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New Challenges for the Pressure
Evolution of the Glass Temperature
Sylwester J. Rzoska*

Institute of High Pressure Physics Polish Academy of Sciences, Warsaw, Poland

The ways of portrayal of the pressure evolution of the glass temperature (Tg) beyond the
dominated Simon–Glatzel-like pattern are discussed. This includes the possible common
description of Tg(P) dependences in systems described by dTg/dP>0 and dTg/dP<0.
The latter can be associated with the maximum of Tg(P) curve hidden in the negative
pressures domain. The issue of volume and density changes along the vitrification curve
is also discussed. Finally, the universal pattern of vitrification associated with the crossover
from the low density (isotropic stretching) to the high density (isotropic compression)
systems is proposed. Hypothetically, it may obey any glass former, from molecular liquids
to colloids.

Keywords: glass transition, high pressures, negative pressures, melting, universality, dynamics, glass-forming
ability

INTRODUCTION

Liquids on cooling solidify in the ordered crystalline state when passing the melting temperature
(Tm). However, the fluidity can be also preserved below melting, down to the glass temperature
Tg ≪Tm, where the solidification from the metastable ultraviscous/ultraslowing liquid to the solid
amorphous glass state occurs (Donth, 2000; Rzoska et al., 2010; Berthier and Ediger, 2016). There
are also numerous semi-crystalline systems where the vitrification is related to the solidification
of one or few elements of symmetry: as examples can serve orientationally disordered crystals
(plastic crystals) (Drozd-Rzoska et al., 2006a,b) or liquid crystals (Drozd-Rzoska, 2006, 2009). For
many systems, passing Tm without crystallization is associated with an extreme temperature quench
(Donth, 2000). However, there are also numerous glass formers where entering the metastable
ultraviscous/ultraslowing domain is possible at any practical experimental cooling rate (Donth,
2000; Rzoska et al., 2010; Berthier and Ediger, 2016). Turnbull (Turnbull, 1969; Angell, 2008)
formulated the broadly used empirical Glass-Forming Ability (GFA) rule distinguishing poor
(Tg/Tm < 2/3) and good glass formers (Tg/Tm > 2/3) and linking Tg and Tm. Notwithstanding, there
is a notable difference between melting and vitrification: melting is related to the “sudden and
almost non-signaled” fusion on cooling whereas the glass transition is hallmarked by far previtreous
super-Arrhenius (SA) changes of viscosity η(T), primary relaxation time τ(T), or other related
dynamic properties (Avramov and Milchev, 1988; Donth, 2000; Rzoska et al., 2010; Berthier and
Ediger, 2016). This opens the possibility of estimating the glass temperature from the analysis of
previtreous effects well above Tg: as the general reference values η(Tg)= 1013 Poise for viscosity or
τ(Tg)= 100 s for the primary (alpha, structural) relaxation time are assumed, since they correlate
with the thermodynamic estimation (heat capacity or density scan) ofTg related to 10K/min cooling
rate (Donth, 2000; Rzoska et al., 2010). Although the ultimate form of τ(T,P) or η(T, P) portrayal
in previtreous ultraviscous/ultraslowing liquids on approaching Tg remains puzzling (Martinez-
Garcia et al., 2013, 2014, 2015), most often the Vogel–Fulcher–Tammann (VFT) relation is used

Frontiers in Materials | www.frontiersin.org November 2017 | Volume 4 | Article 331

http://www.frontiersin.org/Materials
http://www.frontiersin.org/Materials/editorialboard
http://www.frontiersin.org/Materials/editorialboard
https://doi.org/10.3389/fmats.2017.00033
https://creativecommons.org/licenses/by/4.0/
mailto:sylwester.rzoska@unipress.waw.pl
https://doi.org/10.3389/fmats.2017.00033
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2017.00033&domain=pdf&date_stamp=2017-11-27
http://www.frontiersin.org/Journal/10.3389/fmats.2017.00033/full
http://www.frontiersin.org/Journal/10.3389/fmats.2017.00033/full
http://loop.frontiersin.org/people/74504
http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Rzoska Pressure Evolution of the Glass Temperature

(Tammann, 1903;Vogel, 1921; Fulcher, 1925;Donth, 2000; Rzoska
et al., 2010; Martinez-Garcia et al., 2013; Berthier and Ediger,
2016):

τ(T) = τ0 exp
(

DTT0

T − T0

)
, P = const (1)

where τ0 = 10−14±2 is the prefactor, T0 <Tg is the VFT sin-
gular temperature, and DT denotes the fragility strength coeffi-
cient linked to fragility metric m = ⌊d log10τ/d(Tg/T)⌋T→Tg

via the empirical dependence DT = 590/(m+ log10 τ0/log10(Tg))
(Böhmer et al., 1993), in which τ0 = 10−14 s is assumed.

The pressure counterpart of the VFT equation was first pro-
posed for the analysis of viscosity changes in glycerol by Johari
and Whalley (1972) and later for the primary relaxation time in
dibutyl phthalate (Paluch et al., 1996):

η = ηP
0 exp

(
A

P0 − P

)
and τ = τPp exp

(
A

P0 − P

)
,

(2)
where: T= const, ηP

0 and τPo denote prefactors, the amplitude
A= const and P0 > Pg is the “VFT-like” singular pressure.

