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This manuscript provides new insights on an unusual morphological plasticity growth

form on Acropora spp. in the Caribbean. This abnormal knob-shaped growth is thought

to be a progression from the damselfish “chimneys” that are commonly seen in coral-algal

farms. However, the diameters of the observed knobs tend to be much larger on

Acropora palmata, where they range from 1.37 to 5.44 cm in diameter, and they tend to

be slightly smaller on A. prolifera, where they range from 1.1 to 2.72 cm in diameter. These

knob-like chimney growths can affect entire colonies. The knobs are mostly covered

with live tissue, while some knobs compete with turf algae. We hypothesize that these

growths may be linked to stress from multiple predation and environmental conditions.

Local stressors could synergistically influence the regeneration of scarred tissue and

skeleton that result from predatory lesions, possibly leading to the formation of the knobs.

Therefore, we provide preliminary data from a shallow reef site in coastal Honduras

located within the Mesoamerican region where we found the knobs. To the best of

our knowledge, the conditions that drive the occurrence of these unusual “knob-like

chimneys” on Acropora spp. have not been previously assessed. Thus, we propose a

series of guidelines to research the coral morphological plasticity that may be linked to

this knob-like chimney phenomenon.

Keywords: Acropora, lesions, damselfish chimneys, knob-like chimney growth, environmental plasticity,

Caribbean

INTRODUCTION

The assessment of the remaining acroporids in the western Atlantic is of extreme relevance due to
their widespread decline over the last 30 years (Aronson and Precht, 2001). Impacts associated
with climate change, diseases, hurricanes and anthropogenic disturbances have caused major
ecological shifts (Schutte et al., 2010; Williams et al., 2017). According to the International Union
for Conservation of Nature (IUCN)1 Red List, these Acropora species are considered as “critically
endangered” (Aronson et al., 2008). They are also highly susceptible to at least six diseases and
growth anomalies in the Caribbean (Bak, 1983; Weil et al., 2006). Thermal stress and microbes
linked to poor water quality increase the vulnerability of these species to other stressors (Sutherland
et al., 2011; Zaneveld et al., 2016). However, the understanding of the synergistic impacts of

1IUCN Red List of Threatened Species. Version 2016-3. www.iucnredlist.org. Downloaded on 5 January 2017.
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vector-borne diseases, multiple-predator outbreaks,
environmental stressors and recovery in the Caribbean is
still advancing (Weil, 2004; Shaver et al., 2017). These complex
associations may influence the recovery, morphological plasticity
and overall coral health of Acropora spp. (Casey et al., 2014;
Schopmeyer and Lirman, 2015; Vermeij et al., 2015; Bright et al.,
2016).

Scleractinian corals have diverse mechanisms (physiological,
morphological and genetic) to respond to biological and
environmental stress (Klaus et al., 2007; Todd, 2008; Tambutté
et al., 2011, 2015). Phenotypic plasticity can facilitate the better
fit of traits in response to an environmental stimulus, leading
to a set of phenotypes produced by a genotype (Via et al.,
1995). These responses may also differ at the species level due
to life history strategies (Henry and Hart, 2005). Predation
is a type of biotic stress that causes mechanical damage, and
alters tissue regeneration and skeletal growth (Bak, 1983; Peters
et al., 1986; Meesters and Bak, 1995; Lirman, 2000a,b; Grober-
Dunsmore et al., 2006). Some corallivores feed solely on the
live tissue or mucus of coral, while others can induce long-
lasting changes in morphology (Wielgus et al., 2002; Todd, 2008).
The morphological changes due to predation on corals from
damselfish that cause “chimneys” date back to the fossil records
from the Pleistocene (125,000 years BP) (Kaufman, 1981; Rotjan
and Lewis, 2008). Other corallivores can also cause damage on
coral skeleton from the burrowing of polychaetes or scraping
bites (Bruckner and Bruckner, 2015). Grazed corals also defend
themselves against predation, and some develop an increase in
nematocyst density, while others regenerate lesions (Bak, 1983;
Gochfeld, 2004). In many cases, excessive predation has led to
an increase in mortality and algal competition (Meesters et al.,
1996).

