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In contrast to many other organs, a significant portion of lung development occurs after 
birth during alveolarization, thus rendering the lung highly susceptible to injuries that 
may disrupt this developmental process. Premature birth heightens this susceptibility, 
with many premature infants developing the chronic lung disease, bronchopulmonary 
dysplasia (BPD), a disease characterized by arrested alveolarization. Over the past 
decade, tremendous progress has been made in the elucidation of mechanisms that 
promote postnatal lung development, including extensive data suggesting that impaired 
pulmonary angiogenesis contributes to the pathogenesis of BPD. Moreover, in addition 
to impaired vascular growth, patients with BPD also frequently demonstrate alterations 
in pulmonary vascular remodeling and tone, increasing the risk for persistent hypoxemia 
and the development of pulmonary hypertension. In this review, an overview of normal 
lung development will be presented, and the pathologic features of arrested development 
observed in BPD will be described, with a specific emphasis on the pulmonary vascular 
abnormalities. Key pathways that promote normal pulmonary vascular development will 
be reviewed, and the experimental and clinical evidence demonstrating alterations of 
these essential pathways in BPD summarized.

Keywords: pulmonary angiogenesis, pulmonary hypertension, alveolarization, chronic lung disease, veGF, HiF, 
nitric oxide

iNTRODUCTiON

A significant portion of lung development occurs after birth during the alveolar stage of develop-
ment. During this final stage, the alveolar ducts divide into alveolar sacs by secondary septation, and 
the pulmonary capillary bed expands via angiogenesis to markedly increase the gas exchange surface 
area of the lung (1). However, postnatal completion of growth renders the lung highly susceptible 
to insults that disrupt this developmental program. This is particularly evident in the setting of 
preterm birth, where disruption of alveolarization causes bronchopulmonary dysplasia (BPD), the 
most common complication of prematurity (2). While advances in the supportive care of extremely 
premature infants have reduced mortality, the morbidities associated with severe BPD persist (3). 
Accompanying this increase in survival, the clinical and pathologic features of BPD have changed 
significantly. In contrast to the severe lung injury characterizing “old BPD” as originally described by 
Northway (4), premature birth earlier in gestation appears to disrupt the normal program of alveolar 
and vascular development, resulting in the “new BPD,” characterized by an arrest in alveolar and 
vascular development (5).
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The impaired pulmonary angiogenesis observed in 
patients with BPD appears to be the key to the pathogenesis. 
Proangiogenic factors are decreased in the lungs of infants dying 
from BPD (6) and in animal models of BPD induced by hyperoxia 
(7). Administration of anti-angiogenic agents to neonatal rats 
impairs both pulmonary angiogenesis and alveolarization (8, 9), 
and overexpression of proangiogenic factors, such as vascular 
endothelial growth factor (VEGF), rescues the adverse effects of 
hyperoxia on alveolarization (7). Moreover, in addition to simple 
decreases in pulmonary microvascular growth, the pulmonary 
vascular abnormalities in BPD may also include pathologic 
remodeling and heightened tone, leading to the development 
of pulmonary hypertension (PH), as well as an increase in the 
development of abnormal aorto–pulmonary communications, 
potentially promoting intrapulmonary shunting.

This review presents an overview of lung development and 
details the pathology of the “new” BPD, characterized by an arrest 
in normal lung development. Specific focus will be centered upon 
the pulmonary vascular abnormalities in BPD including impaired 
pulmonary angiogenesis, abnormal pulmonary vascular remod-
eling, heightened pulmonary vascular tone, and development 
of abnormal collateral circulations. Key pathways that promote 
normal pulmonary vascular development will be reviewed, and 
the experimental and clinical evidence demonstrating how these 
pathways are altered in BPD summarized.

OveRview OF NORMAL AiRwAY AND 
PULMONARY vASCULAR DeveLOPMeNT

Lung development begins when the primitive lung bud emerges 
from the ventral foregut and divides during the embryonic stage 
of development (4–7  weeks gestation), forming two lung buds 
lying on either side of the future esophagus and surrounded by 
splanchnic mesenchyme (10). The remaining four stages follow 
sequentially, beginning with the development of the pre-acinar 
airways via branching morphogenesis during the pseudoglan-
dular stage (7–17 weeks gestation). During the canalicular stage 
(17–25 weeks gestation), the airways divide further to form the 
alveolar ducts, and the distal lung mesenchyme thins to allow 
close approximation of the developing respiratory epithelium and 
vascular endothelium. Widening and branching of these distal 
air sacs occurs in the saccular stage (26–36 weeks gestation), and 
finally, during the alveolar stage (36 weeks gestation onward), the 
terminal alveoli form by the process of secondary septation and 
rapidly increase in number throughout early childhood (11).

The mature lung contains approximately 500 million alveoli 
(12), each surrounded by a network of pulmonary capillar-
ies allowing close proximity of the air filled alveolus with the 
blood-filled capillary. This intimate association of the pulmonary 
microcirculation with the terminal airspaces is imperative for 
efficient gas exchange. Therefore, the pulmonary blood supply 
must develop in close relationship to the airways throughout 
lung development (10). Early recognition that the branching of 
the pre-acinar arteries (formed by the end of the pseudoglandular 
stage) occurs at the same time and along a similar pattern, as the 
branching of the airways, suggested that the airways may provide 

a template for the development of the pulmonary arteries and 
veins (13).

The pulmonary circulation likely forms through a combina-
tion of vasculogenesis, the de novo formation of vessels from the 
differentiation of primitive angioblasts and hemangioblasts, and 
angiogenesis, the sprouting and branching of new vessels from 
existing vessels (14, 15). However, the degree to which each pro-
cess contributes to the formation of the pulmonary vasculature 
at each stage of development remains a source for debate. Early 
evidence supported the notion that the proximal arteries form 
by angiogenic sprouting from the main pulmonary trunk and 
that distal branches form de novo in the distal mesenchyme via 
vasculogenesis. Using a method to make a cast of the developing 
pulmonary vasculature in fetal rats (from E9 to E20), deMelo 
et al. showed that isolated “blood lakes” form in the periphery 
of the lung (presumably by vasculogenesis) as early as E9. This 
was followed by the central sprouting of the proximal arteries, 
with the formation of five to seven generations of branching by 
E14, and connections between the proximal and distal vessels 
by E13–14 (16). In contrast, using transgenic reporter mice that 
express LacZ under the control of an endothelial specific pro-
moter, Schachtner et al. found evidence of connections between 
the proximal, branching pulmonary arteries, and endothelial cells 
located in the distal mesenchyme as early as E10.5, several days 
before patency of the central pulmonary arteries has occurred. 
These findings suggested the authors that vasculogenesis may 
contribute to the development of the proximal pulmonary vas-
culature as well (17).

