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Si@SiOx/grapheme nanosheet (Si@SiOx/GNS) nanocomposites as high-performance 
anode materials for lithium-ion batteries are prepared by mechanically blending the 
mixture of expanded graphite (EG) with Si nanoparticles, and characterized by Raman 
spectrum, X-ray diffraction (XRD), field emission scanning electron microscopy, and 
transmission electron microscopy. During ball milling process, the size of Si nanoparticles 
will decrease, and the layer of EG can be peeled off to thin multilayers. Electrochemical 
tests reveal that the Si@SiOx/GNS nanocomposites show enhanced cycling stability, 
high reversible capacity, and rate capability, even with high content of active materials of 
80% and without electrolyte additives. The retained revisable capacity is 1,055 mAh g−1 
after 50 cycles at 0.2 A g−1 and about 63.6% of the initial value. The great electroche -
mical performance of Si@SiOx/GNS nanocomposites can be ascribed to GNS prepared 
through heat-treat and ball-milling methods, the decrease in the size of Si nanoparticles 
and SiOx layer on Si surface, which enhance the interactions between Si and GNS.

Keywords: silicon, silicon oxide, gns, ball milling, lithium ion batteries

inTrODUcTiOn

Lithium-ion batteries have been widely used in consumer electronics, electrical vehicles, and energy 
storage market (Tarascon and Armand, 2001; Chan et al., 2008; Li et al., 2009; Huang et al., 2013; 
Rahman et  al., 2016). In recent years, lots of efforts have been put in exploring anode materials 
with higher specific capacities over graphite. Silicon-based materials have attracted considerable 
research attentions as one of the most promising anode materials for lithium-ion batteries because 
of its highest theoretical capacity (4,200 mAh g−1) during the formation of Li4.4Si alloys (Netz and 
Huggins, 2004; Chan et al., 2008; Teki et al., 2009; Winter et al., 2010; Ji et al., 2011; Yue et al., 2013; 
Wang et al., 2015). However, the huge volume changes during lithiation and de-lithiation process 
always leads to poor cycle performance and electrical contact, which severely hinders the industrial 
applications of silicon-based anode materials (Candace et al., 2009; Hertzberg et al., 2010; Bo et al., 
2016; Li et al., 2016, 2017). Currently, some approaches have been designed to accommodate the 
volume change by introducing void spaces or improving the linkage between Si particles, and further 
enhance the cycling performance of Si materials, such as decreasing Si into nanoscale size (Chen 
et al., 2010; Szczech and Jin, 2010; Hu et al., 2011; Liu et al., 2011, 2015) (e.g., silicon nanowires, 
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scheMe 1 | Illustration of the synthesis process of Si@SiOx/GNS nanocomposites.
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silicon nanotubes, and silicon nanoarrays); developing Si into 
thin-film electrodes (Arie et al., 2009; Tao et al., 2011); optimiz-
ing the morphology of silicon to improve the electronic contact 
of silicon with current collector (Zheng et al., 2007; Peng et al., 
2010) or dispersing silicon into a dimensional stable matrix 
(Ng et al., 2006; Zhang et al., 2010; Yi et al., 2013). On the other 
hand, SiOx nanocomposites also have attracted considerable 
attention because the in situ generated Li2O during the first dis-
charge process can buffer the volume changes during lithiation/
delithiation process and further improve the cycling performance 
of electrode (Hu et al., 2008). For example, core double-shell Si@
SiO2@C nanocomposites were produced through hydrothermal 
and annealing process, and displayed stable cycling performance 
even in the VC-free electrolyte (Liwei et al., 2010). Furthermore, 
some groups also successfully prepared SiOx anodes with great 
cycle performances (Guo et al., 2012; Xin et al., 2012).

Recently, GNS has been attracted great attention because of 
its intriguing properties in good electrical conductivity, high sur-
face area, unique heterogeneous, etc. (Bunch et al., 2007; Dikin 
et al., 2007; Geim and Novoselov, 2007), and several routes have 
been established to prepare GNS, such as chemical reduction of 
exfoliated graphite oxide, chemical vapor deposition, thermal 
reduction of graphite oxide, and others. However, these methods 
do not fit at the moment for manufacturing electrodes because 
of tedious and expensive mass production. Two economic ways 
have been explored to prepare GNS on large scale. One is exfolia-
tion of graphite using ball milling, and another way is to treat the 
expandable graphite with high temperature (Zhao et al., 2010a; 
León et al., 2011; Xiang et al., 2011; Yan et al., 2012). In present 
work, Si@SiOx/GNS nanocomposites have been produced by a 
simple ball milling method, and the result Si@SiOx/GNS nano-
composites exhibit good cycling stability, high reversible capacity, 
and rate capability as anode materials for Lithium-ion batteries.