However, Eq. 2 can reliably portray experimental data only
for “strong” (weakly non-Arrhenius) glass formers, assuming that
measurements terminates atPmax ≪ P0. In Paluch et al. (1998), the
relation able to portray the previtreous dynamics for an arbitrary
glass former and range of pressure was proposed:

τ(P) = τP0 exp
(

A (P)
P0 − P

)
= τP0 exp

(
DPP

P0 − P

)
. (3)

In this relation the amplitude is pressure dependent
A=A(P)=DPP, and the pressure fragility strength coefficient
DP was introduced. It is notable that for the basic VFT Eq. 1
the prefactor is “approximately universal,” i.e., τ0 ≈ 10−14±2 s,
whereas for Eqs 2 and 3, it ranges between τP0 ≈ 10s and
τP0 ≈ 10−14s (Drozd-Rzoska and Rzoska, 2006; Drozd-Rzoska
et al., 2008). Such enormous discrepancy results from the location
of the τ(P) isotherm selected for τ(P) or η(P) tests in the respect
to Tg(P) curve. This can be illustrated via the “general” SA
equation:

τ(T, P) = τP0 exp
(
PVa(P)
RT

)
= τ0 exp

(
Ea(T)
RT

)
exp

(
PVa(P)
RT

)
= τ0 exp

(
Ea(T) + PVa(P)

RT

)
. (4)

The comparison of Eqs 3 and 4 yields Ea(T)=RDT/(1T0 −
1/T) and Va(P)=TDPR/(P0 − P) for “VFT-type estimations”
of the activation energy and activation volume, respectively.
Notwithstanding, the general and model-free forms of Ea(T) and
Va(P) dependencies are still not known. The solution of the
problem of the poorly defined prefactor τP0 in Eqs 2 and 3 was
proposed in Drozd-Rzoska and Rzoska (2006) and Drozd-Rzoska
et al. (2008) by introducing the equation:

τ(P) = τP0 exp
(
D′

P (P − PSp)
P0 − P

)
= τ0 exp

(
D′

PΔP
P0 − P

)
. (5)

This dependence takes into account that the liquid state ter-
minates at the absolute stability limit pressure (spinodal PSp), in
negative pressures domain. The ultimate description needs both
positive (isotropic compression, hydrostatic pressures, P> 0) and
negative pressures (isotropic stretching, P< 0) domains (Angell
and Quing, 1989, Imre et al., 2002). For Eq. 5, the prefactor is
approximately the same, τP0 = τ (PSp) ≈ 10−12s, for any isotherm.
When comparing Eqs 3 and 5 worth noting is that the lat-
ter can penetrate negative pressures domain but the fragility
strength coefficients changes: DP/D′

P = P0/(P0 − PSp) (Drozd-
Rzoska and Rzoska, 2006; Drozd-Rzoska et al., 2008).

The characterization ofTg (P) dependence has a notable impact
on the behavior under atmospheric pressure, being included via
the coefficient dTg(P)/dP in numerous relations (Drozd-Rzoska
et al., 2007a,b; Rzoska et al., 2010; Donth, 2000; Rzoska and
Mazur, 2007; Floudas et al., 2011). The reliable knowledge of
Tg(P) description seems to be essential for silicate glasses, in
which practically important features are created due to the high
pressure—high temperature annealing with induced “exotic” fea-
tures preserved after decompressing. They are, for instance: (i) the
notable increase of density, (ii) the increase of hardness, and (iii)
the anty-cracking ability (Smedskjaer et al., 2014; Januchta et al.,
2016, 2017; Svenson et al., 2017). Still puzzling is the description
of Tg(P) behavior in systems where dTg/dP< 0 (Donth, 2000;
Drozd-Rzoska et al., 2007a,b, 2008).

All above show that the reliable and effective portrayal of the
pressure evolution of the glass temperature can constitute one
of milestones in dealing with the glass transition. This report
presents the resume of this issue, supplemented by some exten-
sions beyond the current state-of-the art.

PARAMETERIZATION OF THE PRESSURE
EVOLUTION OF MELTING AND GLASS
TEMPERATURES

There are several relations for describing the pressure evolution of
melting temperature: the most popular is the Simon–Glatzel (SG)
equation due to its simple form and the limited number of fitted
parameters (Simon andGlatzel, 1929; Skripov and Faizulin, 2006):

Tm(P) = T0

(
1 +

P
a

)1/b
, (6)

where T0, a, and b are adjustable parameters.
It can be derived from the Clausius–Clapeyron (C–C) equation

dT/dP=TΔV/ΔH= ΔV/ΔS, where ΔV, ΔH, and ΔS are for the
volume, enthalpy, and entropy changes at the transition, assuming
(dT/dP)fusion = a+ bP (Skripov and Faizulin, 2006). This relation
is used for the description of melting, where the “sudden and
sharp” change of volume or density (ΔV, Δρ) and entropy takes
place. However, the C–C equation can be linked to any fusion
phenomenon, provided it is associated with detectable changes
in entropy and volume/density. This occurs also for the glass
transition temperature, although the transformation is “stretched”
in temperature or pressure and occurs between the disordered
(ultravisous) liquid and the disordered solid (glass), as shown in
Figure 1.
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FIGURE 1 | The temperature dependence (P= 0.1MPa) of the proper volume
V = 1/ρ, ρ denotes density, for polyvinyl acetate in the ultraviscous and solid
amorphous phases. Dashed lines show extrapolations of the experimental
behavior remote from the “stretched” glass transition domain Tg. The apparent
discontinuity of the volume can be estimated as ΔV′ =0.0021 cm3g−1 and
ΔV′′ = 0.0030 cm3g−1 (double arrows in the plot). The inset, based on data
from McKinney and Goldstein (1974), Roland and Casalini (2003), and Tropin
et al. (2012) is for the excess of the specific heat Δcp(T) = cmeltP (T)−csolidp (T),
over the behavior in the solid stated remote from Tg csolidp (T) = a + bT
described the behavior well below. The resulting discontinuity
Δcp(T )/R= 0.23. Data in this figure are for 10K/min. cooling/heating rate.

