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Cell therapies offer unquestionable promises for the treatment, and in some cases even 
the cure, of complex diseases. As we start to see more of these therapies gaining mar-
ket authorization, attention is turning to the bioprocesses used for their manufacture, 
in particular the challenge of gaining higher levels of process control to help regulate 
cell behavior, manage process variability, and deliver product of a consistent quality. 
Many processes already incorporate the measurement of key markers such as nutrient 
consumption, metabolite production, and cell concentration, but these are often per-
formed off-line and only at set time points in the process. Having the ability to monitor 
these markers in real-time using in-line sensors would offer significant advantages, 
allowing faster decision-making and a finer level of process control. In this study, we 
use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an 
autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. 
Using reference datasets generated on a standard bioanalyzer, we develop chemom-
etric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. 
These chemometric models can accurately monitor donor-specific increases in nutrient 
consumption and metabolite production as the primary T-cell transition from a recovery 
phase and begin proliferating. Using a univariate modeling approach, we then show 
how changes in peak intensity within the Raman spectra can be correlated with cell 
concentration and viability. These models, which act as surrogate markers, can be 
used to monitor cell behavior including cell proliferation rates, proliferative capacity, and 
transition of the cells to a quiescent phenotype. Finally, using the univariate models, we 
also demonstrate how Raman spectroscopy can be applied for real-time monitoring. 
The ability to measure these key parameters using an in-line Raman optical sensor 
makes it possible to have immediate feedback on process performance. This could help 
significantly improve cell therapy bioprocessing by allowing proactive decision-making 
based on real-time process data. Going forward, these types of in-line sensors also 
open up opportunities to improve bioprocesses further through concepts such as 
adaptive manufacturing.
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inTrODUcTiOn

The past few years has seen significant growth in the cell and gene 
therapy field with an increasing number of products receiving 
market authorization and approximately 900 active clinical trials 
(1). Despite this growth, cell therapy developers still face many 
challenges. Among these is the need to develop robust manufac-
turing processes that can accommodate the complexity associated 
with live cell therapies in order to make products to a consistent 
quality. A number of recent articles have suggested that the way 
to address this challenge and mitigate risks during cell therapy 
manufacturing could be through the development of processes 
according to the principle of quality by design (QbD) (2, 3). QbD 
is a risk-based framework for process design which incorporates 
prior product knowledge with the use of statistically designed 
experiments, risk analysis, and product characterization. The 
intent of QbD is to establish acceptable operating envelopes for 
a manufacturing process within which a product will be made 
to a consistently high quality. These operating envelopes are 
established by understanding and measuring the link between 
the critical process parameters and critical quality attributes of 
the therapy.

A key enabler of QbD is the implementation of Process 
Analytical Technologies (PAT) to allow process and quality to 
be directly measured. PAT is a framework launched by the FDA 
in 2004 for “designing, analyzing and controlling the manufac-
turing process through the measurement of critical quality and 
performance attributes with the goal of ensuring final product 
quality” (4). The aim of PAT is to encourage the adoption of more 
advanced in-process monitoring approaches, particularly using 
technologies that permit in-line or at-line analysis of key vari-
ables throughout the manufacturing process [reviewed (5)]. Of 
particular importance are PAT technologies that allow real-time 
monitoring of a bioreactor system using in-line sensors, as these 
can provide quality assurance during final manufacture while 
also allowing systems to remain closed, thereby minimizing the 
risk of contamination (6). An important potential advantage 
of PAT for cell therapy manufacture is the provision of process 
information in a time frame sufficient to allow proactive  
decision-making. This has the potential to allow a tighter level of 
control over complex cell therapy manufacturing processes and 
allow the early detection of poor process performance.

A large number of cell therapies already apply some form of 
at-line analysis during the manufacturing process, with samples 
of cells or culture medium removed and analyzed close to the 
process stream. This is often achieved using immunoassays such 
as ELISA to measure secreted proteins, florescent flow cytometry 
to measure cell surface or intracellular markers, or RT-qPCR to 
measure gene expression. These techniques can provide quantita-
tive information about the expression of their target analytes and 
their related quality attributes but take several hours to perform 
and can only realistically be applied at limited number of time 
points throughout the manufacturing process. Other more rapid 
at-line techniques are also available for process monitoring. In 
particular, bioanalyzers are commonly used to monitor mark-
ers related to cellular metabolism including consumption of 
nutrients such as glucose and glutamine and the production of 

metabolic by-products such as lactate and ammonia. Several at-
line bioanalyzer systems are available to measure these important 
metabolic markers, but still require the removal of a media sample 
from the culture system. Again this often limits the analysis to 
set time points during the manufacturing process. In all cases, 
the time taken to analyze samples using at-line techniques and/
or the requirement to remove samples from the culture system 
means that process decisions are taken retrospectively, reacting 
to cellular events that could have happened many hours or days 
before the data becomes available.

PAT using in-line technologies is increasingly being applied 
to support biopharmaceutical production (7, 8). Traditionally 
this has been achieved using standard physical sensors to 
measure parameters within a bioreactor such as pH, dissolved 
oxygen, temperature, flow rate, and stirrer speed. However, 
more sophisticated methods are starting to be adopted, includ-
ing non-invasive optical sensors such as infrared spectroscopy 
(NIR and MIR) and Raman spectroscopy. These non-destructive 
technologies can be used in-line to provide simultaneous real-
time information about multiple components of the culture 
environment, including the consumption of nutrients and the 
production of metabolic waste products. The use of infrared 
spectroscopies has been widely reported for analysis of samples 
during bioprocessing (9–11). However, strong interactions with 
water can mask the signals from target analytes in aqueous 
systems such as cell culture media. In comparison, Raman spec-
troscopy measures the amount of light scattered inelastically 
at different frequencies by molecular vibrations. This produces 
detailed molecular fingerprints with high chemical specific-
ity which are only weakly affected by interactions with polar 
molecules such as water. Consequently, the last few years has 
seen Raman spectroscopy be increasingly applied for process 
monitoring during biopharmaceutical production using CHO 
cell lines (12–14). While the culture environment can be more 
complex during cell therapy manufacture, the potential for using 
Raman spectroscopy as an in-process optical sensor to monitor 
real-time changes is potentially very attractive. Furthermore, the 
application of real-time monitoring can complement the transi-
tion toward the use of closed single-use systems for product 
manufacture which are increasingly used to improve consistency 
and reduce cost of goods (15).