eXPeriMenTal

synthesis of si@siOx/gns 
nanocomposites
Expandable graphite was supplied by Qingdao Haida Co., Ltd. Si 
nanoparticles with average particle size of ~120 nm were bought 
from Hefei Kaier Nanotechnology Co., Ltd. In a typical process, 
expanded graphite (EG) was firstly prepared by expanding 
expandable graphite through rapid thermal expansion at 600°C 
for 10 min. Then, a mixture of Si nanoparticles and the as-prepared 
EG was milled at the speed of 500 rpm for 15 h in a planetary 
machine (QM-3SP04) with 30 agate balls in the diameter of 

0.8 mm, and then, Si@SiOx/GNS nanocomposites were obtained 
(Scheme  1). The obtained Si@SiOx/GNS nanocomposites were 
labeled as SG1, SG2, and SG3, respectively, with weight ratios of 
Si nanoparticles to EG as 1:1, 1:2, 2:1. In the similar way, Si@SiOx/
expandable graphite was also obtained and denoted as SEG for 
comparison.

characterization
Morphology of the samples was characterized by scanning 
electron microscopy (SEM) (JSM-7401F) and TEM (JEOL, 
JEM-2100). X-ray diffraction (XRD) was recorded with Cu-Ka 
radiation, and the current and voltage of X-ray tube is of 30 mA 
and 40  kV, respectively. Raman spectrum was recorded with a 
holographic grating of 1,800  g/mm. X-ray photoelectron spec-
troscopy (XPS) analysis was performed to confirm the oxidation 
state of obtained products. Fourier-transform infrared spectrum 
was conducted on a Perkin 1000 instrument over 4,000–450 cm−1. 
Thermogravimetric analysis (TGA) was carried out to deter-
mine the weight ratio of GNS in Si@SiOx/GNS.

electrochemical Measurement
Electrodes were made of Si@SiOx/GNS nanocomposite, acetylene 
black, and polyvinylidene difluoride in weight ratio of 80:10:10. 
Afterward, the slurry was spread onto a Cu current collector foil, 
then dried at 70°C for 6 h in vacuum. The typical mass loading 
of Si@SiOx/GNS nanocomposite on the electrode was about 
1.0  mg/cm2. Then, 2016-type Coin cells were assembled using 
polypropylene membrane as separator in an argon-filled glove 
box with concentration of oxygen and moisture below 1.0 ppm. 
Electrolyte was 1  mol/L of LiClO4 in a mixture of ethylene 
carbonate/diethylene carbonate (50:50 vol%). Coin cells were 
assembled with the as-prepared Si@SiOx/GNS electrode as 
anode and Li as counter electrode. Cycling of cells was tested 
between 0.01 and 3 V vs Li+/Li using LAND CT2001A model 
battery test instrument.

resUlTs anD DiscUssiOn

The formation of Si@SiOx/GNS nanocomposites is depicted in 
Scheme 1. A mixture of Si nanoparticles and EG is milled in a 
planetary machine with agate balls. During the ball milling pro-
cess, the size of Si nanoparticles will decrease, and Si nanoparticles 
are homogeneously dispersed among nanosheets. What’s more, 
the layers of EG would be peeled off owing to the mechanical 
shear stress of the agate balls and Si nanoparticles, just like the 
paper feeding process of a roll-fed printer (Zhao et  al., 2010a; 
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FigUre 1 | FESEM images of Si nanoparticles (a), expanded graphite (B), 
Si@SiOx/GNS nanocomposite (SG1) (c), and TEM image of SG1 (D).
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León et al., 2011; Xiang et al., 2011; Yan et al., 2012). Thus, the EG 
will convert to graphene nanosheet and coat on Si nanoparticles.

Figure  1 shows the morphology of Si nanoparticles, EG, 
and Si@SiOx/GNS nanocomposite (SG1). Compared the SEM 
images of EG (Figure  1B) with SG1 (Figure  1C), one can see 
that the layer of EG with about 400 nm in thickness are peeled 
off to thin multilayers during ball milling process. Furthermore, 
owing to mechanical mixing, homogeneous nanocomposites can 
be obtained. TEM images (Figure  1D) indicates that Si nano-
particles are of 50–100 nm in diameter with elliptical-shape after 
ball milling is smaller than that of pure Si nanoparticles without 
ball-milling (Figure 1A), indicating that ball milling process also 
has a great effect on the particulate size of nanocomposites.

