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Many neurons of all animals that exhibit memory (snails, worms, flies, vertebrae)
present arborized shapes with many varicosities and boutons. These neurons, release
neurotransmitters and contain ionotropic receptors that produce and sense electrical
signals (ephaptic transmission). The extended shapes maximize neural contact with
the surrounding neutrix [defined as: neural extracellular matrix (nECM) + diffusible
(neurometals and neurotransmitters)] as well as with other neurons. We propose a
tripartite mechanism of animal memory based on the dynamic interactions of splayed
neurons with the “neutrix.” Their interactions form cognitive units of information (cuinfo),
metal-centered complexes within the nECM around the neuron. Emotive content is
provided by NTs, which embody molecular links between physiologic (body) responses
and psychic feelings. We propose that neurotransmitters form mixed complexes with
cuinfo used for tagging emotive memory. Thus, NTs provide encoding option not available
to a Turing, binary-based, device. The neurons employ combinatorially diverse options,
with >10 NMs and >90 NTs for encoding (“flavoring”) cuinfo with emotive tags. The
neural network efficiently encodes, decodes and consolidates related (entangled) sets
of cuinfo into a coherent pattern, the basis for emotionally imbued memory, critical for
determining a behavioral choice aimed at survival. The tripartite mechanism with tagging
of NTs permits of a causal connection between physiology and psychology.
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INTRODUCTION
The neural circuitry of the brain has been likened to a biological
computing device. But the process whereby a physiologic pro-
cess (stimulus sensation) transforms into a psychical sensation
(such as emotionally-tinged memory), which determines physical
response to immediate stimuli, remains mysterious (Figure 1).

Each of the senses receives environmental stimuli (input)
which are transformed into a synaptic cognitive information
(cog-info) signals, which are somehow encoded and stored some-
where in the brain, later to be decoded (recalled), to determine
a behavioral choice based on recalled experience. Much has been
speculated in philosophical term (Romanes, 1883; James, 1884;
Langer, 1967; Meshulam et al., 2011) and on the basis of biologic
observations (Squire and Kandel, 2008; Kandel, 2009; Garcia-
Lopez1 et al., 2010; DeFelipe, 2011; Murtya et al., 2011; Emmons,
2012; Jarrell et al., 2012; Hirano et al., 2013; Strausfeld and Hirth,
2013; Wright et al., 2013), but molecular details for the mentation
of memory by neural animals are lacking.

Q: Does the brain operate like a Turing machine (Boole, 1853;
Turing, 1950)?

A: Computer and machine circuits (Figure 2A) operate in dry
condition. Wires in an electric circuit are insulated from one
another by plastic, non-conducting, coatings and air gaps (or
vacuum), to prevent short circuits.

By contrast, we previously pointed out that neurons are
enclothed in a wet, electrically conducting hydrogel (nECM)

with many component glycosaminoglycans (GAGs) and pro-
teins (Marx and Gilon, 2012, 2013). The intimate con-
tacts of the extended neural surface with the nECM per-
mits iontophoretic/piezo-electric/visco-elastic actuators on the
neural surface to metamorph cog-info into cuinfo. Images
of “naked” neurons suspended in vacuous space are mis-
leading, in that they ignore the nECM and the dopants
(NTs and neurometals) distributed therein. Cajal did not
perceive their roles in neural mentation (Figure 2B; see
Garcia-Lopez1 et al., 2010). Rather, the intuitive painting
of Pollock (1997) more closely represents the physical cir-
cumstances of neurons enclothed within a biogel lattice
(Figure 2C).

ENCODING EMOTIONS
Neural memory recalls emotive as well as objective qualities. As
conceived by the philosopher William James and other philoso-
phers (Romanes, 1883; James, 1884; Langer, 1967; Meshulam
et al., 2011), emotions have physical correlates.

Q: What kind of molecular structure or process endows mem-
ory with emotive quality?

A: Possibly, neurotransmitters (NTs) are involved. They elic-
iting a range of physiologic and psychic responses and most of
them bind to metals.