Prior to term birth, the density of the peripheral pulmonary 
vessels markedly increases in density, suggesting expansion of the 
capillary network by angiogenesis (16). After birth, the pulmo-
nary capillary network continues to expand, resulting in a 35-fold 
increase by adulthood (13). Airway and vascular development 
are closely linked, with the disruption of one process impairing 
the other, and each culminating in a global disruption of lung 
development (18). Moreover, pulmonary vascular development 
continues throughout all stages of lung development in a man-
ner proportional to the overall growth of the lung, rendering it 
vulnerable to perturbations occurring in both embryonic and 
postnatal life (17).

eXTReMe LUNG iMMATURiTY AND 
ARReSTeD LUNG DeveLOPMeNT:  
THe “New” BPD

In 1967, Northway et al. used the term BPD to describe a novel 
form of chronic lung disease that developed in preterm infants 
(mean gestational age of 32 weeks) who had a history of neonatal 
respiratory distress (4). This original form of BPD was associated 
with positive-pressure ventilation and prolonged oxygen therapy, 
and characterized by histologic evidence of severe lung injury (e.g., 
inflammation, protein-rich edema, airway epithelial metaplasia, 
and peribronchial fibrosis) and marked airway and pulmonary 
vascular smooth muscle hypertrophy (19, 20). Abnormalities 
in the pulmonary vasculature were also a feature of the disease. 
Pathologic examination of post-mortem lung tissue from a small 
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group of infants with BPD who survived for at least 1  month 
demonstrated decreased density of peripheral pulmonary arteries 
as compared to control patients, both by barium angiogram and 
histologic measures (21).

However, advances in medical therapy, including antenatal 
steroids, surfactant replacement therapy, and the institution 
of lung protective strategies of ventilation, have permitted the 
survival of extremely immature, very low birth weight (VLBW) 
infants. Accompanying this increase in survival, the clinical, 
radiographic, and pathological features of BPD have changed 
significantly. In contradistinction to the original form of BPD, 
birth of VLBW infants during the late canalicular or early saccular 
stages of lung development appears to disrupt the normal alveolar 
and vascular development, resulting in the “new BPD.” Margraf 
et al. described the lung pathology of this new, post-surfactant 
form of BPD in a small case series of infants who died with severe 
BPD. One of the most striking findings observed by the authors 
was the severely reduced alveolar number in the infants with 
BPD compared to controls, with little evidence of the normal, 
physiologic increases in alveolar number typically observed with 
advancing age (22). Similarly, Husain et al. also showed evidence 
of arrested acinar development in a series of infants with post-
surfactant BPD, including both reductions in acinar number and 
increases in acinar size (23).

Pathologic data obtained from autopsy specimens can be dif-
ficult to interpret and generalize to the entire disease population, 
as these samples often represent the most severe lung disease in 
patients with BPD (24). This is particularly true now that key 
advances in the medical care of preterm infants have markedly 
decreased mortality, such that infants who die from BPD in this 
era truly represent an extremely ill subset of patients. However, 
Coalson et al. obtained important information surrounding the 
evolving histopathology in infants with this “new” form of BPD 
in a small series that examined open lung biopsies from low-birth 
weight babies on ventilator support who received surfactant but 
not steroids. Those infants also demonstrated alveolar simplifica-
tion but minimal metaplasia, and variable degrees of inflamma-
tion and abnormal extracellular matrix deposition (25).

ABNORMALiTieS iN PULMONARY 
vASCULAR DeveLOPMeNT AND 
ReMODeLiNG

Dysmorphic Pulmonary Microvascular 
Development
In addition to alveolar simplification (i.e., decreased complexity 
of distal lung septation), the pathology of this “new” form of BPD 
also appears to include abnormalities in the development of the 
pulmonary microvasculature. A comparison of autopsy speci-
mens taken from infants dying from BPD compared to infants 
dying without lung disease at similar post-conceptional ages 
demonstrated that the lungs of infants with BPD had an overall 
reduction in immunostaining for the endothelial specific marker 
CD31, suggesting a decrease in pulmonary microvascular density. 
Moreover, the pulmonary capillaries, when present, appeared to 
be abnormally dilated and frequently located within thickened 

alveolar septa, rather than immediately adjacent to the alveolar 
epithelium (6). These reductions in the growth of the distal pul-
monary vasculature were in keeping with the pathologic findings 
observed in specimens obtained from patients dying of BPD in 
the pre-surfactant era, where decreases in arterial number and 
cross-sectional area were thought to contribute to the increased 
dead space ventilation observed in those infants (26).

However, additional studies have suggested that rather than 
a simple decrease in pulmonary vascular growth, the vascular 
abnormalities observed in patients with BPD might be more 
accurately described as “dysmorphic.” In the open lung biopsy 
samples obtained by Coalson et al., evidence of abnormal capil-
lary development was apparent, with CD31 immunostaining 
demonstrating an “adaptive dysmorphic pattern of vascular 
organization.” This pattern included a paucity of capillaries 
within the walls of the thinned abnormally enlarged alveoli, and 
dilated, more abundant capillaries in other sites (25). In contrast, 
a stereology-based assessment of endothelial cell volume in 
short- and long-term ventilated preterm infants demonstrated 
that total endothelial cell volume increased in ventilated infants 
as compared to age-matched controls, in association with an 
increase in total parenchymal volume, suggesting an expansion 
of the pulmonary microvasculature. However, in the long-term 
ventilated patients, the capillary network was simplified, had 
decreased branching, and retained the dual capillary pattern 
characteristic of the saccular lung, features predicted to decrease 
gas exchange efficiency (27). Taken together, these studies suggest 
that variable abnormalities in the pulmonary capillaries may be 
observed in BPD, with suppressed vascular growth at some stages 
of the disease, and excessive, dysmorphic growth at other stages, 
perhaps representing a maladaptive compensatory response.

