ZD. While some of the improved fit of the moving averages
may be an artifact of smoothing, our results still strongly suggest
that the rates of change are useful for predicting.

Our examination of Mixed delays illustrated that the
explanatory power of the Avg1 After models can be further
improved by considering simple relationships when choosing
the delays for each predictor (Figure 10). This suggests that
including the different timescales of influence for the pressures
is important for this period, and could improve the ability to
forecast changes in the fish community. Even longer time delays
could be beneficial because changes in some pressures may
take more than 5 years to manifest in the fish community. For
example, Daan et al. (2005) and Greenstreet et al. (2011) found
that secondary effects of fishing could impact different size-based
metrics of the fish community in the North Sea after lags of 6–12
and 12–20 years, respectively. However, while we showed that
different mixed delays among the predictor set resulted in similar
overall explanatory power, we also showed it could be worse.
We therefore recommend that future investigations into suitable
delays—and their mechanisms—should come from analysis of
mechanistic models.

For all three periods (Full, Before, and After) and delay

types and lengths, there was no one set of pressures that “best”

predicted fish community status. Rather there was a range of
sets, differing in number and type of indicators that had similar
explanatory power (see Tables S1–S5). For example, there are
two sets of 6-pressure Avg1 After models with only marginally
different explanatory power; however, one includes two fishing
indicators (pelagic landings and MTI) and four environmental
indicators (all except S150; adjusted-R2

Total
= 0.68), while the

other includes all four fishing and two environmental (S150 and
TimeIce; adjusted-R

2
Total

= 0.70). In many cases the same base
indicators were used in most or all of the top sets (Figure 5C;
e.g., for ZD After: pelagic and shellfish landings and MTI),
while other pressures improved the explanatory power by adding
additional information. This is not to say that any set of nine
pressures would have high explanatory power—recall that we
curated these pressures because we expected them to have
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measurable impacts on the Grand Bank fish community. The
point here is that pressure sets with similar predictive power
may be comprised of different types of strategically selected data.
This suggests that various direct effects of pressures on fish
and lower trophic level production have spread throughout the
community such that changes in fish functional group biomass
can be directly predicted from different pressures. Therefore, if
there was a lack of one type of pressure data, it may be possible to
replace it with another type without compromising explanatory
power. Furthermore, using a suite of models to predict future
changes can provide a measure of uncertainty, much like the
model ensembles used to forecast climate changes and associated
impacts by the Intergovernmental Panel on Climate Change
(Kirtman et al., 2013).

Here we provided one case study of how RDA can be applied
to learn about the Grand Bank ecosystem. Ultimately the best
predictor set(s) for the Grand Bank and other ecosystems would
depend on a number of considerations, including the final
application of the model. Other considerations may include the
responses of interest (i.e., if structure of the fish community were
expanded to also consider length and/or biodiversity measures),
the explanatory power for the individual responses (Figure 6),
data availability (e.g., types of indicators and length of time
series), and costs of monitoring (e.g., data collection, database
entry, analysis). As well as potentially varying with application-
specific criteria, best sets will likely be ecosystem-specific, and
depend on the unique combination of exploitation history,
oceanographic conditions, and ecological interactions. Finally,
because ecosystems are dynamic and the types and intensity of
pressures may change over time, the best predictor sets may differ
for different time periods of the same ecosystem. Scientists and
managers should be aware of this, and watch for declines in the
ability of these sets to predict changes in the ecosystem. Here
we offer a statistical approach that can be used with various

types of data, and is suggestive of being easily calibrated to
different systems. This could serve as a useful complementary
tool to help design modeling studies, plan field programs, and
direct monitoring efforts. The synergistic use of statistical and
mechanistic models to help guide identification of the most
informative pressures, their most influential time delays, and
their mechanisms are important future research directions that
could improve ability to forecast changes in the fish community,
and implement appropriate management measures.
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