Combined biotic and environmental stressors can modify
coral morphologies from the smallest of scales at the corallite
level to the entire shape of a coral colony (Todd et al., 2004;
Erftemeijer et al., 2012). Light and water movement have been
the most studied of the parameters that lead to flattened
growth forms (Todd, 2008). Light can also prompt changes
to corallite direction and growth (Todd et al., 2004). Other
factors that influence morphology include food availability, water
movement, sedimentation, temperature, salinity (Bruno and
Edmunds, 1997) and depth (Klaus et al., 2007). Environmental
parameters may affect protein expressions and adjust the factors
that drive rates of calcification, thereby changing the skeleton
shape (Tambutté et al., 2011). Moreover, in an era of climate
change and acidification, pH has been found to be able to cause
morphological modifications to coral skeletons (Tambutté et al.,
2015).

Only a few acroporid “hope spots” are still alive in the
Mesoamerican region, yet they face severe threats (Sutherland
et al., 2011; Rodríguez-Martínez et al., 2014; Kramer et al.,
2015). These living laboratories currently maintain the patterns
of reef zonation that have declined elsewhere in the Caribbean
(Álvarez-Filip et al., 2009). We highlight the case of a shallow
reef (2–7m deep) along the coasts of Honduras, where we
observed unusual “knob-like chimney” growth forms on entire
colonies of Acropora spp. We hypothesize a linkage of these

growth forms to predation, which may lead to modified skeletal
growth and regeneration that is influenced by local stressors.
Furthermore, we provide a general perspective on the observed
coral morphological growth and ecological conditions. This
paper is not meant to be a causal/mechanistic investigation.
Instead, it provides insights to future research needs, regarding
plasticity and predator impacts on Acropora spp. in the
Caribbean. Despite numerous studies, these “knob-like chimney”
growths have not been reported, or studied before.

CORAL MORPHOLOGY AND KNOBS

Acropora spp. colonies found on the fringing reefs of
Cocalito (15◦51′50.9′′N 87◦30′23.8′′W), Tela Bay, Honduras
have distinctive morphological characteristics. Acropora
palmata (Lamark, 1816) colonies can be found growing in
laminar/explanate fronds, flattened branches or encrusting
forms (Figures 1A,B). The high-density stands of large A.
palmata colonies (1m tall to 2m wide) create thickets (3–4m
wide). However, colonies this size can be more susceptible to
multiple-predator impacts (Grober-Dunsmore et al., 2006).
Acropora palmata colonies provide ecosystem services along
with structural complexity and habitat for a diverse assemblage
of reef organisms (Figure 1C). However, A. palmata and A.
prolifera (Lamark, 1816) colonies exhibit abnormal skeletal
growths, which we call “knob-like chimney” growth forms, that
can cover entire colonies (Figures 1D,E). The assessment of field
images revealed that the diameters of the knobs tended to be
larger on A. palmata (1.37–5.44 cm, n = 64) and slightly smaller
on A. prolifera (1.1–2.72 cm, n = 32) (Figures 2A–C). These
protuberances vary and are covered by “algal tufts” or live tissue
(Figures 1D,E). Acropora cervicornis colonies were not observed
at this site.

We attribute these “knob-like chimney” growths to bites
from damselfish that target live Acropora spp. to create algal
gardens, and these bites create multifocal and coalescing circular
lesions on the upward facing branches [(Kaufman, 1981; Peters,
1984; Work and Aeby, 2006); Figure 1F]. Filamentous algae
and cyanobacteria rapidly colonize (usually after 1–2 weeks) the
bite-sized lesions (Hernández-Delgado, 2000; Lirman, 2000a).
Acropora palmata grows rapidly (5–10 cm year−1) and has
extremely fast regeneration rates (Gladfelter et al., 1978; Meesters
and Bak, 1995). Studies have shown that the smallest of lesions
(2 mm2 to 5 cm2) can heal within 30 days, and this may
limit algal cover (Kaufman, 1981; Bak, 1983; Lirman, 2000b).
As a consequence, damselfish will continue to allocate energy
to produce new bites (Hernández-Delgado, 2000; Bruckner
and Bruckner, 2015). According to Bak (1983), a calcifying
regeneration lip borders the lesion and grows vertically (and may
be hollow) while encapsulating algae or debris. Tissue is further
re-sheeted over the wound, and this may lead to the formation of
large knobs over time (Figures 1G,H).