Abnormal Muscularization, Heightened 
vascular Tone, and the Development of 
Pulmonary Hypertension
In his original description of BPD, Northway noted that some 
patients had evidence of medial hypertrophy of the pulmonary 
arteries, suggesting the development of PH (4). This histologic 
finding was confirmed by clinical studies demonstrating elevations 
in pulmonary arterial pressures (PAPs) and pulmonary vascular 
resistance (PVR) by either cardiac catheterization or enchocar-
diography in survivors of BPD. In one such study, Fouron et al. 
found that the majority of patients with BPD in the “acute phase” 
had echocardiographic evidence of PH, and that pulmonary pres-
sures remained high in those infants who eventually died, but 
normalized in infants who recovered (28). However, long-term 
follow-up of patients with pre-surfactant BPD and PH showed 
that in many patients, elevations in PAPs persisted through early 
childhood (29).

With the evolution of BPD in the post-surfactant era, the 
development of PH remains a significant feature of the disease 
for a subgroup of patients and significantly impacts long-term 
prognosis. In a prospective study of preterm infants using a broad 
echocardiogram-based definition of PH, early evidence of PH 
was found in more than 40% of patients at 7 days of age, and late 
PH found in almost 15% of patients at 36 weeks PMA. In patients 
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who develop severe BPD, the incidence of late PH appears to be 
significantly higher ranging from 30 to 50% of patients (30–32). 
Moreover, the presence of PH in patients with BPD is indepen-
dently associated with a greater increase in the odds of death (30, 
32), with mortality rates as high as 40% in some studies (33). Of 
note, the risk of death appears to be highest in the first 6 months 
after the diagnosis of PH, and the majority of infants with BPD 
and PH who survive beyond a mean of 10 months of age demon-
strate an improvement in the severity of PH (33). Numerous risk 
factors have been associated with an increased incidence of PH in 
patients with BPD including: oligohydramnios (32, 34), low apgar 
scores (32, 34), postnatal sepsis (34), small for gestational age (33), 
and prolonged use of positive-pressure ventilation (31). Of note, 
while the risk of developing PH is significantly higher in patients 
with severe versus moderate BPD (32), a smaller percentage of 
infants with no, mild, or moderate BPD also develop late PH. This 
suggests that the risk for developing late PH may not be primarily 
dictated by the severity of lung disease (31). In addition, early PH 
appears to predict the development of BPD (35), again highlight-
ing the link between abnormalities in the pulmonary circulation 
and impairments in distal lung development (Figure 1). While a 
complete understanding of the mechanisms leading to PH in a 
subset of patients is lacking, the data suggest that patients with 
BPD and PH demonstrate abnormalities in both distal pulmo-
nary artery muscularization and tone.

Abnormalities in Pulmonary Arterial Muscularization
In his original report, Northway et al. identified “early vascular 
lesions of the pulmonary hypertensive type” in the cohort of 
infants in the later stages of the disease, which comprised medial 
hypertrophy and characteristic breakdown of the elastic lamina 
(4). Later studies demonstrated similar pathologic remodeling 
of small pulmonary arteries in patients with the pre-surfactant 
form of BPD. In a small study of preterm infants with severe BPD 
and cor pulmonale, affected patients demonstrated an increase in 
the percent medial thickness of distal arteries and an extension 
of arterial smooth muscle into peripheral arteries such that the 
majority of alveolar wall arteries were completely muscularized 
(26). Further, abnormal muscularization of the pulmonary arter-
ies was often a feature of pre-surfactant BPD even in patients 
that did not develop cor pulmonale. In premature infants with 
respiratory distress syndrome (RDS) who died early in life while 
still requiring mechanical support, many demonstrated increased 
medial thickness of distal arteries, appearing similar to the 
muscularized small arteries characteristic of a term infant on the 
first day of life (20). Moreover, in keeping with the findings of 
Bush et al., those infants with BPD who developed cor pulmonale 
had evidence of marked muscularization of small arteries, with 
complete muscularization of arteriolar wall arteries, and some 
patients with intimal proliferation of larger arteries (20). In a 
separate study, the combination of abnormal muscularization 
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of distal arteries with variable degrees of either increased or 
decreased pulmonary capillary density suggested a “dual process 
of adaptation and response to injury in a hypoplastic lung” (36).

In the post-surfactant era, mortality of premature infants has 
decreased, thus limiting the availability of autopsy specimens 
that would allow careful characterization of the pulmonary 
arterial histopathologic changes in the “new” form of BPD. 
However, in at least one study, it appears that the abnormal 
muscularization of peripheral arteries remains a consistent 
pathologic feature. In a study of post-mortem tissue obtained 
from surfactant-treated preterm infants with BPD, there was 
evidence of increased arterial wall thickness and musculariza-
tion of distal vessels in preterm infants with severe BPD, although 
these histologic changes were less marked than those observed 
in specimens obtained from infants who developed PH in the 
setting of persistent pulmonary hypertension of the newborn 
(PPHN) and premature rupture of membranes (PROM) (37). 
While the mechanisms that specifically induce pathologic 
pulmonary vascular remodeling in BPD are unknown, they are 
hypothesized to include some of the well recognized injurious 
stimuli that disrupt distal lung growth including hyperoxia, 
mechanical ventilation, and inflammation (38).

Abnormalities in Pulmonary Vascular Tone
In addition to abnormal pulmonary arterial remodeling, height-
ened pulmonary arterial tone also appeared to be an important 
component of the PH observed in patients with pre-surfactant 
BPD. Survivors of BPD with persistent oxygen requirements 
and evidence of right ventricular hypertrophy (RVH) on ECG 
had evidence of PH on cardiac catheterization, with pulmonary 
vascular beds that were responsive to even low levels of oxygen 
(39). In a prospective study of 15 patients with moderate to 
severe BPD and PH undergoing cardiac catheterization, all 
patients demonstrated a reduction in PA pressure with supple-
mental oxygen, and variable responses to vasodilator therapy 
depending on the presence or absence of systemic–pulmonary 
collaterals (40).

Elevated pulmonary vascular tone remains a key feature of 
the PH in BPD survivors in the post-surfactant era. A study 
examining BPD survivors with PH who underwent cardiac cath-
eterization found that most patients have significant pulmonary 
vascular reactivity, demonstrating elevations in mean PAP with 
hypoxia, and conversely, decreased mean PAP with the combina-
tion of hyperoxia and inhaled nitric oxide (iNO) (41). Similarly, 
in a study reporting data from the cardiac catheterization of 13 
patients with BPD and PH, PAP and PVR decreased significantly 
with vasodilator therapy (100% O2 or iNO) in the majority of 
patients, but still remained elevated above normal levels (33).