As mentioned above the “reasonable” metric of the glass tran-
sition is the isochronal or isoviscous condition τ(Tg, Pg)= 100 s
or η(Tg, Pg)= 1013 Poise (Donth, 2000). Generally, such con-
dition is absent along the melting curve within the P-T plane
(Skripov and Faizulin, 2006). However, the isochronal condition
for Tm(P) is clearly fulfilled if melting is associated with only one
element of symmetry, as for the isotropic-nematic transition in
liquid crystals (Roland et al., 2008). Heuristic similarities between
melting and vitrification can be strengthen recalling the empir-
ical link between Tg and Tm, used as the indicator of the GFA:
Tg/Tm > 2/3 (near-spherical molecules) and Tg/Tm > 1/2 (elon-
gated molecules) (Turnbull, 1969; Donth, 2000; Angell, 2008).
Consequently, one can expect that the pressure dependence of Tm
can be paralleled by Tg(P) evolution. Regarding the vitrification,
S. Peter Andersson and Ove Andersson (AA) introduced the SG-
type relation for describing the pressure evolution of the glass tem-
perature in poly(propylene) glycol (Andersson and Andersson,
1998):

Tg(P) = k1

(
1 +

k2

k3
P
)1/k2

(7)

where k1, k2, and k3 are empirical, adjustable parameters.
The AA equation has become the key tool for describing Tg(P)

experimental data till nowadays (Roland et al., 2005; Drozd-
Rzoska et al., 2007a; Rzoska and Mazur, 2007; Rzoska et al., 2010;
Floudas et al., 2011). This success was notably strengthen by its
derivationwithin the Avramov–Milchev (AM) phenomenological
model for the vitrification (Avramov and Milchev, 1988; Roland
and Casalini, 2003; Hu et al., 2017):

Tg(P) = εT0

(
1 +

P
Π

)β/α

, (8)

TABLE 1 | Systems in which the application of pressure decreases the glass
temperature (dTg/dP<0).

Glass former dTg/dP
(K/GPa)

Reference

CH3COOLi+ 10H2O (ionic system) −8.5 Kanno et al. (1981)

LiOAc+ 10×H2O (ionic system) −5 Williams and Angell (1977)

Water (model estimation) −52 Giovambattista et al. (2012)

Albite (geo system) −8.4 Bagdassarov et al. (2004)

Haplogranite (HPG8, geo system) −45 Bagdassarov et al. (2004)

Silicon (semiconductor) −57 Deb et al. (2001)

As2Te3 (semiconductor) −30 Ramesh (2014)

Ge20Te80 (semiconductor) −78 Ramesh et al. (2016)

RADP crystal (rubidium ammonium
dihydrogen phosphate: paraelectric
phase—glass state)

−41.5 Trybuła and Stankowski
(1998)

For the dominant group of glass formers (molecular liquids, polymers, etc.): dTg/dP> 0
(Donth, 2000; Roland et al., 2005; Floudas et al., 2011).

where the coefficient ε = [30log10(e)/(log10(τ(Tg))− log10τ0)]1/α .
Notable is some discrepancy between Eqs 7 and 8 because the

coefficient ε ≫ 1. Worth recalling is also the criticism (Martinez-
Garcia et al., 2013, 2014) regarding the basic AMmodel (Avramov
and Milchev, 1988) output relation τ(T)= τ0 exp(A/TD) or
η(T)= η0 exp(A/TD), for P= const.

It is worth stressing that for SG Eq. 6 and AA Eqs 7 and
8 always dTg,m/dP> 0, i.e., Tm(P) and Tg(P) have to increase
permanently with rising pressure. However, there are also systems
dTg,m/dP< 0, although the experimental evidence for such glass
formers is still limited: some of them are collected in Table 1.

It seems that such behavior may occur only for some
strongly bonded glass formers. Notwithstanding, taking into
account the clear evidence of systems with Tm(P) maximum
(Kechin, 1995, 2001; Tonkov and Ponyatovsky, 2004), the similar
behavior can be expected for Tg(P) curves. It is notable, that
already a century ago it was indicated that the reversal melting
dTm/dP > 0 → (Tmax

m , Pmax
m ) → dTm/dP < 0 can be the gen-

eral phenomenon (Tammann, 1903), although it can be hidden in
the negative pressures domain or its emergence can be stopped
by a phase transition. The description of the reversal melting
phenomenon was first clearly proposed by Rein and Demus (RD)
(Demus and Pelzl, 1988; Rein andDemus, 1992) and subsequently
by Kechin (K) (Kechin, 1995, 2001):

Tm(P) = T0

(
1 +

P
a

)1/b
exp (−a1P) = R(P) × D(P), (9)

where a, b and a1 are adjustable parameters. R(P) denotes the
SG-type “rising” term and D(P) is for the “damping term.”

In subsequent decades Eq. 9, most often recalled as the “Kechin
equation,” became the key tool for describing experimental data
associated with melting curve maximum (Drozd-Rzoska, 2005;
Skripov and Faizulin, 2006; Drozd-Rzoska et al., 2007a; Rzoska
and Mazur, 2007; Rzoska et al., 2010). Regarding the meaning
of parameters in Eqs 6–9 one can generalize the reasoning of
Burakovsky et al. (Burakowsky et al., 2000; Burakovsky et al.,
2003), who considered the volume-related compression factor
(modulus): η′ = ΔV0/ΔV= (V(π)−V(P0))/(V(P)−V(P0))
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and linked it to the bulk (compressibility) modulus via
B=− ΔV(d(ΔP)/d(ΔV))= η′d(ΔP)/dη′, with the pressure
dependence given as B(P) = B0 + B′

0P + ... and ΔP= P− P0:

η′(P) =
(
1 +

B′
0

B0
P
)1/B′

0

→ Tm(P) = T0 ∗
(
η′)−1

= T0

(
1 +

P
B0./B′

0

)1/B′
0

, (10)

where the index “0” is related to the reference point (T0, P0).
Hence, taking the atmospheric pressure as the reference one

can indicate the following meaning of parameters in Eqs 6–9
a=B0/B′

o = π and for the power exponent b = B′
0. For SG

and AA Eqs 6 and 7, as well as K&RD Eq. 8, the reference
has to be taken as T0 =Tg,m(P0 = 0)≈Tg,m(P0 = 0.1MPa). Other
selections of T0 yields non-optimal and effective values of fit-
ted coefficients. In Skripov and Faizulin (2006) as the general
reference the triple point was proposed: and the T0 =Ttriple
and P→ΔP= P− Ptriple in the SG Eq. 6. Such reference cannot
be implemented for the glass transition. Drozd-Rzoska (Drozd-
Rzoska, 2005; Drozd-Rzoska et al., 2007a, 2008) proposed as
the reference arbitrary values (T0, P0) along melting or vitrifica-
tion curves, assuming ΔP= P− P0. Subsequently, considering the
Clausius–Clapeyron equation along the melting or vitrification
curve (ΔH/ΔV)Tg,m,Pg,m =(bΠ + bΔP)/(1 − c (bΠ + bΔP)) the
following relation was derived (Drozd-Rzoska, 2005):

Tg,m(P) = T0

(
1 +

P − PSp
π + P0

)
× exp

(
−P − P0

c

)
= T0

(
1 +

ΔP
Π

)1/b
× exp

(
− ΔP

c

)
, (11)

where ΔP= P− P0, −π is the extrapolated negative pressure
value for which Tg,m(P→−π)→ 0: it correlates with the onset
of TSp(PSp) absolute stability limit curve in negative pressures
domain; c is the damping pressure coefficient.

For small or moderate pressures one obtains the SG or AA-type
equation(Drozd-Rzoska, 2005; Drozd-Rzoska et al., 2007a, 2008):

Tg,m(P) ≈ T0

(
1 +

P − P0

π + P0

)
= T0

(
1 +

ΔP
Π

)1/b
(12)

Equation 11 is able to portray systems with the maximum
of melting or vitrification curve, even if they are hidden in the
negative pressures domain. It can be also applied for systems
were dTg,m/dP< 0. Equation 12 can describe experimental data if
dTg,m(P)/dP> 0 and the set of data is well below the maximum of
Tg,m(P) curve. Both relations can be implemented in the negative
pressures domain. Applying results of Burakowsky et al. (2000),
one obtains: b = B′

0 and B0/B′
0 = P0 + π and then B0 =

B′
0P0 +B′

0π. The latter equation is in agreement with the empirical
relation for the pressure evolution of the bulk modulus recalled
above (Murnaghan, 1944). It is notable that both the basic AA
Eq. 7 and the extended Eq. 12 are able to portray experimental
data in the negative pressures domain. For Eq. 7 such portrayal
was successfully applied in Adrjanowicz et al. (2015). However,

for Eq. 7, one has to assume T0(P= 0) as the reference. Moreover,
the direct substitution of negative pressures, is not possible if
hallmarks of the reversal vitrification (Tg(P) maximum) appears:
Demus–Rein–Kechin (Eq. 9) is not able to portray experimental
data if substituting P< 0, contrary to Drozd-Rzoska et al. (Eq.11).

There are few other approaches considering Tm(P) evolution
which start from theC–C or related Lindemann relations (Skripov
and Faizulin, 2006). They are briefly presented below, with indi-
cations of their applicability for the glass formation. Schlosser
et al. (1989) starting from the Lindemann relation Tm =CV2/3ΘD
(C is a constant, ΘD is the Debye reduced temperature) (Lin-
demann, 1910; Skripov and Faizulin, 2006) and the definition
of the Grüneisen parameter as γ = (∂ΘD/∂V)T =− ∂lnΘD/∂lnV
(Grüneisen, 1912) obtained the relation focusing on the volume
dependence of the melting temperature. Generalizing this depen-
dence for the arbitrary fusion process one obtains:

Tg,m(V) = T0

(
V
V0

)2/3
exp

(
2γ0

V − V0

V0

)
= T0X2 exp

(
2γ0

ΔV
V0

)
,

(13)

where the index “0” is for the zero-pressure (~atmospheric pres-
sure) reference.

Assuming for the X2 ≈ 1− 2ΔV/3V0 ≈ exp(− 2ΔV/3V0) fol-
lowing relation was derived (originally for melting):

Tg,m(V) = T0 exp
(

−2ΔV
3V0

)
exp

(
2γ0

ΔV
V0

)
(14)

Onemay expect that it is able to portray systems described both
by dTg,m/dP> 0 and dTg,m/dP< 0. For small/moderate pressures
Eq. 14 can be reduced to the Kraut–Kennedy relation (Kraut and
Kennedy, 1966; Schlosser et al., 1989), originally developed for
melting:

Tg,m ≈ T0

[
1 + 2 (B0 − 1/3) ΔV

V0

]
= T0 (1 + CΔV/V0). (15)

It can be converted to the density related dependence along
melting or vitrification curves:

Tg,m ≈ T0

(
1 + C

ρ0 − ρ
ρ

)
= T0

(
1 + CΔρ

ρ

)
. (16)

Linking Eqs 12 and 15 one obtains the relation for pressure-
induced volume changes along melting or vitrification curve:(

ΔV
V0

)
g,m

=
(1 + ΔP/Π)1/b − 1

C . (17)

This relation is in fair agreement with the Murnaghan
equation, broadly used is earth sciences (Murnaghan, 1944;
Poirier, 2000; Skripov and Faizulin, 2006). Recalling the depen-
dence ΔV/V0 = ln(1+ βP)/α, where α =B′ + 1 and β =
α/B =

(
B′

0 + 1
)
/BEq. 15 can be converted to the SG- orAA-type

equation (Schlosser et al., 1989):

Tg,m(P) ≈ T0(1 + βP)2(B−1/3)/α (18)

Frontiers in Materials | www.frontiersin.org November 2017 | Volume 4 | Article 334

http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Rzoska Pressure Evolution of the Glass Temperature

It this relation the SG exponent b =
(
B′

0 + 1
)
/(2 (B0 − 1/3)),

i.e., it differs from Burakovsky (Burakovsky et al., 2003)
predictions.