We point out that the NTs are a class of molecules syn-
thesized and secreted by neurons that elicit emotive reactions,
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concomitant with physiologic responses. Thus, NTs can be con-
sidered as the molecular embodiments of emotions. In that they
have strong affinity to metals, they can form ternary complexes
with metals, as exemplified by the binding of bilirubin to albumin
(Marx, 1984). We propose that the NTs (Hughes and Zubek, 1956;
Colburn and Maas, 1965; Boggess and Martin, 1975; Chandra
et al., 1980; Ludlam et al., 1980; Sigel and Martin, 1982; Jolles,
1983; Coffman and Dunn, 1988; Flood et al., 1990; Jefferys,
1995; Velez-Pardo et al., 1995; White and Rumbold, 1988; Buhot
et al., 2000; Reith, 2002; Shaik, 2003; Álvarez and Ruarte, 2004;
Siegel et al., 2005; Kroval et al., 2006; Marazziti et al., 2006;
Neumann, 2007; Wyttenbach et al., 2008; Paoletti et al., 2009;
van der Burgt et al., 2009; Burbach, 2010; Dere et al., 2010;
Guastella et al., 2010; Brady et al., 2011; Lesburguères et al.,
2011; Beets et al., 2012; García et al., 2012; Garrison et al., 2012;
Ma et al., 2013; Pitt et al., 2013; Yanagita et al., 2013) provide
the neural net with a new mode of processing (mentating) cog-
nitive information (cog-info) not available to a binary Turing
machine.

sense behave
see
smell
hear
feel
taste

memory

mentation
Brain

FIGURE 1 | Schematic of the process whereby an external stimulus is

remembered to determine whole body response, critical for survival.

TRIPARTITE MECHANISM
To rationalize the phenomenon of biologic memory in physical-
chemical terms, we have proposed (Marx and Gilon, 2012, 2013)
a tripartite mechanism comprising 3 physiologic compartments:

• Neuron—elongated cell in synaptic and non-synaptic contact
with others

• nECM—an anionic biogel lattice surrounding the neuron
• dopants—neurometals and neurotransmitters (NTs)—metals

(e.g., Al+3, Ca+2, Co+2, Cu+2, Fe+2/3, Mg+2, Mn+2/3, Zn+2)
and small molecular modulators, distributed in the nECM.

Though the term “space” is often used to refer to the neurons’
environment, it is not quite correct. The neurons are not naked,
floating in space. Rather, they are suspended (enmeshed) in a
matrix composed of glycosamino-glycans (GAGs) and proteins
(such as tenascins, and laminin), referred to as “nECM.” Their
shape (highly elongated with many dendrites, splayed, arborized)
exposes the large surface to intimate contact with the nECM,
through which chemical, as well as electrical, signaling occur.

Just like all other physiologic processes, mentation must be
biochemically based. All three of the above compartments are
involved in transforming (encoding) cognitive information (cog-
info) incoming from the senses, into [nECM:metal] complexes,
the molecular correlates of cognitive units of information (cuinfo),
like computer bits. The incoming cog-info is transferred to the
brain via into synaptic and non-synaptic networks. But what
happens there?

We generalize a biochemical processes and notations, which
feature sets of metal-centered complexes (cuinfo) which can
undergo different types of redox, tagging and cross-linking reac-
tions, thereby modulating the dielectric properties, viscoelasticity
and stability of local, molecular ensembles. The neuron is atuned
to such nECM ensembles and can thereby chemically affect/sense
(encode/decode) cog-info.

FIGURE 2 | (A) Circuit for electric motor. (Note the insulating spaces
between wires and components). (B) Cajal drawing of a neural circuit (from
Garcia-Lopez1 et al., 2010; DeFelipe, 2011). (Note the empty spaces around

neurons) (with permission). (C) Painting by Jackson Pollok (Boole, 1853) that
more closely represents neurons enmeshed within the nECM. (No empty
spaces). (with permission).
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Table 1 | Metal complexing neurotransmitters.
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Types and structures (Hughes and Zubek, 1956; Colburn and Maas, 1965;

Boggess and Martin, 1975; Chandra et al., 1980; Ludlam et al., 1980; Sigel and

Martin, 1982; Jolles, 1983; Coffman and Dunn, 1988; Flood et al., 1990; Jefferys,

1995; Velez-Pardo et al., 1995; White and Rumbold, 1988; Buhot et al., 2000;

Reith, 2002; Shaik, 2003; Álvarez and Ruarte, 2004; Siegel et al., 2005; Kroval

et al., 2006; Marazziti et al., 2006; Neumann, 2007; Wyttenbach et al., 2008;

Paoletti et al., 2009; van der Burgt et al., 2009; Burbach, 2010; Dere et al., 2010;

Guastella et al., 2010; Brady et al., 2011; Lesburguères et al., 2011; Beets et al.,

2012; García et al., 2012; Garrison et al., 2012; Ma et al., 2013; Pitt et al., 2013;

Yanagita et al., 2013).