Abnormal Collateral Circulations
In an early report, cardiac catheterization of two premature 
infants who required prolonged mechanical ventilation found 
that although these infants had normal pulmonary pressures, 
they both had evidence of large systemic collaterals with left to 
right shunts, a finding the authors hypothesized likely contrib-
uted to their persistent ventilator dependence (42). This report 
was followed by the description of similar collateral vessels in 

a subgroup of patients with severe BPD and PH, in whom the 
administration of vasodilators had deleterious results, inducing 
respiratory acidosis, pulmonary edema, and more severe hypox-
emia (40). However, it was not clear from either report whether 
these abnormal vessels were congenital in nature or acquired, 
resulting from persistent hypoxemia, pathologic alterations in 
pulmonary blood flow, or disrupted lung development (43).

More recently, histologic examination of lung tissue from a 
number of patients dying with severe BPD demonstrated the 
presence of numerous smaller intrapulmonary arteriovenous 
anastomotic vessels (IAAV) that appear similar to the “misalign-
ment of veins” seen in alveolar capillary dysplasia. These vascular 
channels are located in the lobar periphery and extend toward the 
pulmonary arteries, appearing to connect with the microvascular 
plexus surrounding the pulmonary arteries and airways (44). Of 
note, these intrapulmonary anastomotic vessels are not unique to 
BPD, but observed in other diseases of impaired alveolarization. 
For example, in a similar study examining the lung tissue of infants 
dying from severe congenital diaphragmatic hernia (CDH) and 
associated PH, the lungs of all patients demonstrated prominent, 
engorged intrapulmonary vessels connecting the pulmonary 
veins to the microvessels surrounding the pulmonary arteries 
(45). Similar, intrapulmonary, bronchopulmonary anastomoses 
have also been noted in infants dying from meconium aspiration 
syndrome (46). These prominent IAAV may represent the failure 
of the normal fetal IAAV circulation to close after birth and have 
the potential to permit right to left intrapulmonary shunting, 
thus contributing to the hypoxemia observed in patients with 
severe BPD.

KeY PATHwAYS DiReCTiNG NORMAL 
PULMONARY vASCULAR DeveLOPMeNT 
AND FUNCTiON

Extensive clinical evidence obtained from patients with BPD in 
both the pre- and post-surfactant era has identified impaired and 
dysmorphic pulmonary vascular development as a key feature 
of the disease. These data suggest that the normal pathways that 
promote postnatal pulmonary vascular growth are disrupted in 
BPD. In this section, a number of key pathways that direct nor-
mal pulmonary vascular growth and function will be reviewed, 
and evidence demonstrating alterations in these pathways in 
experimental models of BPD (Table 1) and clinical studies will 
be summarized.

vascular endothelial Growth Factor
The endothelial cell mitogen and survival factor, VEGF, is essen-
tial for normal blood vessel development. Alternate splicing from 
a single gene produces three distinct isoforms: VEGF120, VEGF164, 
and VEGF188. These three isoforms demonstrate differential 
binding to heparin sulfate and affinities for the two predominant 
receptors: tyrosine kinases fms-like-tyrosine kinase-1 (FLT-1) 
and fetal liver kinase-1 (FLK-1) (47). The lung expression of the 
two heparin-binding isoforms, VEGF164 and VEGF188, increases 
during the late saccular stage of development in the mouse and 
remains high through adulthood (47), with VEGF188 becoming 
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TABLe 1 | Molecular mechanisms contributing to impaired alveolar and pulmonary vascular growth in animal models.

Molecule Physiologic functions and disruption in animal models of BPD Reference

VEGF Global deletion delays endothelial cell differentiation, impairs vascular development, and induces lethality at E8.5 (55, 56)
Isoform-specific deletion (VEGF164 and VEGF188) impairs lung microvascular development and delays airspace maturation (57)
Postnatal inhibition decreases somatic growth and impairs alveolarization (58)
Decreased expression in response to hyperoxia and mechanical ventilation in numerous animal models (60–64)
Overexpression promotes lung angiogenesis, and inhibits hyperoxia-induced alveolar simplification and mortality in rats (66)

FLK-1 Homozygous deletion prevents endothelial cell differentiation and blood vessel formation, and induces embryonic lethality (53)
Decreased expression in response to mechanical ventilation in neonatal mice (63, 64)
Postnatal inhibition impairs lung angiogenesis and alveolarization and induces pulmonary hypertension in neonatal rats (8, 9)

FLT-1 Homozygous deletion causes disorganization of vascular development and induces embryonic lethality (54)
Decreased expression in response to mechanical ventilation in preterm baboons (63)

NFκB Pharmacologic inhibition in neonatal mice impairs lung angiogenesis and alveolarization and decreases Flk-1 expression, and 
exaggerates the impairment in angiogenesis and alveolarization induced by systemic endotoxin

(65, 66)

HIF-1α Global deletion results in numerous cardiac and vascular abnormalities and embryonic lethality at E10.5 (71, 72)
Decreased expression in response to mechanical ventilation in preterm baboons and lambs (69, 75)
Stabilization of HIF improves alveolar growth in preterm baboons and neonatal rats exposed to combined endotoxin/hyperoxia (78–80)

HIF-2α Global deletion results in perinatal mortality due to respiratory failure, decreased VEGF expression, and decreased surfactant (73)
Decreased expression in mechanical ventilation of preterm baboons and lambs, and in neonatal rats exposed to chronic hypoxia (69, 75)

NO/eNOS Deletion of eNOS impairs VEGF-mediated angiogenesis and neovascularization, worsens pulmonary hypertension in adult mice 
exposed to chronic hypoxia, and increases susceptibility of neonatal mice to the impaired alveolarization induced by hyperoxia

(88, 90, 91, 
99, 100)

Decreased eNOS expression in mechanically ventilated preterm baboons and lambs, in fetal lambs exposed to intrauterine endotoxin (94–96)
Decreased NO production in pulmonary arteries from fetal lambs with intrauterine growth restriction (97)

H2S Deletion of enzymes that produce H2S impairs alveolarization, decrease lung vascular growth, and induce pathologic vascular 
remodeling

(104)

Exogenous administration improves alveolarization, limits pulmonary hypertension, and decreases lung inflammation in neonatal rats 
and mice exposed to hyperoxia

(105, 106)

Retinoic acid Deletion of the RA receptor-gamma impairs alveolarization and decreases lung elastin (110)
Promotes alveolar regeneration in adult mice with elastase-induced emphysema and limits the impaired alveolarization induced by 
glucocorticoids in neonatal mice