Over the past few years, a number of commercially available 
Raman systems have been developed to support pharmaceutical 
applications. However, Raman spectroscopy is not a plug and 
read optical sensor technology. Raman probes placed directly 
into the cell culture medium provide a molecular fingerprint 
relating to the vibrational spectroscopic information for all 
the molecular components within the system. Therefore, the 
spectroscopic data often needs to be modeled using multivariate 
analysis approaches such as partial least squares (PLS), principal 
component analysis (PCA), or artificial neural networks (ANN) 
to extract the maximum amount of relevant information from the 
spectral data (16, 17). As such Raman probes are often referred 
to as “soft sensors” as they require this statistical modeling in 
order to provide univariate or multivariate information in a 
format similar to common hardware sensor (18). This means that 
Raman spectroscopy is more applicable to defined manufacturing 
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processes or during process optimization rather than a tool for 
early process development.

Here, we show the application of Raman spectroscopy for 
monitoring changes during bioprocessing of a T-cell immuno-
therapy in a stirred tank bioreactor system. Using chemometric 
modeling, we demonstrate how multiple markers of metabolic 
processes can be tracked in real-time with correlation to at-line 
measurements using both mass spectrometry and bio-profiling 
techniques. Furthermore, using a non-targeted approach, we 
show how Raman peaks can be identified which allow real-time 
label-free tracking of the variability in cell recovery and prolif-
eration from T-cells isolated from multiple donors. These results 
represent a significant step forward for real-time cell therapy 
process monitoring and open up new opportunities to improve 
the consistency of cell therapy manufacture.

MaTerials anD MeThODs

cell starting Material
Fresh non-mobilized peripheral blood leukapheresis products 
from four healthy donors were obtained from HemaCare 
Corporation. Leukapheresis were collected in HemaCare’s 
FDA-registered collection centers following cGMP and cGTP 
collection guidelines from healthy human volunteer donors 
under IRB approved informed consent. Transportation from col-
lection center to processing site was performed at 4°C (controlled 
temperature shipment). Leukapheresis products were processed 
separately within 48 h of collection.

T-cell isolation and cryopreservation
Unless otherwise stated materials in this section were obtained 
from Milytenyi Biotech GmbH. T-cells enrichment from leu-
kapheresis material (half collection) was performed using the 
CliniMACS®plus device by positive selection of CD4+/CD8+ 
cells. Prior to processing, samples were analyzed for total white 
blood cell concentration and the number of CD4+ and CD8+ 
T-cell was measured. Next, 20% human serum albumin (HSA) 
(Biotest) was added to the CliniMACS® PBS/EDTA buffer in a 
final concentration of 0.5% (w/v). To reduce platelets contents, 
the leukapheresis material was diluted 3× in CliniMACS® PBS/
EDTA buffer and concentrated 20× using the Sepax2 cell pro-
cessing system (Biosafe). The cell suspension volume was then 
adjusted to a volume of 95  mL with CliniMACS® PBS/EDTA 
buffer before adding a mixture of 7.5 mL anti-CD4 and 7.5 mL 
anti-CD8 magnetic beads. The samples where then incubated 
at room temperature for 30 min on a rocking platform set at 25 
RPM according to manufacturer’s instructions. At the end of the 
incubation time, 400 mL of CliniMACS® PBS/EDTA/0.5% HSA 
was added to the cell suspension and was centrifuged at 500 × g 
for 30 min at room temperature. The supernatant was removed 
and cells were suspended in CliniMACS® PBS/EDTA/0.5% 
HSA up to a volume of 100 mL. Positive selection of CD4+ and 
CD8+ cells was then carried out using the CliniMACS Plus 
system with the Enrichment 1.1 program. At the end of the 
selection program, samples were taken for purity analysis. The 
CD4/CD8 positive cells were centrifuged in a 500 mL centrifuge 

bottle (Corning) at 1,000 × g for 15 min at 4°C. The supernatant 
was removed and the pellet re-suspended in cold CryoStore 10 
(Sigma Aldrich), before controlled rate freezing and storage in 
liquid nitrogen. A CD3 T-cell purity > 90% was achieved in all 
final products.

T-cell Bioprocessing
T-cell activation and expansion was performed in a DASbox 
Parallel Mini Bioreactor System equipped with Eppendorf 
BioBLU 300  mL single-use vessels using a fed-batch process. 
Each vessel was initially filled with 110  mL TexMACS media 
(Miltenyi Biotech GMbH) supplemented with 5% human 
serum (SeraLab), then fitted with dissolved oxygen (DO), pH, 
temperature, and Raman probes, and allowed to equilibrate 
overnight with stirring at 80 RPM. For the inoculation of 
the cell culture, frozen T-cells were thawed, washed, and re-
suspended at a concentration of 1 × 106 cells/mL in 10 mL of 
TexMACS media supplemented with 5% human serum, 1:100 
dilution of research grade T-Cell TransAct (Miltenyi Biotech 
GMbH) and 120  U/mL of IL-2 (Proleukin®, Novartis). Cells 
were maintained in the bioreactors for 12  days with addition 
of TexMACS media supplemented with 5% human serum and 
IL-2 (120  IU/mL final concentration) on days 2 (90 mL) and 
5 (50 mL). A combination of sodium bicarbonate and carbon 
dioxide was used to control the pH at 7.2 and an overlay of 5% 
CO2/air was used to maintain dissolved oxygen at 90%. In each 
experiment, T-cells banked from four different donors were 
cultured in parallel in 4 Eppendorf BioBLU single-use vessels 
for 12  days. A total of three experiments with the same four 
T-cell banks were performed.