Nevertheless, the observed morphology differs from reported
chimneys or gall-like growths that are usually 0.25–2.00 cm
in diameter (Kaufman, 1981; Bruckner and Bruckner, 2015).
Chimneys are a response from localized predation originated by
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FIGURE 1 | Acropora species and unusual growth morphologies in Cocalito located in Tela, Honduras (A) Plated morphology of Acropora palmata (B) flattened

branching morphotype with small, rounded chimneys (C) abundant habitat for juvenile fish (D) entire colony of A. palmata covered with “knob-like chimneys” (E)

knobs and algal turf on A. prolifera (F) lesions from fish bites on A. palmata with scattered knobs (G) close up of Stegastes planiforms with chimneys (1 cm) and knobs

(2–3 cm) on the encrusted base of A. palmata (H) knobs competing with turf algae on encrusting A. palmata (I) close up of knobs (J) Hermodice carunculata feeding

on knobs during the day (K) fish bites covered with sand particles (L) close up on an A. palmata branch showing growth over debris from an urchin spine. All

photographs are reproduced with permission from the copyright holder, which belong to Nicole Helgason (Reefdivers.io) with the exceptions of (F,G,I,L), which were

provided by Andrea Rivera-Sosa.

Stegastes planifrons (Cuvier, 1830) andMicrospathodon chrysurus
(Cuvier, 1830) (Cole et al., 2008; Rotjan and Lewis, 2008). These
territorial fish can actively kill coral, increase algal abundance,
deter other predators, and lay eggs on algal gardens (Ceccarelli
et al., 2001). These upward-thickened knobs are tall and seem to
have larger corallites (Figure 1I). Some of the corallites on the
branches in scattered colonies seem visually longer and irregular
(Tomiak et al., 2016; Figure 1J). However, there are currently
no specific data on the morphological aspects of these knobs,
and accurate measurements of corallites/calices have not been
conducted.

Moreover, the knobs are targeted by the bearded fireworm
Hermodice carunculata (Pallas, 1766), and predation is
commonly observed during the day (Figure 1J). Fireworms
prefer live tissue on rounded branch tips and knobs of
milleporids and acroporids, which may cause another cycle of
tissue mortality and algal colonization (Witman, 1988; Bruckner
et al., 2002; Miller et al., 2014; Bruckner and Bruckner, 2015).
Once again, scar tissue is regenerated on the lesion, which may
enhance the vertical growth of the knobs (Jordan-Dahlgren,
1992). The presence ofH. carunculata is related to the abundance
predators (such as lobster), habitat and food availability (Ahrens

Frontiers in Marine Science | www.frontiersin.org 3 February 2018 | Volume 5 | Article 41

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Rivera-Sosa et al. Unusual Growth on Caribbean Acropora

FIGURE 2 | Range of diameters (cm) of knob-like chimney growth forms. (A) Box plot of the diameters of “knob-like chimmey” growth forms on Acropora species

obtained by photo analysis and size comparison between: (B) Acropora palmata and (C) Acropora prolifera. Photograph credits belong to Andrea Rivera-Sosa.

et al., 2013). H. carunculata is an opportunistic species that can
regenerate asexually (Ott and Lewis, 1972). This corallivore has
a high adaptability and may be a threat to the already stressed
corals (Wolf et al., 2014; Schulze et al., 2017). Nevertheless, it is
highly unlikely that fireworm predation occurs across all knobs.
For this reason, we conducted an overview of the biotic and
environmental conditions.

STRESSORS RELATED TO THE
KNOB-LIKE CHIMNEY PHENOMENON

Environmental and biotic stressors play important roles in
coral morphology and recovery from multiple predatory lesions
(Sabine et al., 2015). Predation may require resources to
be allocated to regeneration at the expense of new colony
growth (Meesters and Bak, 1995). Regeneration rates vary with
temperature, lesion location, sedimentation and food availability
(Lester and Bak, 1985; Meesters et al., 1996; Cróquer et al., 2002).
Even though there is a consensus that increased nutrients and
sedimentation can be detrimental to coral reefs, there are some
benefits to these conditions (Shaver et al., 2017). Anthony (2006),
for example, found that corals on coastal and high-turbidity reefs
had enhanced energy reserves and lipid levels. Specific adaptation
strategies in highly turbid zones may prompt physiological
responses and the dependence on coral heterotrophy, which can
compensate for reduced photosynthesis (Anthony and Fabricius,
2000).

The corals in Cocalito, Honduras thrive under highly variable
and often extreme environmental conditions. These conditions
range from chronic turbidity (Supplementary Figure 1), high
temperature, excess nutrients and substantial freshwater inputs
during the rainy season (in prep). In this wave exposed

location, colonies and lesions interact with suspended particles,
sedimentation and other debris (Figure 1K). The capacity of A.
palmata to overgrow foreign materials was evident when we
observed its growth over dead sea urchin spines (Figure 1L).
Therefore, it is possible that A. palmata and algae compete
for space on the surface of initial chimneys that later become
knobs. Damselfish may also affect bioeroding crypto-fauna,
which may, in turn, impact skeletal porosity and the recruitment
of burrowing polychaetes and sponges (Sammarco et al., 1986).
However, a study by Zubia and Peyrot-Clausade (2001) found
higher rates of microbioerosion in areas outside damselfish
territories. Nevertheless, this growth response requires further
assessment.