Kumari and Dass (Kumari and Dass, 1988; Dass, 1995) also
applied the framework of the Lindemann criterion (Lindemann,
1910) and workout the relation originally focused on the pressure
evolution of the melting temperature, focusing on alkali metals:

ln
(
Tm,g

T0

)
= −2αP +

[
2
(
C +

α
β

)
ln (1 + βP)

]
, (19)

where α = (γ′/B′)P0, T0, β =
(
B′/B

)
P0,T0

, C= [(γ − 1/3)
/B′]P0,T0

, γ, γ,′ and B, B′ stands for the Grüneisen parameter, bulk
modulus and their first derivatives.

This relation can describe systems notably diverging from the
SG pattern, including the crossover dTg,m/dP> 0→ dTg,m/dP< 0.
It can be also converted to the form coincided with Rein and
Demus and Kechin Eq. 8:

Tm,g = T0(1 + βP)2C+2α/β exp (−2αP) (20)

The coefficient α = γ′/B′, what makes it possible to define the
“damping pressure” parameter in DR Eq. 11: c=B′/2γ′. Equation
20 can be reduced to the SG or AA forms assuming α = 0 (Dass,
1995), i.e., γ(P)= const in the given range of pressures:

Tm,g(P) = T0(1 + βP)2C. (21)

It is also notable that Eq. 19 makes it possible to estimate
the location of the maximum of Tg,m(P) curves as Pmax

g,m =
(γ − 1/3 )/γ′. Taking into account the form of the exponent
C worth recalling is Lindemann–Gilvary law (Gilvarry, 1966)
dTm/dP=Tm[2(γ − 1/2)/B], what indicates the pressure depen-
dence of the power exponent in the SG-type Eq. 21. Schlosser et al.
Equation 13 and Kumari–Dass Eq. 19 and can be extended to the
negative pressures domain when introducing the reference related
to the absolute stability limit in the negative pressures domain:
P→ΔP= P− PSp, V→ΔV=V−VSp, ρ→ρ − ρSp.

The formal base of above relations, including the Anders-
son–Andersson equation, are the extended C–C relation or/and
the Grüneissen parameter definition. Their implementations are
related to different pressure dependences of the volume and
the modules in neighboring phases. The latter give rise to the
nonlinear dependence of the enthalpy. For melting at the well-
defined temperature such behavior is easily detectable in neigh-
boring phases. For the glass transition there are “stretched” grad-
ual changes of mentioned properties over the transition region
between coexisting ultraviscous/ultraviscous and solid states.
Notwithstanding, also for the glass transition one can define
the equivalents of “jumps” for ΔV and ΔS, or equivalently ΔH
(Figure 1).

THE ANALYSIS OF EXPERIMENTAL DATA

When considering the parameterization of Tg(P) or Tm(P) exper-
imental data, some basic problems emerges:

(i) Does the selected equation is proper for portraying the given
set of data?

(ii) What is the pressure range of applicability of the description?
(iii) Is it possible to estimate optimal values of parameters, avoid-

ing the uncertainty associated with the number of parameter
and the nonlinear fitting?

To address these questions, in Drozd-Rzoska (2005), Drozd-
Rzoska and Rzoska (2006), and Drozd-Rzoska et al. (2007a), the
preliminary derivative-based and distortions-sensitive analysis
of Tm(P) and Tg(P) experimental data was proposed: Tg(P) ⇒
[d(lnTg,m)/dP]−1. For SG/AA or DR Eqs 6, 7, and 12, one obtains
the linear behavior of transformed experimental data (Drozd-
Rzoska, 2005; Drozd-Rzoska et al., 2007a):

(d lnTg,m/dP)−1 = ba + bP and

(d lnTg,m/dP)−1 = bπ + bP. (22)

It is visible that the description via DR and SG/AA relations
overlaps and both can be extended into the negative pressures
domain. However, such possibility for the AA and SG relation
may be casual since it does not takes place for Rein and Demus
and Kechin Eq. 9, for Kumari and Dass Eq. 19 or for pressure
counterparts of the VFT relation (Eqs 2 and 3).

Regarding the “general” DR Eq. 11, the following transforma-
tion of experimental data was proposed to test the domain of its
validity (Drozd-Rzoska et al., 2007a, 2008):[

d(lnTm)/dP + c−1
]−1

= A + BP (23)

For the optimal selection of the damping pressure coefficient
c one obtains the linear behavior of transformed experimental
data and the linear regression fit yields optimal values of π, b,
and c coefficients. Subsequently, they can be substituted to Eq. 11,
avoiding the nonlinear fitting.

Concluding, Eqs 22 and 23 define the way of the preliminary
transformation and analysis of experimental Tg,m(P) via the plot
d lnTg,m/dP vs. P, which indicates the domain of the domain of
validity of the given description and optimal values of parameters.
The derivative-based and distortions-sensitive preliminary analy-
sis can reveal even “weakly emergent” hallmarks of approaching
dTg,m/dP> 0 ⇔ dTg,m/dP< 0 crossover, hardly “eye-detectable.”
Below, practical applications of above reasoning are discussed.
First, they are focused on melting of germanium (dTm/dP< 0)
(Vaidya et al., 1969; Porowski et al., 2015) and subsequently for the
“soft” material, P4MP1 polymer, with Tm(P) maximum (Höhne,
1999; Höhne et al., 2000). It is worth stressing that for the vast
majority of systems tested so far dTm/dP> 0 (Kechin, 1995, 2001;
Skripov and Faizulin, 2006) and there is much lesser number of
systems where dTm/dP< 0 (see Table 1). Figure 2 presents such
data for germanium, which can be well portrayed by DR Eq. 11,
with parameters obtained from the pre-analysis of experimental
data via Eq. 23, as shown in the inset. Notable, is the possible max-
imum of Tm(P) curve hidden in the negative pressures domain at
Pmax ≈−0.32GPa.