(108, 109)

LPA Deletion of the LPA-receptor 1 limits lung inflammation and fibrosis, and improves survival in neonatal rats exposed to hyperoxia (116)
Pharmacologic blockade of LPA receptors -1 and -3 limits pulmonary hypertension in newborn rats exposed to hyperoxia (116)

EC-SOD Deletion impairs alveolarization and lung angiogenesis, and decreases FLK-1 protein expression in neonatal mice (118)
Alveolar epithelial overexpression preserves alveolar and vascular growth of neonatal mice exposed to hyperoxia (119)
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the predominant isoform by late alveolarization (48). Paralleling 
the expression pattern observed with VEGF, FLT-1 and FLK-1 are 
highly expressed by endothelial cells during lung development 
(49), and in the murine lung, the expression of both receptors 
increase during alveolarization and remain high in the adult lung 
(47, 48). In addition to the full-length, membrane-bound form 
of FLT-1, a soluble form, comprised of the extracellular ligand 
binding domain, can be produced by alternative splicing from a 
single gene transcript (50, 51). It is thought that this soluble form 
(sFLT-1) may function as a physiologic inhibitor of angiogenesis 
given its ability to sequester VEGF ligands and prevent them from 
binding to the active transmembrane receptors (52).

The absolute requirement of intact VEGF signaling for 
vascular development is underscored by the severe phenotypes 
observed in mice containing targeted disruptions of discrete 
components of the pathway. Homozygous deletion of Flk-1 in 
mice results in early embryonic lethality, complete absence of 
blood vessel formation, and a failure of endothelial differentia-
tion (53). In contrast, while homozygous deletion of Flt-1 also 
results in embryonic lethality, endothelial cell differentiation is 

preserved, and the vasculature develops but is very disorgan-
ized  (54). Targeted deletion of Vegf in mice delays endothelial 
cell differentiation and severely impairs vascular development, 
resulting in embryonic lethality between E8.5 and 9.5 (55). Of 
note, even the absence of a single allele of Vegf impairs vascular 
development and induces embryonic lethality (56). Absence of 
the two heparin-bound isomers, VEGF164 and VEGF188, impairs 
lung microvascular development and delays airspace maturation 
in mice, suggesting that these isoforms which are bound tightly 
in the extracellular matrix may provide a source of local VEGF 
specifically essential for pulmonary vascular development (57).

In addition to these indispensable roles for VEGF during 
embryonic development, VEGF is also an important mediator of 
postnatal organ growth and development. Partial inhibition of 
VEGF in mice during the first week of life using an inducible gene 
targeting strategy decreases somatic growth and impairs organ 
development, while complete inhibition by the administration 
of a soluble VEGF receptor chimeric protein exaggerates these 
effects on organ development and growth and specifically impairs 
alveolarization (58). Moreover, the spatial expression of VEGF 
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during late development is critical. Expression of VEGF164 in the 
alveolar type II (ATII) cells using the SP-C promoter induces 
earlier and higher levels of VEGF in the developing lung and 
increases pulmonary blood vessel growth, but disrupts branch-
ing morphogenesis and inhibits alveolar type I cell differentiation 
(59). Taken together, these studies demonstrate the importance 
of tightly regulated temporal and spatial expression of VEGF for 
normal vascular development.

Abnormalities in VEGF signaling appear to be a key mecha-
nism in the impaired alveolarization and angiogenesis observed 
in experimental models of BPD. Chronic exposure to hyperoxia 
in neonatal rabbits decreases VEGF gene and protein expression 
by alveolar epithelial cells (60). In neonatal rats, high levels of 
hyperoxia decrease Vegf gene expression (61), and sustained 
hyperoxia from postnatal day (P)4–14 impairs alveolarization, 
and suppresses Vegf and Hif-2α gene expression and VEGF 
receptor protein expression (61, 62). In the preterm baboon 
model of BPD, mechanical ventilation and oxygen reduce pul-
monary capillary volume, impair alveolarization, and repress 
the physiologic increase in VEGF and FLT-1 observed in control 
animals (63). Similarly, mechanical ventilation of neonatal mice 
during the late saccular stage of development induces alveolar 
simplification and reduces lung expression of VEGF and FLK-1 
(64). Inhibiting constitutive activation of nuclear factor-κB, a 
direct regulator of Flk-1 during alveolarization, impairs pul-
monary angiogenesis and disrupts alveolarization in neonatal 
mice (65), and exaggerates the impairment in angiogenesis and 
alveolarization induced by systemic endotoxin (66). Moreover, 
blocking angiogenesis in neonatal rats directly using either 
non-specific anti-angiogenic compounds, or a selective FLK-1 
inhibitor, decreases pulmonary arterial density and impairs 
alveolarization, thus providing some of the first direct, experi-
mental evidence to support the notion that angiogenesis actively 
promotes distal lung growth (8). In fact, even the administration 
of a single dose of the FLK-1 inhibitor significantly decreases 
pulmonary arterial density, impairs alveolarization, and induces 
pulmonary artery muscularization and RVH that persist into 
adulthood (9). Consistent with these studies, overexpression of 
VEGF in newborn rats is effective in increasing survival, pro-
moting lung angiogenesis, and preventing hyperoxia-induced 
alveolar simplification (67).

Hypoxia-inducible Factor
Fetal development occurs at low oxygen tension. The hypoxia-
inducible factor (HIF) family of transcription factors is a key 
regulator of O2 homeostasis, activating genes critical for energy 
metabolism, oxygen transport, and angiogenesis. The HIFs 
are heterodimeric transcription factors comprised of oxygen 
sensitive subunits (HIF-1α, HIF-2α, and HIF-3) paired with the 
constitutively expressed HIF-1β (previously known as ARNT) 
subunit. Under normal oxygen tension, the O2 sensitive subunits 
are continuously degraded. However, under conditions of low 
oxygen tension, HIF degradation is inhibited, resulting in HIF 
protein stabilization and accumulation, thereby promoting the 
binding of HIF to hypoxia-response elements (HREs) located 
within the promoters of downstream target genes, including 
VEGF. During lung development, HIF-1α is expressed in the 

branching epithelium, and HIF-2 expressed in both the epithelium 
and the mesenchyme (68). In the primate lung, expression of both 
HIF-1α and HIF-2 is high in the third trimester of pregnancy; 
however, at term birth, HIF-2 expression remains high while 
HIF-1α is absent (69). In mouse lung, HIF-2α expression also 
increases immediately after birth and remains high throughout 
alveolarization, with production predominantly by ATII cells and 
colocalizing with VEGF expression (70).