Damselfish are linked to reef degradation because they
promote algal cover, predation and the fragmentation of wild
and restored Acropora populations (Hernández-Delgado, 2000;
Schopmeyer and Lirman, 2015). In 2016, the benthic cover
around Cocalito was dominated by turf algae (40%), live
coral (30%), non-aggressive invertebrates (13%) and to a lesser
extent fleshy macroalgae (9%) (Supplementary Figure 2). This
coral cover is higher than the average in the Caribbean
(16.8%) (Jackson et al., 2014). The abundance of damselfish is
also increasing on Caribbean reefs (Hernández-Delgado, 2000;
Ceccarelli et al., 2001), and this can further stimulate algal
growth (Vermeij et al., 2015). This major shift may be due to
the low abundance or local extinction of damselfish predators,
which include serranids, lutjanids, moray eels, and lizard fishes
(Randall, 1967; Robertson, 1996; Hernández-Delgado, 2000;
Vermeij et al., 2015). In contrast, others have suggested that
damselfish abundances have historically been high (Kaufman,
1981). Moreover, others argue that damselfish densities are
related to the availability of microhabitats rather than predator
abundance (Precht et al., 2010). In Cocalito, the fish biomass
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is dominated by grunts (Haemulidae ∼100 g/m2), with much
lower biomass of snappers (Lutjanidae ∼20 g/m2), and a similar
biomass of angelfish (Pomacanthidae∼16 g/m2) (Supplementary
Figure 3). There is also a low proportion of Pomacentridae
biomass (∼2 g/m2), which includes herbivorous species such as
territorial damselfish. Nonetheless, predator abundance is below
the threshold of ∼40 g/m2 that Vermeij et al. (2015) suggested
may lead to destructive effects on the reef. Although grunts
dominate the fish biomass in Cocalito, they are not damselfish
predators; their diet is comprised primarily of invertebrates
(Bohnsack and Harper, 1988). However, grunts may impact the
abundance and distribution of fireworms (Shantz, 2016).

Moreover, this area may also be a “hotspot” of nutrients
coming from upstream watersheds, grunts, and damselfish.
Grunt aggregations have been found to increase by 7–10 times
the rates of organic nutrient delivery to coral colonies (Shantz
et al., 2015). It is possible that these combined sources of localized
nutrient deliveries may influence faster skeletal growth rates in
this area of high nutrients (Bongiorni et al., 2003; Ferrier-Pagès
et al., 2003; Shantz et al., 2015). This possible morphological
plasticity feedback loop related to nutrients remains to be
investigated.

DISEASES LINKED TO VECTORS AND
ABNORMAL GROWTHS

Damselfish territories have been found to serve as reservoirs of
microbes related to coral diseases (Casey et al., 2014). Ironically,
this linkage has been poorly studied and has major implications
for Acropora spp. as disease outbreaks have caused massive
mortality (Aronson and Precht, 2001). However, the remaining
Acropora colonies continue to be the preferred microhabitat
of damselfish and disease prone vectors (Lirman, 1999; Precht
et al., 2010; Bruckner and Bruckner, 2015). On many occasions,
damselfish bites and white pox disease have been easily confused,
but white pox tends to manifest as irregular lesions, rather
than perfectly symmetrical circular lesions (Pollock et al., 2011;
Bruckner and Bruckner, 2015). Other pathogens have been
associated with sewage (Sutherland et al., 2011). Additionally, the
transmission of diseases has been linked to common corallivores.
The coral-eating snail Coralliophila abbreviata (Lamarck, 1816)
was found to be associated with white band disease (Baums et al.,
2003; Williams andMiller, 2005; Gignoux-Wolfsohn et al., 2012),
and H. carunculata was found to be associated with the coral-
bleaching pathogen Vibrio shiloi (Sussman et al., 2003). Both
corallivores target stressed colonies and eat the decaying tissue
of diseased corals (Miller and Williams, 2007; Wolf et al., 2014).