Figure 3 presents the unique “soft matter system” where the
crossover dTm/dP> 0⇔ dTm/dP< 0 takes place at relatively low
pressures: Pmax ≈ 150MPa. Recalling the Kumari–Dass model
(Dass, 1995; Kumari and Dass, 1988) such small value of Pmax
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FIGURE 2 | Pressure dependence of melting temperature of germanium
[based on data from ref. Vaidya et al. (1969), Porowski et al. (2015)].
Experimental data are portrayed by DR Eq. 11, with the support of the
preliminary derivative-based analysis (Eq. 23) yielding also optimal values of
parameters: this is shown in the inset.

FIGURE 3 | The evolution of melting temperature in poly(4-methyl-pentene-1):
isotactic P4MP1 polymer: based on data from ref. (Höhne, 1999; Höhne
et al., 2000) The results from Eq. 11, with parameters derived due to the
preliminary analysis of data via Eq. 23.

may result from the strong pressure dependence of theGrüneissen
parameter.

One can expect that different types of Tm(P) dependences
should be paralleled by Tg(P) behavior, taking into account the
form of GFA factor. Unfortunately, the number of experimental
data for Tg(P) is very limited.

Figure 4 shows the compilation of Tg(P) and Tm(P) experi-
mental data available for selenium. It is notable that a single DR
Eq. 11 curve can describe the whole set of Tm(P) data, with-
out a hallmark of passing a liquid I–liquid II (L–L) transition
(Imre and Rzoska, 2010). This issue is worth stressing because
often dTm/dP discontinuity is reported when passing the L–L
transition (Imre and Rzoska, 2010). The value of the ratio Tg/Tm
changes from Tg/Tm(P= 0.1MPa)≈ 2/3→Tg/Tm(P≈ Pmax)≈

FIGURE 4 | The pressure evolution of melting and glass temperature for
selenium. The change of Tg/Tm value is indicated. Solid curves are described
by DR Eq. 11: parameters were derived from the preliminary analysis based
on Eq. 23. Experimental data were taken from refs. (Deaton and Blum, 1965;
Tanaka, 1984; Ford et al., 1988; Katayama et al., 2000; Caprion and
Schober, 2002).

1/2 (Drozd-Rzoska et al., 2007a, 2008). When entering the neg-
ative pressures domain the GFA factor Tg/Tm → 1, i.e., the system
becomes extremely good glass former.

Glycerol belongs to the group of the most “classical” glass-
forming ultraviscous liquids (Donth, 2000; Rzoska and Mazur,
2007; Rzoska et al., 2010; Berthier and Ediger, 2016) Figure 5
shows the compilation of data from the authors’ broad band
dielectric spectroscopy pressure studies and the analysis of the
primary relaxation time τ(T, P) via Eq. 5 supplemented by ear-
lier Tg(P) estimations (Drozd-Rzoska, 2005; Drozd-Rzoska et al.,
2007a). Notable is the emergence of two types of Tg(P) evolution.
The first one leads to themaximumofTg(P) curve atPmax

g ≈ 7GPa
and it is followed by a hypothetical reversal vitrification associated
with dTg(dP< 0). However, prior to reaching the maximum, at
P≈ 6.5GPa the “crossover” to the another form of Tg(P) evolu-
tion, described by dTg/dP> 0 takes place. The dashed curve shows
the extrapolation of the solid blue curve, with the indication of
a hypothetical “hidden” maximum of Tg(P) curve. The inset in
Figure 2 shows changes of (dTg/dP) coefficient on rising pressure,
additionally distinguishing two different types of Tg(P) evolution.

Generally, the experimental evidence of glass formers charac-
terized by dTg/dP< 0 is very limited (see Table 1). Such behavior
seems to be characteristic for some strongly bonded systems.
Figure 6 shows results of such studies for albite, a geophysically
important material, which can be well portrayed by Eq. 11, reveal-
ing the maximum of Tg(P) curve “hidden” in negative pressures
domain.

UNIVERSAL ASPECTS OF THE PRESSURE
EVOLUTION OF THE GLASS
TEMPERATURE

The above discussion indicated the possible common phe-
nomenological description of Tg(P) evolution in glass formers
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FIGURE 5 | The pressure evolution of the glass temperature for glycerol. The
solid blue curve, with “dotted” and “dashed” parts is related to DR Eq. 11 and
the preliminary analysis via Eq. 23. Experimental data are from author’s
measurements and from Cook et al. (1994), Drozd-Rzoska (2005),
Drozd-Rzoska et al. (2007a), Pronin et al. (2010). The dashed line and stars
(in magenta) in the negative pressures domain denotes the possible absolute
stability limit location: this was determined from the analysis of τ(P)
experimental data via Eq. 5. The inset shows the pressure evolution of dTg/dP
coefficient.

FIGURE 6 | The pressure evolution of the glass temperature in albite
(NaAlSi3O8), the component of magmatic, metamorphic rocks. The plot
bases on experimental data from ref. (Bagdassarov et al., 2004). The solid
curve is related to Eq. 11.

described by dTg(P)/dP> 0 and/or dTg(P)/dP< 0. The question
arises of the more microscopic insight. Voigtmann (2006a) ana-
lyzed the vitrification within frames of the square-well (SW)
model associated with the relatively simple potential: U(r)=∞
for distances r< d supplementedwith an SWattractionwithin the
range δ, U(r)=−U0 for d< r< d(1+ δ), and U(r)= 0 beyond
was analyzed. The SW approach proved its superior ability for
describing colloidal glass formers, which can be thus considered as
a kind of archetypical experimental glass-forming model system.