Measurement of cell Metabolism
The bioreactors were sampled daily to measure cell density and 
viability using the Vi-Cell XR (Beckman Coulter) cell counter set 
to analyze 50 images with cell parameters set at minimum diam-
eter 5 µm, maximum diameter 50 µm. The culture supernatants 
form these samples were used to obtain off-line reference data for 
glucose, lactate, glutamine, glutamate, and ammonia concentra-
tions using the CuBiAn HT270 automated biochemistry analyzer 
(OptoCell).

Samples of the culture supernatants were also frozen at 
−80°C until completion of all bioreactor runs. These samples 
were then shipped on dry ice to Metabolon for analysis by 
Ultrahigh Performance Liquid Chromatography-Tandem Mass 
Spectroscopy (UPLC-MS). Briefly, samples were prepared 
by Metabolon using an automated MicroLab STAR system 
(Hamilton). Several recovery standards were added prior to the 
first step in the extraction process for QC purposes. Samples 
were extracted with methanol under vigorous shaking for 2 min 
using a GenoGrinder 2000 (Glen Mills) to precipitate protein 
and dissociate small molecules bound to protein or trapped in 
the precipitated protein matrix. This was followed by centrifuga-
tion to recover chemically diverse metabolites. The resulting 
extracts were divided into five fractions: two for analysis by two 
separate reverse phase (RP)/UPLC-MS/MS methods using posi-
tive ion mode electrospray ionization (ESI), one for analysis by 
RP/UPLC-MS/MS using negative ion mode ESI, one for analysis 
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by HILIC/UPLC-MS/MS using negative ion mode ESI, and one 
reserved for backup. Samples were placed briefly on a TurboVap® 
(Zymark) to remove the organic solvent. The sample extracts 
were stored overnight under nitrogen before preparation for 
UPLC-MS analysis. Metabolon’s proprietary software was used 
to match ions to in-house library of standards for metabolite 
identification and quantitation by peak area integration. Analyte 
concentrations were provided as normalized data in arbitrary 
units.

raman spectroscopy Data acquisition
Raman spectra were collected in  situ using the RamanRxn2™ 
(Kaiser Optical systems, Inc.) analyzer coupled with four 
stainless-steel top mounted immersion probes fitted with stand-
ard adapters. The Raman probes were sterilized by autoclaving 
prior to being manually inserted into the BioBLU bioreactor.  
A laser excitation wavelength of 785 nm with power of 400 mW 
at the source resulting in approximately 275 mW of power output 
at the probe tip was used to generate Raman spectra from the 
cell cultures. Cosmic ray removal and dark spectrum subtraction 
were implemented using the iCRaman 4.1 spectral acquisition 
software. Acquisition was started approximately 16  h before 
inoculation of the cell culture and spectra were collected from 
each bioreactor vessel every hour throughout the course of cul-
ture using a 12.5 min spectral collection interval with 75 scans 
and an exposure of 10 s per scan.

raman spectroscopy chemometric  
Model Development
Raw time stamped spectra generated from triplicate runs of 
four donor T-cell cultures were aligned against daily sampling 
times for off-line metabolite measurements. Raman spectra 
were trimmed to keep only the relevant ranges of the spectrum 
(C-H range 3100—2,750 cm−1, and fingerprint 1850—250 cm−1). 
As commonly required for turbid biological media, baseline 
features were eliminated by calculating a first-order spectral 
derivative (moving window of 15 cm−1), and subsequent standard 
normal variate (SNV) standardization. Since distinct peaks for 
the metabolites of interest are typically not available in low con-
centration biological media, univariate regression did not apply. 
Instead, the target parameters were calibrated by multivariate 
regression with the Projection to Latent Structures approach 
(PLS1). A number of relevant features were selected visually with 
the help of the Variance Importance on the Projection ranking  
for each of the target parameters individually. In order to unbias 
the set of training samples for glucose and lactate models, all 
samples with zero concentration were omitted for the respective 
regression. Hotelling’s T2 criterion was used to exclude outliers 
from the respective models. All regressions were performed in 
cross-validation mode, leaving out the spectra from one donor 
type at a time (“leave-1 donor-out”). The selection of the optimum 
number of latent factors for each model was effectuated from the 
root mean squared error of cross-validation (RMSECV) versus 
Rank plot, using a rank as low as possible to reach an acceptable 
RMSECV. Chemometric model development was developed 
using SIMCA 13.

Untargeted Univariate raman Model 
Development
Algorithms for signal processing and data analysis were devel-
oped in Matlab (The MathWorks). All Raman spectra obtained 
from each bioreactor run were collated in a time-series. Each 
spectrum was smoothed and baseline correction was applied 
using the msbackadj function in Matlab to highlight the smallest 
peaks detectable in the spectra and emphasize any change in peak 
magnitude over time (Figures  3A–D). In order to compensate 
for systematic intensity biases between runs, baseline-corrected 
Raman intensities were normalized between the average value 
measured at three wavenumbers with constant low intensity 
(324, 564, and 1,483 cm−1) over time, and the average value at 
three wavenumbers (292, 295, and 2,926  cm−1) with constant 
high intensity (Figure 3F). Further normalization to t = 0 was 
applied by subtracting the average of the first two Raman spectra 
of the series to the rest of the series (Figure 3E). The identifica-
tion of potential univariate Raman peaks matching the patterns 
of off-line measurements (glucose, lactate, glutamine, glutamate, 
cell concentration, cell viability) was achieved by correlation 
analysis of Raman intensities with off-line measurements. For 
each wavenumber, the 1-h resolution intensity time-series was 
discretized by averaging the 12 measurements recorded prior to 
the time of sampling the culture medium for off-line analysis. 
The collection of matching off-line measurements was also col-
lated in the same order as the Raman series. Pairwise correlation 
analysis was performed by standardizing the intensity time-series 
at each wavenumber (using SNV normalization) and measuring 
its correlation coefficients R with the similarly standardized 
time-series of the off-line parameter of interest. The pairs with 
highest correlation (either positive or negative) were identified 
as surrogate univariate Raman markers whose patterns over time 
best matched those of off-line measurements.