The importance of this pathway in vascular development was 
highlighted by studies that performed targeted deletions of HIF 
family members in mice. Loss of Hif-1α results in embryonic 
lethality at E10.5, with null embryos demonstrating numerous 
cardiac and vascular malformations including vascular regres-
sion and abnormal vascular remodeling (71, 72). Interestingly, 
although this phenotype was similar to that seen in the VEGF 
null mice, Hif-1α−/− mice were found to have normal levels of Vegf 
mRNA, suggesting that the vascular malformations observed 
were independent of impairments in VEGF expression. In con-
trast, Hif-2α−/− mice die from RDS during the perinatal period in 
association with decreases in ATII-mediated expression of VEGF 
and insufficient surfactant production (73). Moreover, a similar 
phenotype is induced in mice by specifically deleting the HRE 
located within the Vegf promoter. Targeted deletion of ARNT, the 
dimerization partner for both HIF-1α and HIF-2α, as well as for 
other transcription factors, also results in embryonic lethality at 
E10.5, with affected embryos displaying defective angiogenesis of 
the yolk sac and branchial arteries (74).

Experimental studies in animal models of BPD suggest that 
HIF family members are important for late lung development 
in general and, in specific, that HIF plays an important role in 
both normal pulmonary vascular development and abnormal 
pulmonary vascular remodeling. HIF-1α and HIF-2α protein 
are decreased in the lungs of preterm baboon and lambs 
undergoing mechanical ventilation (69, 75). Expression of 
HIF-2α is also decreased in the lungs of neonatal rats exposed 
to chronic hypoxia, another stimulus that impairs alveolar 
development and decreases pulmonary vascular growth in 
mice (76). Enhancement of HIF signaling by either selective 
or non-selective inhibition of PHD-mediated HIF degradation 
increases angiogenesis of lung microvascular endothelial cells 
in vitro, in association with increases in PECAM-1, VEGF, and 
FLT-1 (77). A similar strategy to stabilize HIFs in vivo increases 
VEGF and PECAM expression in the lungs of preterm baboons 
(78), and improves alveolarization, oxygenation, and lung com-
pliance (79). In a newborn rat model of BPD induced by intra-
amniotic LPS followed by hyperoxia, non-selective inhibition of 
PHDs stabilizes HIF-1α in the whole lung, and attenuates the 
disrupted alveolar and vascular growth observed in this model 
(80). Interestingly, sildenafil, a phosphodiesterase inhibitor that 
has been used clinically to treat PH by increasing cGMP levels, 
improves alveolarization in neonatal mice exposed to hyperoxia 
and directly activates HIF-1α-mediated signaling in airway 
epithelial cells (81).

Nitric Oxide
Nitric oxide (NO) is a free radical gas that functions as a sec-
ond messenger, regulating diverse physiologic processes such 
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as angiogenesis, vasodilation, and anticoagulation (82). NO is 
produced by the nitric oxide synthase (NOS) family of proteins, 
which contains three isoforms: neuronal NOS (NOS1), inducible 
NOS (NOS2), and endothelial NOS (NOS3). After release from 
the endothelium, NO can diffuse to the luminal side of the vessel 
to inhibit platelet aggregation and adhesion or to the abluminal 
side of the vessel where it regulates vascular smooth muscle con-
traction and proliferation (83). Many of the downstream effects 
of NO on vascular tone result from the ability of NO to activate 
soluble guanylyl cyclase, thereby increasing cGMP and decreas-
ing intracellular calcium.

Endothelial nitric oxide synthase (eNOS), initially believed 
to be expressed solely by endothelial cells in a constitutive 
fashion, is now known to be expressed by additional cell types 
(84) and dynamically regulated in response to hypoxia, inflam-
mation, and other factors (84, 85). Importantly, VEGF induces 
eNOS expression via a FLK-1-dependent mechanism (86, 87), 
and loss of eNOS impairs VEGF-mediated angiogenesis (88). 
NO is a downstream effector of VEGF-mediated angiogenesis 
but not fibroblast growth factor (FGF)-mediated angiogenesis 
(89), and eNOS−/− mice demonstrate impaired VEGF-mediated 
angiogenesis (88) and neovascularization during wound healing 
and after ischemia (90, 91). Expression of eNOS is modulated by 
changes in oxygen tension both in vitro and in vivo. NOS activity 
in pulmonary artery endothelial cells increases at higher oxygen 
concentrations and decreases at lower oxygen concentrations 
(92), an effect mediated by both transcriptional and posttran-
scriptional mechanisms (93).

Decreased expression of eNOS is observed in a number of 
animal models of BPD. Chronic ventilation of preterm lambs 
increases pulmonary vascular and airway resistance, and 
decreases eNOS protein expression in the endothelium of the 
small intrapulmonary arteries and the airway epithelium (94). 
Similarly, chronic ventilation of extremely preterm fetal baboons 
also decreases lung eNOS expression (95). Intra-amniotic 
endotoxin also decreases eNOS expression in the lungs of fetal 
lambs, particularly in small pulmonary arteries (96). In an ovine 
model, intrauterine growth restriction decreases pulmonary vas-
cular density and alveolarization, in association with decreases 
in VEGF-induced NO production in large proximal pulmonary 
arteries (97).

In adult mice, compensatory lung growth after pneumonec-
tomy is severely impaired by targeted deletion of eNOS or inhibi-
tion of NO production with a NOS inhibitor (98). Exposing adult 
eNOS−/− mice to mild hypoxia induces more severe PH than that 
seen in control mice (99), and exposing neonatal eNOS−/− mice 
to mild hypoxia impairs alveolarization and decreases pulmonary 
vascular density (100). In both models, these detrimental effects 
on pulmonary pressures and lung structure are rescued by iNO 
(99, 101). Further, iNO appears to have beneficial effect in other 
experimental models of BPD. Treatment of neonatal rats with a 
single dose of the FLK-1 inhibitor, SU-5416, impairs alveolariza-
tion and induces RVH, and iNO administration prevents RVH 
development and significantly increases radial alveolar counts 
(102). Prolonged iNO therapy also prevents RVH and partially 
rescues the severe defect in alveolarization induced by bleomycin 
in neonatal rats (103).