In Voigtmann (2006a), the possibility of the common descrip-
tion of glass-forming molecular liquids and colloids was shown,
using the plot log10P∗

g and log10T ∗
g , where the “natural units,”

i.e., model normalized glass pressure and temperature were used:
T ∗
g = Tg/Tmod el

g and P∗ = Pg/Pmod el
g . In Voigtmann (2006b),

the similar plot was tested for the model fluid associated with
the Lennard–Jones (LJ) VLJ = 4∈ [(r/σ)−12 − (r/σ)−6] potential
analyzed within the mode-coupling theory approximation. In
Voigtmann (2006a), Tg(P) experimental data for glycerol, dibutyl
phthalate, o-terphenyl, and epoxy resin EPON 828 were analyzed
(dTg/dP> 0). In Roland and Casalini (2003), only glycerol was
discussed, for the clarity of reasoning. This report also focuses on
glycerol, but for the notably enhanced range of pressures, basing
on data from Figure 5. This is supplemented by experimental data
for albite, where dTg/dP< 0 (Figure 6). InVoigtmann (2006a), the
SW model units were used for scaling, namely Tmod el

g = TSW
g =

U0/kB = 826K and Pmod el
g = PSWg = U0/d3 = 3.09GPa and

in Voigtmann (2006b), the LJ model units, i.e., TLJ
g = kB/∈ =

500K and PLJg = ∈/σ3 = 2.5GPa: numbers are given for
glycerol. In Voigtmann (2006b), the partial agreement between
predictions of SW and LJ model was obtained after ad hoc shifting
T∗ → 1.5T∗. It is notable that so far experiments in colloids are
carried out under atmospheric pressure and obtained phase dia-
grams are presented using the volume fraction (φ)—interaction
strength or temperature axes. Such data were model-mapped into
the pressure–temperature plane in Voigtmann (2006a). Figure 7
recalls results of Voigtmann (2006a) for: (i) the colloid with the
addition of polymer increasing attraction and causing the “re-
entrant” vitrification (Pham et al., 2002), (ii) glycerol (dTg/dP> 0)
for experimental data taken from Figure 5, (iii) albite for which
dTg/dP< 0 (Figure 6), and (iv) the SW model predictions for
δ = 0.04 and δ = 0.12 values of the key parameter, (v) the model
using LJ potential with and without the attraction. This is supple-
mented by results of fitting via DR Eq. 11 for glycerol and albite.
One of key findings of Voigtmann (2006a,b) was the “generic
steep” anomaly with exactly defined singularity, the same for
any molecular glass former: T ∗

g → 0.23 for SW model units
and T ∗

g (anomaly) → 0.334 for the LJ model. These led to the
conclusion that there are three general regimes of glass formation
resulted from Tg(P) evolution (Voigtmann, 2006a,b):

Regime I—for T ∗
g > 1: glass formers approach the hard

sphere limit. Following Voigtmann (2006a,b) in this domain:
Tg ∝ P4/5

g .
Regime II—for 1 > T ∗

g > 0.23 (or_0.334): there is a universal
“generic steep” anomaly and this regime is characteristic for
molecular glass formers.
Regime III—forT ∗

g → 0 the lowdensity andweak interactions
domain occurs. It is available for colloidal glass formers and
does not accessible for molecular ones.

In Voigtmann (2006a,b), glass-forming systems for which
dTg/dP< 0 were not discussed.

One of the most striking features of Voigtmann (2006a,b) is the
“generic steep” anomaly, presumably occurring only for molecu-
lar glass formers. However, this unique phenomenon has few sur-
prising features. First, it is very strong and associated with exactly
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FIGURE 7 | The pressure dependence of the glass temperature, summarizing
the model discussion (Voigtmann, 2006a,b): SW is for the square-well
potential model, LJ—the Lennard–Jones potential model and HS is for the
hard spheres model. For details see the text of the given paragraph and refs.
(Voigtmann, 2006a). Experimental data for glycerol are taken from Figure 5:
they are present in the “natural scaled” units. Data for albite are from Figure 6.
Note that for open green diamonds (glycerol) and open circles (albite) the
reference pressure was takes into account: P→ ΔP=P+ π. Data for the
polymer mediated colloid are from Pham et al. (2002) and Voigtmann (2006a).
For details see comments in the given paragraph. Note the disappearance of
the “generic steep” anomaly (indicated by the vertical arrow) and the ability for
describing arbitrary glass former. For scaling model values see the text below.

the same “singular” value of T ∗
g ≈ 0.23 for arbitrary molecular

glass former. Well above the singularity experimental data for all
molecular glass formers overlaps. Second, the “generic” anomaly
appears in the log–log scale but no hallmarks of such behavior
appears in the linear scale for any “native” Tg(P) data (Johari and
Whalley, 1972; Andersson and Andersson, 1998; Donth, 2000;
Roland et al., 2005; Drozd-Rzoska et al., 2007a, 2008; Rzoska and
Mazur, 2007; Floudas et al., 2011). Third, although real high pres-
sure results for colloidal glass formers are still not available, one
can easily show that such data also will follow the same “generic
steep anomaly” pattern, in disagreement with “re-calculated” data
shown in Figure 7 (stars).

Following all these, one can conclude that the “generic
steep” anomaly is the consequence of P→ 0 (i.e., in practice
P→ 0.1MPa) within the plot applying the log–log scale. This
is not a real physical phenomenon. Any fluid can be smoothly
crossovered from the hydrostatic pressures region (P> 0) to the
isotropically stretched, negative pressures domain (P> 0) (Imre
et al., 2002). Experimental evidences clearly show the lack of any
hallmarks of passing P= 0, also for supercooled molecular glass
formers (Angell andQuing, 1989; Sciortono et al., 1995; Imre et al.,
2002). The natural termination of the liquid state is the absolute
stability limit spinodal in negative pressures domain, where any
liquid “breaks” and the homogeneous cavitation occurs. Taking
this as the reference one should consider the “universal plot” based
on the scale log10ΔP∗ = log10

[
(P + π)/Pmod el

g

]
vs. log10T ∗

g

instead of log10P∗ vs. log10T ∗
g plot.