X-ray diffraction patterns of the obtained nanocomposites 
(Figure 2A) shows that all the major peaks can be assigned to cubic 
silicon (JCPDS No. 89–2955). The diffraction peaks at 2θ = 28.5°, 
47.4°, 56.2°, and 76.5°can be indexed to the diffraction peaks of 
silicon. The broad peak at approximately 25.5° is attributed to that 
of GNS. No peaks of SiC phases are found, implying the obtained 
nanocomposites are free of SiC during the ball milling process. 
Raman spectroscopy is further used to confirm the obtained Si@
SiOx/GNS nanocomposites (Figure 2B). Both the Raman spectra 
of pristine expandable graphite and EG display a clear 2D-band 
located at the frequency of 2,727 cm−1, which is consistent with 
the multi-layer feature of bulk graphite. Comparing the Raman 
spectra of pristine expandable graphite with EG, heat-treatment 
process does not change the structure of expandable graphite. 
However, the intensity of 2D-peak decreases and appreciable 
D-peak signal can be observed after ball milling process, implying 
the significant disorder of expandable graphite and/or EG in the 
obtained nanocomposites. In addition, the ratio of the intensity 
of D and G peaks (ID/IG) for the as-prepared samples remarkably 
increases, indicating a reduced degree of graphitization (Luo 
et al., 2016a,b). The results are matching well with the previously 
reported data for GNS (Tang et  al., 2009; Zhao et  al., 2010b), 
implying the successful conversion of EG to GNS. In the Raman 
spectra of SEG and SG1, the sharp peak of 516 cm−1 corresponds 
to crystalline silicon, and the intensity of SG1 is higher than that 

of SEG, implying that both the heat and milling treatment of 
expandable graphite help to decrease the size of Si particles. From 
Figure  2C, one can clearly find the Si2p, O1s, and C1s typical 
peaks in the XPS spectra of SG1, indicating that the as-prepared 
samples consists of C and O. The O1s peak can be mainly ascribed 
to C-O, C = O, and Si-O types of O atom. The peak at 99.5 eV 
can be assigned to crystalline Si, and the peak at 103 eV in the 
high resolution is indicative of the presence of SiOx (x < 2) (Kim 
et al., 2010; Yang et al., 2017), which is mainly derived from the 
oxidation of Si particles during ball milling process. FT-IR is 
further carried out to study the effect of SiOx in the final products 
(Figure  2D). In the case of EG, peaks centered at 3,458 and 
1,639 cm−1 can be indexed to the adsorbed water. The peaks at 
around 1,367, 1,108, and 620  cm−1 are indexed to methylene 
group, P-O bond and Cl-O bond, respectively. For the spectra 
of SG1 and Si, the peaks at about 1,100, 800, and 450 cm−1 are 
assigned to Si-O bond. Before ball milling process, a pretreatment 
for Si nanoparticles using 20% HF are applied. Therefore, the SiOx 
in pristine Si nanoparticles are probably derived by surface oxida-
tion of Si nanoparticles in sample preparation of FT-IR. The peak 
intensities of Si-O bond for SG1 are stronger than that for pure 
Si nanoparticles, which indicates that the mixtures are further 
oxidized by ball milling. Through the FT-IR spectra of the three 
samples, we can also find that the peak intensities of Si-O bond 
and methylene group for SG1 are different from that of other 
samples, implying some chemical interactions between SiOx and 
the groups of GNS surface. The amount of Si@SiOx in the Si@
SiOx/GNS nanocomposites is about 58 wt% if we suppose GNS 
reacting with O2 in air to produce CO2 and the final resultants 
only including Si and SiOx (Figure 3).

Electrochemical performances of the as-obtained SG1 and 
SEG are displayed in Figure 4. From the charge/discharge curves 
at the 1st, 2nd, 10th, 20th, and 40th cycle of SG1 and SEG under 
a current density of 200 mA g−1 (Figures 4A,B), it can be found 
that SG1 and SEG show discharge capacities of 1,658.3 and 
1,663.7 mAh g−1 at the first cycle, corresponding the Coulombic 
efficiencies of about 67.2 and 69.3%, respectively. At the second 
cycle, the discharge capacity of SG1 and SEG decreases to 1,498.9 
and 1,207 mAh g−1, respectively, maintaining 90.4 and 72.5% to 
the initial value. The irreversible capacity loss of these nanocom-
posites can be ascribed to the formation of a solid electrolyte 
interphase film on GNS surface, which consumes plenty of Li ions 
(Wang et al., 2009). One can also note that both the composites 
show increasing capacity in first cycles because of the activation 
process coming from the reconstruction of crystal structure of 
Si, in which the Li–Si alloying/dealloying process leads to in sig-
nificant internal structural changes of Si anode (Shin et al., 2005; 
Guo et al., 2010; Xin et al., 2012; Luo et al., 2016a,b), and then, 
the Li+ diffusion and electrochemical kinetics reach an optimal 
state after several cycles.