ADDiTiONAL MOLeCULAR MeCHANiSMS 
THAT MAY iNFLUeNCe ALveOLAR AND 
vASCULAR GROwTH

In addition to the well-established molecular pathways described 
above that are central regulators of normal pulmonary vascular 
development and function, a number of additional molecules and 
pathways have been recently identified that also appear play a 
role in the aberrant vascular growth observed in BPD.

Hydrogen Sulfide
In addition to NO, hydrogen sulfide (H2S) is an additional 
gasotransmitter that appears to have an important role in late 
lung development. H2S is produced by two main enzymes: cys-
tathionine β-synthase (Cbs) and cystathionine γ-lysase (Cth). 
Deletion of either Cbs or Cth decreases alveolar number by 
50%, reduces the pulmonary vascular supply, and increases the 
number of muscularized small and medium-sized pulmonary 
arteries (104). In addition, H2S appears to have important, direct 
effects on the angiogenic function of pulmonary endothelial 
cells. Silencing or pharmacologic inhibition of Cbs and Cth, 
respectively, impairs in  vitro tube formation in human lung 
endothelial cells, and conversely, exogenous administration of 
H2S enhances tube formation in vitro (104). Further, exogenous 
administration of H2S improves alveolarization in vivo and limits 
PH in hyperoxia-exposed neonatal rats (105); and improves epi-
thelial repair and decreases inflammation in hyperoxia-exposed 
neonatal mice (106).

Retinoic Acid
Retinoic acid (RA) is a biologically active derivative of vitamin A. 
Early studies identified a role for vitamin A and RA in enhanc-
ing limb regeneration in amphibians after amputation (107). 
Subsequently, RA was shown to promote alveolar regeneration in 
adult rats in elastase-induced emphysema (108) and to blunt the 
impaired alveolarization induced by dexamethasone in neonatal 
rats (109). Mice with genetic deletion in the RA-receptor-gamma 
have decreased lung elastin and impaired alveolarization (110). 
Pulmonary endothelial cells are a source of RA in the develop-
ing lung, where it appears to promote pulmonary angiogenesis 
by increasing the expression of VEGF-A and to regulate elastin 
synthesis by increasing FGF-18 expression (111).

Lysophosphatidic Acid
Lysophosphatidic acid is a small glycerophospholipid that exerts 
multiple biologic effects on cell proliferation, migration, survival, 
and cell–cell interactions by binding to G-protein coupled 
receptors on the cell membrane (112). LPA appears to have an 
important role in many lung diseases, functioning to regulate 
airway inflammation, remodeling, and fibrosis (113–115). In the 
vasculature, LPA can function as either a vasodilator or a vaso-
pressor depending on context. For example, in the thoracic aorta, 
LPA causes NOS-dependent vasodilation by acting through the 
LPA receptor-1 (LPAR1). Mice containing mutations in the 
LPAR1 demonstrate decreased lung inflammation and fibrosis 
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and improved survival in an experimental model of BPD, and 
pharmacologic blockade of the LPAR-1 and -3 protects against 
pathologic vascular remodeling, limiting muscularization and 
RVH in newborn rats exposed to chronic hyperoxia (116). 
Although there were some phenotypic differences between the 
mice with genetic deletions of LPAR-1 and pharmacologic block-
ade that require future study, these studies suggest that the LPA 
pathway may prove to be a promising new target for BPD.

extracellular Superoxide Dismutase
Extracellular superoxide dismutase (EC-SOD) is a potent anti-
oxidant that catalyzes the dismutation of superoxide to hydrogen 
peroxide and oxygen (117). EC-SOD is highly expressed in the 
lung and vasculature, and EC-SOD expression and activity is 
suppressed in experimental models of BPD (118). Alveolar 
epithelial overexpression of EC-SOD preserves alveolar surface 
and volume density, decreases inflammation in newborn mice 
exposed to hyperoxia (119), and attenuates pathologic vascular 
remodeling and PH in adult mice exposed to chronic hypoxia 
(120). Conversely, deletion of EC-SOD impairs alveolarization 
in neonatal mice and decreases pulmonary vascular density 
and Flk-1 protein expression (118). Taken together, these 
studies highlight the importance of tight control of the oxida-
tive balance in the lung in promoting physiologic alveolar and 
vascular growth, and preventing pathologic airway and vascular 
remodeling.

Stem and Progenitor Cells
A number of resident stem and progenitor cell populations have 
been identified in the lung, deriving from epithelial, mesenchy-
mal, and endothelial origins. Each population is unique in its 
defining characteristics and putative functions, which are com-
prehensively discussed in a number of excellent, recent reviews 
(121–123). Accumulating evidence from clinical and experimen-
tal studies have suggested that alterations in circulating and/or 
resident lung stem and progenitor cells may contribute to the 
pathogenesis of BPD, sparking great interest in the investigation of 
cell-based therapeutic strategies as a potential treatment for BPD. 
Hyperoxia decreases lung and circulating endothelial progenitor 
cells in neonatal mice (124), and diminishes the number of lung 
side population (SP) progenitor cells, a population believed to 
have both epithelial and mesenchymal potential (125). Further, 
studies in experimental models suggest that mesenchymal stem 
cell therapy may have beneficial effects on preserving alveolar 
and vascular growth during injury. Intratracheal administration 
of mesenchymal stem cells attenuates induced lung cell apoptosis 
and inflammation, and improves alveolarization in neonatal rats 
exposed to hyperoxia (126). Intravenous administration of bone 
marrow-derived mesenchymal stem cells (BMSCs) in neonatal 
mice prevents PH and blunts the impaired alveolarization induced 
by hyperoxia despite a low level of engraftment. Importantly, in 
that study, the administration of conditioned media of these stem 
cells had an even greater beneficial effect, preserving normal 
alveolarization and preventing pathologic vascular remodeling 
(127). A similar improvement in alveolar and vascular growth is 
observed in hyperoxia-exposed neonatal rats after intratracheal 

administration of BMSCs (128), and this beneficial effect is 
evident even if the MSCs are administered after the initiation of 
lung injury (129). Moreover, MSC treatment results in durable 
improvements in lung structure, with sustained improvement in 
lung structure and exercise tolerance in adult mice at 6 months 
of age, and an absence of any evidence of long-term detrimental 
side effects. These exciting data prompted clinical studies to assess 
whether alterations in lung progenitor cells play a role in BPD, 
discussed in the following section.