Following refs. (Voigtmann, 2006a,b) the model parameters
are related to the LJ potential, which is considered as a realistic
interaction model in liquids: VLJ(r)= 4U0[(r/σ)−12 − (r/σ)−6],

for which the model temperature and pressure T∗ = kBT/U0
and P∗ = Pσ3/U0. To correlate experimental and model data the
“arbitrary” scale shift is also used (see for comparison: Voigt-
mann, 2006a,b). Following scaling values were assumed: Pmod el

g =
3.09GPa and Tmod el

g = 826K for glycerol and Pmod el
g = 10.4GPa

and Tmod el
g = 210K for albite.

Consequently, the “generic steep” anomaly disappears and
Tg(P) experimental data for molecular glass formers can be
mapped also to the low density (T∗ → 0) domain. When link-
ing such analysis with Eq. 11 one also obtains the possibility
of describing systems characterized by dTg/dP< 0, as shown for
the extrapolated behavior for glycerol and for albite in Figure 7.
Figure 7 also shows that the re-entrant glass-forming colloids
mapped from experimental studies under atmospheric pressure
to the P-T plane are related to the case dTg/dP< 0.

For glycerol, for very high pressures, the behavior described
by Tg ∝ P4/5

g emerges and the evolution approaches the hard
sphere limit pattern (Voigtmann, 2006a). One of arguments for
the generic importance of the “steepness” anomaly in Voigtmann
(2006a,b) was the possibility of it reproduction by the model-fluid
with LJ potential containing properly adjusted attraction term.
However, for the analysis of T ∗

g
(
P∗
g
)

in such model-fluid the
absolute stability limit have to be taken into account: after the
transformation P → ΔP the “generic steep anomaly” disappears
also for the LJ model fluid.

Concluding, the plot log10ΔP∗
g vs. log10T ∗

g offers a nice frame
for the “universal” presentation and comparison Tg(P) experi-
mental and model based data. The crossover from dTg/dP> 0 →
dTg/dP< 0 seems to be associatedwithT ∗

g → 0.6 andT ∗
g → 3.55

in such plot. This is the key feature of the intermediate regime
II. There are no unique “generic” steep anomalies. Finally, worth
indicating is the general difference between P∗

g vs. T ∗
g data taken

from “concentrational” experiment under atmospheric pressure
(1) and from the real high-pressure experiment (2) for colloidal
glass formers. The case (1) for re-entrant colloidal glass former
can be linked to the group of systems where dTg/dP< 0. The
characterization of the solvent is constant but the number of
colloidal particles and distances between them can change when
“decreasing pressure” (φ → 0). For such system the problem of the
absolute stability limit is absent: it is naturally related to P∗

g = 0
and the negative pressures domain does not exist. For the case (2),
compressing changes notably not only not only distances between
colloidal particles but also properties of the solvent. Changes of
density of the solvent (typically ~ 30% for P≈ 1GPa) are associ-
ated with very strong changes in dynamics, particularly near the
glass temperature. In this case “rarefication” associated with the
isotropic stretching and entering pressures domain can yield even
stronger changes for the solvent. Stretching is terminated by the
absolute stability limit spinodal in negative pressures domain. All
these show that for the case (1) properties of the colloidal glass
former are dominated almost exclusively by colloidal particles. In
the case (2), at least equally important is the impact of the solvent.

Figure 7 indicates the clear link between molecular and col-
loidal glass formers: they follow the same patter the plot log10ΔP∗

g
vs. log10T ∗

g . Model fluids based on SW and LJ potentials offer the
nice frame for getting the fundamental insight into experimental
data within such presentation.
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CONCLUDING REMARKS

This report presents proposals of few equations for describing the
pressure evolution of the glass temperature beyond the dominated
SG/AA pattern. They make the description of glass-forming sys-
tems where both dTg/dP> 0 and dTg/dP< 0 possible. The ways
of portrayal were extended also for the evolution of Tg(V,ρ) and
Pg(V,ρ). The basic relevance of including into the analysis negative
pressures and the preliminary derivative-based and distortions-
sensitive analysis has been shown. From results presented the pos-
sible general pattern forTg(P) evolution for glass-forming systems
ranging from low molecular weight liquids, resins, polymer melt,
liquid crystals to colloidal fluids emerges.

In the low density region the extended SG-type equation can
describe experimental data. On increasing pressures, for inter-
mediate densities, the gradual inclusion of the “damping term”
can lead to the reversal (re-entrant, dTg/dP< 0) vitrification.
However, for strongly compressed and high density systems the
crossover to the second, HS-type, dependence Tg(P) → P4/5

g
takes place. The crossover to this second type of vitrification
can occur before reaching the maximum of Tg(P) as for glyc-
erol or well beyond the maximum. For the model-normalized
“universal” plot log10ΔP∗

g vs. log10T ∗
g such general characteri-

zation is manifested as the less or more marked S-shape. It is
notable that this picture may be valid both for molecular and
colloidal glass formers, although for the latter real high-pressure
experiments are still required. For the dominated group of sys-
tems where dTg,m/dP> 0 most often the SG/AA-type (Tg,m(P)),
Kraut–Kennedy type (Tg,m(V, ρ)) or Murnaghan type (Pg,m(V,ρ))
dependences are used. The discussion for the latter (Poirier, 2000;
Skripov and Faizulin, 2006) indicates that notable distortions

appears for ΔV/V0 → 1/2. Taking into account the compressibility
of typical molecular liquids such domain starts for P ~ 1.5GPa. In
the opinion of the authors, equally important can be the distance
of the reference point from the possible maximum of Tg(P), even
if it is “hidden” by a phase transition or crossover to another form
of vitrification.

Finally, we would like to stress the significance of the above
discussion for the glass transition physics, material engineering
and geophysical and planetary studies (Donth, 2000; Poirier, 2000,
Berthier and Ediger, 2016; Rodríguez-Tinoco et al., 2016; Svenson
et al., 2017).
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