Focusing on the neurotransmitters (NTs) shown in Table 1, all
present a variety of metal complexing moieties called ligands (e.g.,
glycine, glutamate catechol amines, neuropeptides, adenosine)
that can form mixed complexes with cuinfo. Activated neurons
release vesicles containing NTs along with neurometals (M+v;
such as Ca+2, Cu+2, Fe+3, Mn+2, Zn+2, etc.) into the nECM of
the synaptic cleft and other extracellular locations, permitting the
formation of ternary complexes [nECM: M+v:NT]. Some larger
one permit coordination with more than 1 metal centered cuinfo
(bidendate, tridendate).

With the exception of acetylcholine and muscarine, which
are true cationic entities due to their tetrasubstituted ammo-
nium moiety, most NTs are electron donors, behaving as effec-
tive metal complexants (ligands) (Table 1). An individual NT
can be considered to embody an “emotive” signal, if it elicits
physiologic responses (pulse, breathing, dilation of blood ves-
sels and pupil, erection, sweating, etc), as well as corresponding
psychic reactions (attention, anxiety, anger, fear, hunger, pain,
love, etc.), which are remembered. Chemically, an electron-rich
NT molecule diffusing in the nECM can bind to a metal-
centered cuinfo, confers an emotive tag to the ternary (mixed)
complex, resulting in a tagged, cuinfo:NT. The stability of
such complexes depends on the valency of the metal cation
and binding affinity of the components (pKD). Monovalent
metal (Na+, K+, Li+, Cs+) complexes are relatively unstable;
the resultant cuinfo tend to rapidly disintegrate. Small mono-
dendate NTs bind to a single cuinfo; larger ones are polyden-
date and could bind to multiple cuinfo, thereby literally “entan-
gling” them. Table 2 below organizes the metal-complexing
NT which have been shown to induce physiologically-linked

Table 2 | Bio-modulators (also called NTs) of physiologic responses to

stimuli, which simultaneously elicit both physiologic responses and

psychic (emotions) feelings, which also encode the stimuli, aiding

the recall (memory).

Modulators Metal Physiologic Psychic

(neurotransmitters) complexing reactions effects

ligands emotions

Acetylcholine (AcChol) NO Breathing
Blinking
Blood pressure
Coughing
Crying
Dilation of pupil
Drooling
Erection
Evacuation
Fever
Goose-bumps
Heart beat
Itching
Orgasm
Pulse
Salivation
Secretion
Spasms
Sweating
Tremors
Urination
Vasodilation
Vomiting

Anxiety
Aggression
Awareness
Depression
Fear
Hate
Heat
Hunger
Joy
Love
Pain
Sadness
Sex drive

Epinephrine (EPI) YES

Serotonin (SER) YES

Histamine (HIS) YES

Nicotine YES

Muscarine NO

Amino acids YES

>75 neuropeptides YES

+

 nECM:metal complex
            (cuinfo)

nECM metal

FIGURE 3 | Iconographic representation of formation of anECM:metal

complex (cuinfo). The chelating node (address) within the nECM is
presented as square electron-rich hole fixed within the nECM lattice, with 2
dots representing ligands available for capturing a metal. The metal-bonded
to the complexing group electrons is indicated by a dotted line, within the
cuinfo. It can serve as a binding focus for metabolites and
neurotransmitters. The nECM array with metal complexes is called neutrix.

psychic responses to stimuli (Table 2), are also imprinted in
memory.