Datasets and Data analysis
The same number of measurements was performed for all biore-
actors and runs throughout the study. CuBiAn bioanalyzer data 
consisted of daily measurements for glucose, lactate, glutamine, 
glutamate and ammonia collected over a 10  days period. Cell 
concentration and viability data were also collected daily over 
10 days using a Vi-Cell platform. LC-MS was used to measure the 
concentration of glucose, lactate, glutamine and glutamate daily 
for the first 9 days of the runs. The experiments were kept run-
ning for 12 days in total, during which Raman spectroscopy was 
performed hourly in all bioreactors. Where data was not available 
(1.6% of total data), data was either replaced by the average of 
the preceding and succeeding values (0.3% of total data), or by 
the preceding value when it was evident that the time series had 
plateaued (always when the lower limit-of-detection had been 
reached following analyte depletion, 1.3% of total data). All 
datasets were subjected to pairwise comparison using correlation 
analysis to quantify the linear relationship between variable pairs. 
For each analytical platform, all measurements from all donors 
and all run where first collated into a single dataset. Unless indi-
cated otherwise, to compensate for the different scales between 
datasets, each variable from each dataset was auto-scaled using 
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FigUre 1 | (a) Computer-assisted design image showing the setup of the Eppendorf BioBLU 300 mL single-use stirred tank bioreactor with Raman spectroscopy 
probe (1, shortened for visualization purpose), pH probe (2), temperature probe (3), dissolved oxygen probe (4) and fluid addition and sampling lines (5).  
(B) Donor-to-donor variability, expressed in total number of CD4+ CD8+ cells in the leukapheresis material. (c) CD4/CD8 composition of the CD45+ cells  
from the leukapheresis samples before T-cell isolation (first four bars on the left) and after T-cell selection (last 4 bars on the right). (D) Top row: cell concentration  
in the bioreactors over time, for all four donors and across all three process runs. Bottom row: corresponding cell viability curves.

5

Baradez et al. Raman Spectroscopy for Cell Therapy Bioprocessing

Frontiers in Medicine | www.frontiersin.org March 2018 | Volume 5 | Article 47

SNV standardization, and correlation analysis was performed 
between pairs of variables from different datasets. Agreement 
between such pairs was reported as the square of the correlation 
coefficient, or R2.

resUlTs

autologous immunotherapy Model
All T-cell culture were maintained for 12  days in a BioBLU 
300 mL single-use bioreactor containing a Raman spectroscopy 
probe (Figures  1A1) and sensors for pH (Figures  1A2), tem-
perature (Figures 1A3), and DO (Figures 1A4). The processes 
were run for 12 days with a final feed on day 7 to examine cell 
behavior in response to depleted nutrients. To demonstrate the 
variability commonly encountered with primary cell material, 
T-cell counts were performed on leukapheresis material from 
four independent donors (Figure  1B) and counts of the CD4 
and CD8 population made before and after T-cell isolation 
(Figure 1C). This showed that total T-cell counts in the incoming 
material varied between donors from 1.42 × 109 to 2.89 × 109 
total T-cells. Variation in the number of CD4 and CD8 positive 
T-cells was high in the original leukapheresis samples but was 
reduced post T-cell isolation. However, the population of CD8 

positive cells post isolation varied between 32 (donor 4) to 40% 
(donor 2). This isolated T-cell material from all 4 donors was 
then used to perform three independent process runs (n = 12), 
with cell behavior monitored through daily measurements of cell 
concentration and viability (Figure 1D). During the first process 
run, the samples from all four donors initially underwent a lag 
phase in growth lasting approximately 5 days as the cell recovered 
and adapted to the bioreactor environment. This was followed by 
a growth phase which occurred in a donor-dependant manner, 
with difference in the time at which the cells enter proliferation, 
their proliferation rates and their overall proliferative capacity. 
Interestingly in this bioprocess run, donor 4 entered proliferation 
later than the other donors but showed much higher proliferative 
capacity. In comparison, donors 1–3 stopped proliferating by 
day 7 and became quiescent. In bioprocess runs 2 and 3, similar 
trends were seen; however, the cells from donor 4 performed 
in a comparable manner to the other donors but still reached 
marginally higher overall cell numbers. For almost all process 
runs, viability of cells started to decrease after day 7. These 
results demonstrate the sometimes unpredictable nature of cell 
therapy processing with variability in the cellular material and 
in the behavior of cells between donors and within donors over 
different process runs.
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FigUre 2 | Chemometric models for glucose, lactate, glutamine, glutamate, and ammonia showing the correlation between reference bioanalyzer measurements 
(closed circles) collected every 24 h and continuous Raman chemometric analysis. Data for a single bioprocess run for all four donors are shown.
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chemometric Modeling
To demonstrate the use of Raman spectroscopy as a potential PAT 
tool to monitor the consumption of nutrients and the production 
of metabolites, a series of chemometric models were developed 
(Figure  2). These were produced using Raman spectroscopic 
data from all the bioprocess runs with 12.5 min of Raman data 
acquisition per hour for each bioreactor, for all 12  days. The 
statistical approach for Raman model development is detailed 
in the Section “Materials and Methods” and involved spectral 
pre-processing following by advanced statistical modeling using 
a PLS1 approach.

Using this approach, Chemometric models were successfully 
developed for glucose, lactate, glutamine, glutamate, and ammo-
nia using reference data generated on a CuBiAn bioanalyzer to 
train the models. Best model fits were ranked based on the cor-
relation between off-line data and model output as follow: glucose 
(R = 0.987), lactate (R = 0.986), ammonia (R = 0.936), glutamine 
(R  =  0.922), and glutamate (R  =  0.829). The chemometric 
models for glucose, lactate, and glutamine correlated well with 
the reference data and accurately predicted the consumption of 
nutrients (glucose and glutamine) and the production of lactate 
as cell metabolism and proliferation rates increased from day 5. 
For ammonia, the Raman models showed good correlation with 
the reference data at lower concentration but became less cor-
related above ~60 mg/mL. The model for glutamate showed the 
weakest correlation with only the general trend from low to high 
glutamate concentrations been measured and a loss of correlation 
above 0.16 g/L. Overall the Raman chemometric models tracked 
the reference measurements with a good degree of correlation 
and showed the potential for this technology as a PAT sensor.