Figure 5A shows the cycling performances of SG1, SEG, and 
pure Si materials. Te capacity of pure Si electrode drops dramati-
cally to ~300 mAh g−1 after 20 cycles, showing the poor cycling 
stability. One can also see that both SG1 and SEG electrodes 
shows higher initial reversible capacity of pure Si electrode of 
only 965.7  mAh g−1, which is because of the smaller size of Si 
nanoparticles after ball milling and better dispersion of nanosized 
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FigUre 2 | X-ray diffraction spectra of SG1, SG2, SG3, and Si@SiOx/expandable graphite (SEG) (a), Raman spectra of pristine expandable graphite, expanded 
graphite (EG), SG1, and SEG (B), X-ray photoelectron spectroscopy spectra of SG1 with the high-resolution spectrum of Si 2p (inserted) (c), FT-IR spectra of EG,  
Si nanoparticles, and SG1 (D).
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The bad cycling performance of SG2 and SG3 can be resulted 
to less weight ratio of Si nanoparticles or more serious volume 
effect, respectively. The rate performance of SG1 is shown in 
Figure 5B, the specific capacity at 0.2, 0.5, 1, and 2 A g−1 are 1,121, 
967, 718, and 470 mAh g−1, respectively, demonstrating its better 
rate performance. Noticeably, a stable high reversible capacity of 
1,196 mAh g−1 is still reserved when the current density returns 
to 0.2 A g−1 at the 41th cycle.

In general, the electrochemical improvement of electrode 
ascribes to the following reasons (as shown in Scheme  2B). 
First, the decrease in the size of Si nanoparticles with ball mill-
ing process and the homogeneously dispersion among GNS 
could impede the aggregation of Si nanoparticles. Besides the 
enhanced conductivity by GNS, the as-prepared Si@SiOx/GNS 
nanocomposites show higher specific initial capacity than pure 
Si materials. Second, as illuminated in Scheme  2A, the void 
between GNS can offer many free space to accommodate the huge 

Si in the as-prepared composites could be helpful to enhance the 
electrochemical performance of electrodes. Furthermore, the 
cycling abilities are obviously improved when Si nanoparticles are 
complexed with GNS or graphite, and SG1 reveals a better cyclic 
ability than that of SEG. Although the initial capacity of SG1 
electrode is slightly lower than SEG anode, the reversible capacity 
is retained as 1,055 mAh g−1 after 50 cycles, which is 63.6% of 
the initial value, while SEG presents a fast capacity fading. The 
dramatic difference performances of SG1 and SEG may due to 
the heat-treat process, which can enlarge the void space between 
nanosheets and offer more free space for the volume change of Si.

For comparison, the electrochemical evaluations of SG2 and 
SG3 are also carried out (Figure 6), and SG1 electrode shows the 
greatest enhancement of the capacity retention. Because the SG 
2 and SG3 have different composition ratios between Si and EG, 
the ball milling behaviors may not be equal to the SG1, which may 
affect the capacity and cycle performances of SG1, SG2, and SG3. 
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FigUre 4 | Typical charge–discharge curves of SG1 (a) and SEG (B) cycled 
at the 1st, 2nd, 10th, 20th, and 40th between 0.01 and 3.0 V.

FigUre 3 | Thermogravimetric analysis curves of Si nanoparticles and SG1.
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FigUre 5 | (a) Cycling performance of pure Si, SG1, and SEG, (B) rate 
performance of SG1 at current densities from 0.2 to 2.0 A g−1 between 0.01 
and 3.0 V.
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volume variation of Si during cycling, and maintain the integrity 
of electrode. At the same time, the void space between GNS could 
favor the diffusion of Li+ and electrons and facilitate the acces-
sibility of electrolyte. Finally, though SiOx reduces the reversible 
capacity and Coulombic efficiency of Si anode, the SiOx layer may 
improve the adhesion of Si and GNS, so, the cycling stability of Si 
anode is effectively enhanced (Liwei et al., 2010; Xin et al., 2012). 
Meanwhile, the generated Li2O can also buffer volume changes. 
Thus, the obtained composite show enhanced cycling stability, 
high reversible capacity and rate capability, even with high con-
tent of active materials of 80% and without electrolyte additives.

cOnclUsiOn

Si@SiOx/GNS nanocomposites are successfully prepared 
through a simple ball-milling method. The as-prepared material 

scheMe 2 | Schematic illustration of structure evolution of pure Si material 
(a) and Si@SiOx/GNS composite (B) during lithiation.

shows enhanced cycling stability, high reversible capacity, and 
rate capability, even with high content of active materials of 
80% and without electrolyte additives. The reversible capacity 
is retained ~1,055  mAh  g−1 after 50  cycles at 0.2  A  g−1. The 
enhanced performance of Si@SiOx/GNS composite can be 
ascribed to the reduced size of Si nanoparticles, SiOx layer and 
synergistic effect of GNS. Although the Coulombic efficiency 
and rate performance could be further improved, Si@SiOx/GNS 
nanocomposites show great promising as anode materials for 
lithium-ion batteries for the simple fabrication process, capabil-
ity to traditional electrolyte system and high content of active 
materials.
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