Acropora spp. worldwide are susceptible to growth anomalies
(GAs) such as tumors, neoplasia (altered calcification patterns)
and hyperplasia (number of cells in the tissue) (Bak, 1983;
Peters et al., 1986; Work et al., 2008). Worldwide incidences
of GAs have been associated with human populations and
environmental degradation (Green and Bruckner, 2000; Aeby
et al., 2011). In addition, it is important to differentiate GAs from
the “knob-like chimneys” caused by damselfish on Acropora
spp. (Bak, 1983; Bruckner and Bruckner, 2015). GAs on A.

palmata have been found as protuberances and as skeletal
growths with discolored tissue that lacks normal corallites
(Bak, 1983; Peters et al., 1986; Gladfelter, 2007). Peters (1984)
stated that microbial alterations to A. palalmata could occur in
epidermal cells and cause hyperplasia in response to chronic
physical damage associated with sediment-algae accumulations.
In addition, parts of the lesions and dead skeletons could be
susceptible to microbioeroders and endolithic bacteria (Tribollet,
2008).

FUTURE RESEARCH TO RESOLVE
CURRENT QUESTIONS

There are extensive opportunities for research related to
the formation of “knob-like chimneys” on Acropora spp.
Hence, we propose future studies to reduce the current
knowledge gaps related to coral morphological plasticity in
response to multiple predation and environmental stressors.
We suspect that the skeletal formation of these knobs
may be irreversible. However, many uncertainties should be
explored such as the broader implications of knobs on the
growth, energy expenditure and bio-construction of these
corals.

Field characterization and mechanistic studies are required
to answer many of the remaining questions. First, the
population structure and distribution of Acropora spp. (size,
cover) should be measured (Grober-Dunsmore et al., 2006),
including the hybridization of A. prolifera in Cocalito, since
many colonies exhibit unique morphologies (Vollmer and
Palumbi, 2002). Further investigations on the spatial patterns
of predation by damselfish and polychaetes (fireworms), as
well as their abundances, recruitment and relationship to
knob growth patterns is warranted. Monitoring present lesions
and conducting new coral-wound regeneration experiments
in the field under different environmental conditions may
reveal the aspects that are key to recovery and algal/coral
interactions (Precht et al., 2010; Wolf et al., 2014). These
studies could be conducted using field assessments such as
permanent transects, colony tagging, and lesion monitoring
using photographs and videos. Additionally, non-destructive
techniques such as cages placed around coral colonies which
would protect against predation could be used to test the causal
link between predation and the formation of knobs (Gochfeld,
2004).

Studies that integrate the synergistic impacts of predator
lesions and recovery growth rates would be valuable. These
impacts could be studied using histological analyses of affected
(knob) tissue and adjacent tissues. Further analyses of coral
knobs may assist in (1) determining the role of microbial
communities, and (2) ruling out diseases, which are currently
unknown (Mosses and Hallock, 2015; Shaver et al., 2017).
Histological assays may reveal complex interactions of epidermal
and gastrodermal tissues layers where microbioeroders and
debris such as algae and sand could be present. To view
morphological changes at the smallest of scales, techniques
using scanning electron microscopy (SEM) can evaluate skeleton
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conditions including calcification, density, porosity and features
such as corallite and calice morphology (Tomiak et al.,
2016). Moreover, molecular and microscopic techniques as
well as gross dissections can be employed to assess genotypes,
endosymbiont density (zooxanthellae), and gonad development
in these knobs which may reveal impacts on coral fitness
(bleaching and reproduction) (Baums et al., 2014; Miller et al.,
2016).

In addition, the temporal variation of predator abundance
in relation to long-term environmental parameters such
as water quality (nutrients) from biotic and land-based
sources should be evaluated. Data on turbidity and nutrients
in relation to climatic and oceanographic dynamics
are needed as a baseline. We suggest studies on light
intensity/turbidity and nutrients in relation photosynthetic
activity and diversity of zooxanthellae communities (Klaus
et al., 2007). These studies are critical due to the important
relationship among the environment, symbionts, genotypes and
morphological plasticity for coral adaptation (Tambutté et al.,
2011).

In addition, targeted predator removal experiments for
adaptive management need to be carried out (Miller,
2001). Synergistic stressors and their implications for the
recovery of the Acropora spp. population should be quickly
assessed to facilitate the implementation of measures to
reduce them (Grober-Dunsmore et al., 2006; Hernández-
Delgado et al., 2014). Limits on research funding is a main
constraint in the developing world, thus future international
collaborations will be crucial for the understanding of this
“knob-like chimney” phenomenon on Caribbean coral
reefs.
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