Univariate raman approach
The identification of potential univariate markers in the Raman 
time series was investigated as an alternative to chemometric 
modeling and as an online calibration-free methodology. 
Correlation of Raman time series with raw off-line measurements 
did not initially identify a large number of potential Raman 
markers. Although the position of the Raman peaks remained 
stable over 12 days of signal acquisition (Figure 3A), they were 
small and of similar magnitude to the shift of intensities over time 
(Figure 3B). Standard baseline correction was therefore applied 
(Figure 3D) but did not yield the detection of any more strongly 
correlated Raman markers due to the unpredictable fluctuation 
of the dynamic range between probes and runs (Figure  3G). 
However, normalization between the means of two sets of peaks 
with constant low and high intensities during run acquisition 
(Figure 3F, dark horizontal traces), followed by normalization to 
t = 0 (Figure 3E), greatly increased the number of well correlated 
Raman markers with all off-line measurements tested (with the 
exception of viability). These measures could be implemented 
during real-time signal acquisition, potentially removing the 
need for calibration.

correlation between chemometric and 
Univariate raman approaches with Off-
line Measurements
Prior to performing correlation analysis, the errors associated 
with the off-line measurements were evaluated as the ratios of the 
standard deviation of triplicate measurements divided by their 
means, or coefficient of variations (CV). For the LC-MS platform, 
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FigUre 3 | Raman signal processing for untargeted univariate data analysis. (a) 300 raw spectra collected hourly over 12 days in one bioreactor. (B) Magnified 
spectral region between wavenumbers 960 and 1,050, showing clear shift of signal baseline over time. The shift over time is of similar magnitude as most prominent 
peaks and hence needs to be corrected in order to quantify genuine changes of Raman intensity, such as seen in the subtle non-parallel patterns on the left-hand 
side of the right peak. (c) Baseline-corrected spectra. The correction highlights the potential peaks of interest. (D) Same region as in (B) after correction, 
demonstrating that the spectra are significantly re-aligned. (e) Same as (D) after subtracting the averaged first two spectra, in order to normalize the signals to t = 0 
and highlighting true signal fluctuations over time. (F) Example of time series for three peaks of interest (colored) showing patterns consistent with expected 
biochemical changes in the culture medium. As the intensity scale is not calibrated to a standard, two reference intensities consisting of the averages of three peaks 
with either constant high (at 292, 295, and 2,926 cm−1) or low (at 324, 564, and 1,483 cm−1) intensities over time (labeled “upper reference intensity” and “lower 
reference intensity,” respectively, the bold black lines showing the averages of both groups) were selected to perform internal signal normalization. This approach 
was used to normalize all time series between runs. (g) Comparison of reference time series between all runs and all donors (labeled D1–D4). This graph illustrates 
the unpredictable extensive probe-to-probe variability observed with this technology in this context, whether technical or biological, and the need for signal 
calibration or normalization to obtain comparable datasets between different bioreactors and experiments.
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the CV for glucose, lactate, glutamine and glutamate were found 
to be 1.4, 3.5, 1.9, and 2.6%, respectively. On the CuBiAn bioana-
lyzer platform, the corresponding CV were 0.9, 1.1, 1.2, and 3.7%, 
respectively, with the additional ammonia CV =  1.7%. For the 
ViCell, cell concentration had a 4.0% CV, and cell viability a 1.3% 
CV. Therefore, all trends observed in the subsequent analysis  
were found to be significant.

In order to ensure that both the chemometric and univariate 
Raman approaches had the ability to identify Raman peaks which 
correlated with reliable reference datasets, pairwise correlation 
analyzes were first performed to test the agreement of off-line 
metabolite measurements from a bioanalyzer and a LC-MS sys-
tem for glucose, lactate, glutamine, and glutamate (Figure 4A). 
This analysis showed good correlation between the datasets 
for glucose (R  =  0.9679), lactate (R  =  0.9792), and glutamine 
(R = 0.9436) indicating that data from either system could be used 
for univariate model development. However, there was weaker 
correlation for the reference datasets for glutamate (R = 0.7769) 
indicating that development of good univariate models could be 
more challenging. These correlations and the spread of the points 
around the best fitting line provided reference information from 
which to compare the performances of the chemometric and 
univariate Raman approaches.

Next a correlation analysis was performed between the chemo-
metric models and the dataset from the bioanalyzer and LCMS 

system (Figure  4B). As expected the highest correlations were 
observed between the chemometric models and the CuBiAn data 
for glucose (R = 0.9874) and lactate (R = 0.9857) as these were 
reference measurements used to train the chemometric models 
(Figure  4B, top row). High correlations were also observed 
between the chemometric models for glucose and lactate and 
the LC-MS data (Figure 4B, bottom row). This demonstrates the 
robustness and relevance of the chemometric approach for these 
analytes. The chemometric model for glutamine correlated well 
with both CuBiAn and LC-MS datasets (R = 0.9221 and 0.9369, 
respectively), whereas glutamate exhibited weaker correlation 
and could only be useful for general trend analysis rather than 
more accurate quantitative measurement.