ALTeRATiONS iN ANGiOGeNiC 
PATHwAYS iN PATieNTS wiTH 
BRONCHOPULMONARY DYSPLASiA

These data, obtained from experimental models demonstrating 
disruption of key pathways known to promote physiologic pulmo-
nary angiogenesis, appear to have some fidelity with the human 
disease. The impaired pulmonary vascular development observed 
in infants dying of severe BPD is associated with decreased expres-
sion of VEGF and FLT-1 (6). In response to short-term ventilation, 
the expression of classic angiogenic growth factors, such as VEGF 
and angiopoietin-1, decreases in the lungs of preterm infants, 
while expression of endoglin increases, suggesting that endoglin 
may be one important regulator of the vascular remodeling which 
occurs in BPD (130). In a similar, but separate, study by the same 
group, short-term ventilation decreases the gene expression of 
proangiogenic factors such as FLK-1, TEK tryrosine kinase, 
endothelial (TIE-2), and angiogenin, yet increases the expression 
of anti-angiogenic mediators such as thrombospondin-1 (131). 
Taken together, these two studies suggest that even short-term 
mechanical ventilation causes widespread alterations in a variety 
of angiogenic signaling pathways in the developing lung.

In contrast to these studies demonstrating changes in the 
gene and protein expression of angiogenic mediators from whole 
lung tissue of patients dying with BPD, studies evaluating levels 
of VEGF in the tracheal fluid have not shown clear differences 
between preterm infants who develop and those who do not 
develop BPD. Lassus et  al. found that the levels of VEGF in 
tracheal fluid obtained during the first 10  days of life are not 
significantly different in preterm infants who developed BPD 
versus those who do not develop BPD (132). In keeping with 
these results, two additional studies demonstrated that tracheal 
fluid VEGF levels obtained during the first month of life also did 
not correlate with the development of BPD (133). However, it is 
not clear whether the absence of positive findings in these studies 
represent differences between the pathogenesis of experimental 
BPD and the human disease, a lack of statistical power, or the 
inability of tracheal aspirates to reflect the true microenviron-
ment present in the developing lung.

Similarly, despite strong experimental evidence demonstrat-
ing the importance of both the HIF and NO signaling pathways in 
physiologic pulmonary angiogenesis, data assessing the integrity 
of the HIF of NO signaling in patients with BPD remain scarce. 
In the developing human lung, both HIF-2α and VEGFA gene 
expression demonstrate a positive correlation as lung develop-
ment progresses; however, little is known regarding how HIF 
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activity or expression is altered in preterm infants with BPD. 
Similarly, there is an absence of data directly demonstrating 
decreased NOS expression or NO production in infants with 
BPD. However, the levels of the endogenous NOS inhibitor, 
asymmetric dimethylarginine (ADMA), are increased in patients 
with BPD and PH, suggesting that heightened levels of ADMA 
may contribute to the increased PVR observed in patients with 
BPD and PH by limiting NO production (134). Yet, despite exten-
sive experimental evidence demonstrating disruptions in NO 
signaling and the therapeutic benefit of iNO therapy in animal 
models, a number of recent, prospective, and randomized trials 
have failed to demonstrate beneficial effects of iNO therapy in the 
prevention of BPD in preterm infants (135–137).

Given the accumulating evidence from experimental models 
that demonstrated the beneficial role of stem and progenitor cells 
in promoting alveolar and vascular growth during injury, clinical 
studies aimed to determine whether disruption of angiogenic 
progenitors might contribute to the pathophysiology of BPD. Late 
outgrowth endothelial colony-forming cells (ECFCs), a sub-type 
of EPCs that are highly proliferative, self-renewing, and capable of 
forming blood vessels de novo in vivo (138). ECFCs obtained from 
preterm infants are more proliferative than those obtained from 
term infants, yet more highly susceptible to the growth inhibit-
ing effects of hyperoxia (139). In a small, early prospective study, 
ECFCs were found to be low in extremely premature infants and 
to increase with increasing gestation. Further, extremely preterm 
infants with lower numbers of ECFC were found to be at increased 
risk of developing BPD (140). In keeping with these results, a sub-
sequent study confirmed that cord blood ECFCs are significantly 
lower in preterm infants who go onto develop moderate or severe 
BPD (141). Taken together, these studies lend further support to 
the notion that antenatal events may influence later respiratory 
outcomes, and suggest that ECFC may represent a biomarker for 
the identification of patients at greatest risk for the development of 
BPD. In addition to these endothelial progenitors, another small 
clinical study demonstrated the presence of fibroblast-like cells 
with colony-forming potential and cell surface marked similar 
to MSCs in the tracheal aspirates of premature infants with RDS. 
After adjusting for numerous potential confounders, including 
gestational age, duration of mechanical ventilation, and others, 
the presence of these tracheal MSC predicted the development 
of BPD (142). Although clinical evidence regarding the role of 
MSC in patients with BPD is limited, the strong experimental 
evidence demonstrating the benefit of MSC therapy on alveolar 
and vascular growth in animal models has already lead the way 

for phase 1 clinical trails for testing this therapy in preterm infants 
at high risk for BPD (143).

CONCLUSiON

Over the past three decades, significant advances in the sup-
portive care of extremely premature infants, including surfactant 
replacement therapy, have significantly decreased mortality 
from BPD, yet, the morbidity associated with BPD remains 
high. Numerous abnormalities of the pulmonary circulation are 
observed in patients with BPD, influencing long-term prognosis, 
including dysmorphic pulmonary capillary development, mala-
daptive pulmonary vascular remodeling, heighted pulmonary 
vascular tone, and the development of abnormal collateral cir-
culation. Extensive experimental and clinical data derived form 
studies over the last decade have advanced our understanding 
of the pathobiology contributing to BPD, including the recogni-
tion that pulmonary angiogenesis is essential for alveolarization, 
and that disrupted pulmonary angiogenesis likely contributes to 
BPD. Given the limited availability of human lung tissue from 
patients with BPD, much of our understanding of the molecular 
mechanisms involved have been derived from experimental 
animal models (144), and definitive clinical evidence dem-
onstrating that these same mechanisms are causative in the 
human disease are lacking. Nonetheless, these studies suggest 
that replacement of angiogenic factors and/or stem cell-based 
therapies could prove to be beneficial for the treatment of BPD. 
Moving forward, the development of innovative non-invasive 
diagnostic technologies that may permit an accurate assessment 
of the molecular pathways that are dysregulated in patients at 
risk for BPD will be required in order to foster the development 
of targeted biologic therapies that can effectively stimulate lung 
growth and regeneration.
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