To further test the univariate approach, correlation analysis 
was performed against all the reference datasets (Figure 4C). Two 
approaches were used. The first was an unsigned approach which 
correlated the univariate Raman spectra against the reference 
data, i.e., irrespective of whether the correlation was positive 
or negative (Figure 4C, top row). This was done to identify the 
overall best surrogate markers from the Raman spectra. The 
second approach was performed using only positive correlations 
(Figure 4C, bottom row), as these may relate to components of 
the spectral signature of each analyte. The unsigned approach 
consistently yielded the strongest correlations, and they were only 
slightly lower than or comparable to those from the chemometric 
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FigUre 4 | Representative correlation plots between datasets. All off-line measurements from all donors and all runs were used in these plots, with an average of 
108 points used per comparison. Unless indicated otherwise on the axes, the pairwise datasets were auto-scaled using standardization and expressed in arbitrary 
units (A.U.) to make the scales comparable. When the data is negatively correlated in the original dataset, a “(-)” symbol is placed before the value of the correlation 
to indicate the original sign of such correlation. (a) CuBiAn versus LC-MS correlations highlight the variability between the two off-line platforms. (B) Correlations 
between chemometric models and CuBiAn data used to build the models. (c) Best correlations observed between blind univariate Raman markers and off-line 
measurements for each nutrient and metabolite (top row) and best positive correlations between LC-MS measurements (bottom row). (D) Cell concentration and 
viability correlated to the univariate Raman models.
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models for glucose, lactate, and glutamine (R = 0.9716 vs. 0.9874 
for glucose, 0.9543 vs. 0.9857 for lactate, and 0.9263 vs. 0.9221 
for glutamine). As expected from previous correlation measure-
ments, glutamate exhibited a lower correlation (R  =  0.844 for 
either univariate Raman approaches), but slightly higher than the 
chemometric model. However, the trend from low to high con-
centrations remained highly visible. This analysis indicates that 
the univariate models could be used to track nutrient consump-
tion and metabolite production to a similar level of accuracy as 
the chemometric models. Interestingly, as shown in Figure 4D, a 
strong correlation was also observed between unsigned univariate 
Raman (R = 0.9374) and positive univariate Raman (R = 0.9213) 
with cell concentration. This indicates that the univariate Raman 
approach could be also used to monitor changes cell number 

over time within the bioreactor system. A weaker correlation was 
found for cell viability (R = 0.6543) meaning the application of 
univariate modeling for tracking cell viability is probably limited 
to trend analysis of viability within the bioreactor.

All pairwise comparisons including results for ammonia are 
summarized in Table 1. Day 1 data was sometimes omitted in 
the pairwise comparisons as they resulted in poorer correlations. 
Bold numbers indicate the strongest correlation among all pair-
wise analyses for each analyte. Most of the strongest correlations 
were for the chemometric models versus CuBiAn data, this was 
expected as these were the reference data used to calibrate the 
models. The underlined numbers indicate the highest correla-
tions obtained using the blind univariate Raman approach. Best 
correlations were exclusively observed with the LC-MS dataset, 
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TaBle 3 | Overall best signed and unsigned correlation results between Raman 
vs. CuBiAn, and Raman vs. LC-MS measurements.

Off-line measurements highest absolute 
correlation R

highest positive 
correlation R

Raman vs. 
CuBiAn 
(days 
1–10)

Glucose 0.9576 N/A
Lactate −0.9543 0.9502
Glutamine 0.8465 N/A
Glutamate −0.8621 0.836
Ammonia 0.9352 N/A
Cell concentration* −0.9308 0.905
Viability* −0.6543 0.6111

Raman 
vs. LC-MS 
(days 1–9)

Glucose N/A 0.9713
Lactate N/A 0.9517
Glutamine N/A 0.8386
Glutamate −0.8449 0.8445
Ammonia N/A N/A
Cell concentration* −0.9374 0.9213
Viability* −0.5977 0.2466

*Cell concentration and viability measured by ViCell.

TaBle 2 | Datasets best correlated with univariate Raman markers.

Variable Off-line dataset R sign of correlation

Glucose LC-MS day 1–9 0.971 Positive
Lactate CuBiAn day 1–10 0.954 Negative
Glutamine LC-MS day 2–9 0.926 Positive
Glutamate LC-MS day 1–9 0.845 Negative
Ammonia CuBiAn day 1–10 0.935 Positive
Cell concentration Vi-Cell day 1–9 0.937 Negative
Viability Vi-Cell day 1–10 0.654 Negative

TaBle 1 | Correlation between all standardized metabolite datasets investigated in this study.

Data source Pairwise conditions Days R  of standardized data

glucose lactate glutamine glutamate ammonia

Off-line CuBiAn/LC-MS 1–9 0.968 0.979 0.944 0.777 N/A

Chemometrics Chemometrics/LC-MS 1–9 0.975 0.983 0.937 0.766 N/A
Chemometrics/CuBiAn 1–10 0.987 0.986 0.922 0.829 0.936

Raman univariate predictors Best positively correlated/LCMS 1–9 0.971 0.952 0.839 0.845 N/A
Best positively correlated/LCMS 2–9 0.970 0.944 0.926 0.835 N/A
Best positively correlated/CuBiAn 1–10 0.958 0.673 0.654 0.177 0.935
Best positively correlated/CuBiAn 2–10 0.956 0.701 0.899 0.173 0.931

Overall means 0.97 0.89 0.87 0.63 0.93

The datasets consisted of off-line CuBiAn bioanalyzer data for glucose, lactate, glutamine, glutamate, and ammonia collected daily over 10 days.
Bold numbers indicate the strongest correlation among all pairwise analyses for each analyte. The underlines numbers indicate the highest correlations obtained using the blind 
univariate approach.
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suggesting that LC-MS may be more robust system to generate 
data for Raman model development. Ammonia showed similar 
correlation irrespective of whether chemometric or univariate 
Raman approaches were used. Table  2 shows the datasets best 
correlated with univariate Raman markers. With the exception 
of glutamate and cell viability, high correlations were achieved 
for all parameters, indicating that the univariate Raman approach 
can yield good inferential markers to track these variables. The 
mixture of positive and negative correlations observed to achieve 
such high values suggests that some of the Raman markers may 
be surrogate markers. This is highlighted in Table 3 which sum-
marizes all best correlations either positive or negative (in case 
the latter was stronger than the former), with reference data from 
both the CuBiAn and LC-MS systems.

application of raman spectroscopy for 
Time course studies and real-time 
Monitoring
To demonstrate the application of the univariate analysis for 
biomarker monitoring, we compared the LC-MS reference 
data with best matching profiles from the discretized univariate 
Raman time series (Figure 5). Overall, there was good agreement 
between the Raman models and the LC-MS reference data for 
all the analytes. The univariate models could accurately predict 
changes in marker expression including the donor-dependant 
decrease in glucose around day 5, the increase in lactate levels 
which accelerated from day 4 and the multiphasic expression 
of glutamine. As expected based on the correlation analysis, the 
model for glutamate was less robust but the general trend for this 
analyte could be followed.

The univariate Raman models were compared against the 
reference datasets for cell concentration and viability for all four 
donors and the three production runs (Figure 6). This analysis 
showed that for runs 1 and 2 there was very good agreement 
between the reference cell concentrations measured using an 
automated cell counter and the Raman model. The Raman mod-
els could be used to track the cells as they progressed from their 
initial static phase toward a proliferative phenotype around day 
5. The model also predicted the donor-dependant transition of 
some of the culture to a quiescent phenotype from day 7. Model 
correlation for run 3 was not as strong, but this may be due to 

the level of variability associated with the reference cell counts. 
Overall this data showed that the univariate models could be used 
as surrogate markers to track cell behavior within the bioreactor 
system.

A lower level of agreement was observed between off-line 
viability measurements and Raman time series. However, there 
were interesting correlations between these patterns, with the 
Raman marker consistently peaking 1 day earlier than the off-line 
viability measure. The overall times at which the donors stopped 
proliferating was also well represented with the Raman “viability” 
marker, with donor 1 reaching its plateau phase earlier than the 
other donors in runs 1 and 2 but not run 3.
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FigUre 5 | Representative examples of glucose, lactate, glutamine and glutamate time course patterns observed by LC-MS (right column, arbitrary units A.U.)  
for four donors during process run 1, compared to matching univariate Raman markers.
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The actual value of online Raman spectroscopy is in its poten-
tial to monitor complex bioprocesses in real-time. Some of the 
Raman markers (markers for glucose, cell concentration, viability)  
identified through the blind univariate approach described in 
this study are presented in their real-time format in Figure  7. 
Unfiltered Raman time series shows the actual level of noise 
present in the datasets. For the real-time monitoring of glucose 
and cell concentration, the level of noise in the Raman models is 
low, allowing detailed monitoring of glucose consumption and 
changes in cell behavior. For the viability measurements, the 
noise level is high but overall trends in viability can be moni-
tored. To smooth the Raman data, we applied a 24-h moving filter  
(i.e., at any given time, the Raman value was the average of the 24 
previous measurements) the noise was removed and similarities 
or differences between the donors where highlighted. This type 
of running filter could be applied in real-time. The derivation 
of the smoothed curves highlights the rate of changes in marker 
intensities, producing clear peaks at different time points between 

donors. These could also be used to track the progression of each 
culture and inform process actions such as initiating feeds or 
indicating time to harvest in real-time.

DiscUssiOn

A wide range of bioreactor systems are used for cell therapy bio-
processing and many of them provide in-line sensors which can 
be used for routine real-time monitoring of physical parameters 
such as pH, dissolved oxygen and temperature. However, measur-
ing biological and functional parameters relating to cell behavior 
within a culture system is much more complex. In this study, 
we applied in-line Raman spectroscopy as an optical sensor for 
real-time monitoring of T-cell behavior during immunotherapy 
bioprocessing. The primary aim was to demonstrate the use of 
Raman spectroscopy to monitor the consumption of nutrients 
(glucose, glutamine) and the production of markers associated 
with cell metabolism (lactic acid, glutamate, and ammonia). 
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FigUre 6 | Discrete time course data for cell concentration and viability, for all donors and all runs, compared to matching univariate Raman modeling.
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This is challenging due to the complexity of the culture environ-
ment in which the cells are maintained. Typical culture media, 
even when chemically defined, consists of over 40 components 
including inorganic salts, amino acids, sugars, vitamins, alpha-
keto acids, and pH indicators such as phenol red. Therefore, 
any sensors applied for functional monitoring of cell behavior 
must be able to make precise measurements of target nutrients 
and metabolites without interference from the other multiple 
components present. Furthermore, because cell therapy produc-
ers are increasingly closing their manufacturing processes, any 
sensor used for bioprocess monitoring could need to function 
optimally for several weeks.

While other studies have shown the successful application of 
Raman spectroscopy for bioprocess monitoring, this has typically 
been performed in relatively simple culture environments and 
using well characterized cell lines that follow predictable growth 
profiles. For example, CHO cell cultures consistently show 
exponential cell expansion immediately following seeding into the 
bioreactor system (12). As a result, Raman models can be devel-
oped using a small number of bioprocess runs with calibration 
often achieved by spiking known concentrations of the analytes 
of interest into the media to create standard curves to support 
Raman model development (19). In this study, the primary T-cells 
derived from different donors show multiphasic growth profiles. 
Initially, there is a static period lasting approximately 5 days as 
the cells recover and adapt to the culture environment, the cells 
then enter a rapid proliferative state lasting 3–4 days before some 
cultures enter a quiescent phase. The initial static period is consist-
ent between donors but after 5 days the growth profiles become 

divergent with proliferation rates, overall population doublings 
and viability changing in a donor-dependent manner. This diver-
gence makes real-time monitoring more important, particularly  
if components have to be maintained within tight specifications to 
control cell quality. The complexity and composition of the culture 
environment can also affect the performance of Raman optical 
sensors. The media formulation used to support cell growth in 
this study was a chemically defined formulation. However, it 
was supplemented with a mix of cytokines (interleukin-2), a 
polymeric nanomatrix conjugated to monoclonal antibodies 
(CD3 and CD28) and human serum, all of which can have lot-
to-lot variability. In addition, even though the basal media was 
a defined formulation, the exact composition is proprietary and 
not provided by the supplier. This is a common situation faced 
by cell therapy producers. Unlike biopharmaceutical production 
where at least 70% of recombinant proteins are produced from 
CHO cells (20), cell therapies are developed using a wide range 
of different cell types. As a result, there is now an expanding 
market for proprietary commercial media formulations. This 
level of media complexity and lack of information relating to 
media composition makes Raman model development and data 
analysis more challenging. It may also limit the applicability of 
Raman spectroscopy during early process development when 
media supplements and basal media formulations are still being 
developed. Instead, Raman spectroscopy may have most benefit 
for cell therapy monitoring once a basic process is defined to allow 
fine tuning during the ongoing optimization process.

In this study, the complexity of the culture system led to the 
production of Raman data that consisted of weak overlapping 
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FigUre 7 | Example of real-time monitoring of process runs using the blind univariate Raman approach as surrogate markers for glucose (left), cell concentration 
(middle) and cell viability (right). The four donors from run 1 were used. Top—unfiltered Raman time series for these markers. Middle—same data after application  
of a 24 h moving averaging filter. Bottom—gradient of the smoothed Raman time series.
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peaks from all components in the media, making it difficult to 
identify and quantify spectral features for individual target ana-
lytes. This was expected as it has been reported as a challenge even 
in simpler culture systems (12, 13, 17). Consequently, advanced 
chemometric approaches were required for spectral pre-process-
ing and measurement of the analytes of interest. A combination of 
first-order spectral derivative, SNV standardization for baseline 
correction and a PLS1 approach was used to model the analytes 
of interest. The chemometric models were calibrated using refer-
ence measurements taken every 24 h on an off-line photometric 
bioanalyzer. Using this approach, the Raman model predictions 
matched the reference values for glucose, lactate, and glutamine 
with high a high degree of correlation across the concentration 
range of the reference datasets and throughout the whole pro-
cess. The model used to predict the concentrations of ammonia 
showed good correlation over the lower concentration ranges 
but became less predictive above 60  mg/L. In comparison, the 
model for glutamate showed poor correlation with the reference 
measurement in this cell therapy system. This is likely due to the 
accuracy of the glutamate reference method produced on the 
bioanalyzer system that is toward the lower limits of its detection 
range. Importantly, the Raman models accurately modeled the 

depletion of glucose and glutamine from the media and increased 
production of lactate and ammonia, with these changes corre-
sponding to the transition of the cells from a recovery phase (days 
1–5) toward a proliferative state. This correlation between the 
in-line Raman models and the off-line reference measurements 
show the potential for real-time tracking of these key markers 
during cell therapy manufacture.

An interesting approach investigated in this study is the use 
of univariate Raman modeling for non-targeted analysis of the 
culture media. This approach involves relatively straightforward 
spectral pre-processing using baseline correction, internal nor-
malization using reference peaks, and normalization of the data 
to t = 0, all of which can be implemented in real-time. Changes 
in the processed spectra can then be used to provide in-depth 
information about both cell behavior and the culture environ-
ment. As an initial application of this approach, each individual 
Raman wavenumber was analyzed and compared to reference 
measurements for glucose glutamine, glutamate, and lactate pro-
duced using both a bioanalyzer and LC-MS system. This enabled 
the identification of peaks with the strongest correlation to the 
reference measurements. These could be used to track the nutri-
ent depletion (glucose and glutamine) and metabolite production 
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(glutamate and lactate), to a comparable level of accuracy to the 
chemometric models. However, the advantage of this univariate 
approach is that these peaks can be used as surrogates to monitor 
processes changes without the need for the complex statistics 
required for chemometric model development. This univariate 
approach can also be used to correlate Raman peaks with other 
process parameters for which reference measurements are avail-
able. We showed how this can applied to accurately track cell 
concentration including cell proliferation rates and the overall 
proliferative capacity of the cells derived from difference donors. 
While not shown in this study, this univariate approach could 
also be used to identify peaks which change in a consistent way 
between individual bioreactor runs, thereby creating a process 
fingerprint. The use of fingerprinting for bioprocess monitor-
ing has been reported at a holistic level using techniques such 
as refractive index sensors to track non-specific changes in the 
culture environment and establish acceptable ranges for process 
performance (21). These holistic approaches can be valuable for 
general monitoring of bioprocesses and could be used to highlight 
processes that are running suboptimally. The univariate Raman 
modeling approach presented here could potentially offer an even 
finer level of resolution for process fingerprinting. This is because 
10s or 100s of individual peaks could be measured simultane-
ously in real-time and used to develop a detailed multivariate 
design space to track process performance and measure the level 
of consistency between process runs. As changes or refinements 
are made to a process over time, these same fingerprints could be 
used to help demonstrate comparability.

The ability to measure and track the expression of key markers 
during cell therapy bioprocessing opens up interesting opportuni-
ties for real-time monitoring and progress within the field toward 
feedback control during product manufacture. Other reports 
have shown that Raman spectroscopy can be used for closed 
loop control to improve biopharmaceutical protein production 
by monitoring parameters such as lactate concentration (22) or 
glucose consumption (23, 24). However, this is dependent upon 
the accuracy and robustness of the spectroscopic models used for 
tracking these key makers (25). While these types of real-time 
closed loop systems have not yet been applied to cell therapy 
manufacture, they could provide the level of control required to 
manage the variability that currently resides in autologous manu-
facturing processes. In the shorter term, Raman spectroscopy 
could be used to inform the timings of key process decisions. For 
example, coordinating viral transduction with the transition of 
the cells to a proliferative or activated state. The data presented 
here shows how a combination of Raman analysis for cell number 
in combination with changes in nutrient consumption could be 
used to indicate the point where cells are entering proliferation 
and to time viral addition. This could have significant benefits for 

optimizing the use of key raw materials which have a large impact 
on the overall cost of goods for cell therapy manufacture.

Overall, the data presented in this study demonstrates 
the potential of using Raman spectroscopy to monitor the 
functional behavior of cells in real-time during cell therapy 
bioprocessing. To our knowledge, this is first report applying 
Raman technology to monitor the consumption of nutrients 
and the production of metabolites in a cell therapy model. We 
also believe this is the first report showing the potential for 
using univariate modeling for real-time non-targeted correla-
tion analysis of viable cell concentration. The ability to have 
real-time measurements of these key parameters could provide 
immediate feedback on process performance and make Raman 
spectroscopy an attractive PAT system to improve future cell 
therapy manufacturing processes.
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