ICONOGRAPHY
We offer an iconography to visualize the formation of cuinfo
(Figure 3) and their transformation by tagging with NT
(Figure 4). To stay within the IUPAC guidelines for chemical
notations, the graphic notation previously employed has been
slightly modified (Boole, 1853; Marx and Gilon, 2012, 2013). The
complexing moieties (ligands) in the nECM are presented as two
dots (non-bonding pair of electrons). The metal bonded to the
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NT

NT

NT

A

B

C

cuinfo

NT

NT

NT

NT2

NT2

NT3

D

E

F

NT

NT

NT

FIGURE 4 | Various types of [cuinfo:NT] complexes. (A) A monodentate
NT replaces one neutrix metal bond. (B) A bidentate NT couples (entangles)
2 cuinfo. (C) A tridentate NT replaces three neutrix metal bonds. (D) A

bidentate NT entangles two cuinfo. (E) A tridentate NT entangles two cuinfo,
via double and single complexing bonds. (F) A tridentate NT entangles three
cuinfo.

complexing groups in the nECM is indicated by a dotted line (e.g.,
Figure 3). We have defined an arbitrary unit of cognitive infor-
mation as cuinfo. We call the nECM array with metal complexes:
neutrix.

EXAMPLES OF METAL CHELATING NEUROTRANSMITTERS
(NTs)
The NT can be considered to embody “emotive” signals, in
that they elicit emotive physiologic reactions (attention, anxiety,
anger, fear, love, pain, etc) that are remembered. Many NT are
also effective metal chelators. Chemically, the presence of an NT
can “flavor” a cuinfo. The resultant ternary complex is more sta-
ble, crowned with an emotive tag. Such chelate complexes are
reversible depending on their binding strength to a particular
cuinfo (pKD). Some redox and crosslinking reaction can stabilize
these.

Mono-, bi- and tridentate complexes of electron-rich NTs with
metal-centered cuinfo can be conceived (Figure 4). In such mixed
complexes, the NT replaces one or more neutrix metal bond also
indicated by a dotted line

Of course, cross-linking (from either redox or enzymatic)
reactions would render the entire ensemble much more stable,
relevant to long term memory.

TYPES OF NTs
A: Catecholamines: epinephrine (EPI), norepinephrine (NE),

dopamine (DA) (Colburn and Maas, 1965; Boggess and
Martin, 1975; Chandra et al., 1980; Kroval et al., 2006; García
et al., 2012).

Catecholamines are “emotive” neurotransmitters associated
with fear, fright, anxiety, all emotions strongly recalled in

memory. Physiologically, they elicit responses such an altered
heart rate, blood flow, pupil dilation, muscle contraction, etc.
Chemically, they comprise an ortho-dihydroxy benzene struc-
ture, a potent metal chelating moiety; stored within neuron’s
vesicles and released upon signaling. The NT of this class, the
dopamine (DA), norepinephrine (NE) and epinephrine (EPI)
can form ternary complexes with cuinfo, generaly described in
Figure 6.

The catecholamines present 2 independent chelate centers (the
ortho hydroxy benzene and the distal amino terminus) which can
bridge two adjacent cuinfo, effectively entangling a pair of cuinfo,
rendering them more stable as well as more identifiable (tagging)
for linked (entangled) recall. They permit of emotive memory
associated with physiologic reactions.

B: Amino acids (Hughes and Zubek, 1956; White and Rumbold,
1988; Flood et al., 1990; Velez-Pardo et al., 1995; Buhot et al.,
2000; Álvarez and Ruarte, 2004; Siegel et al., 2005; Paoletti
et al., 2009; Dere et al., 2010; Lesburguères et al., 2011) and
other small molecules.

In the same manner, other NT such as glutamine, histidine,
and seratonin, which affect numerous physiologic responses
(water balance, immune reactions, blood clotting, fever, sweat-
ing), as well as emotion, can form mixed complexes with
cuinfo. A lineup of some NT’s capable of adorning the
cuinfo by chelate complexation is iconographically presented in
Figure 7.

C: Metal chelating neuropeptides (Jolles, 1983; Ludlam et al.,
1980; Coffman and Dunn, 1988; Marazziti et al., 2006;
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FIGURE 5 | Formation of mixed dopamine:cuinfo complexes. (A) Formation of ternary cuinfo complex with one catecholamine. (B) Formation of a
entangled dopamine (DA) complex (cuinfo2:DA).

Neumann, 2007; Wyttenbach et al., 2008; van der Burgt et al.,
2009; Guastella et al., 2010; Beets et al., 2012; Garrison et al.,
2012; Pitt et al., 2013).

Neuropeptides are an important class of molecular communi-
cators in the central and peripheral nervous systems, acting as
neurotransmitters, neuromodulators, and hormones. They also
connect the nervous system to other physiological networks reg-
ulating breathing, pulse, etc. Many neuropeptides are abundantly
expressed in brain regions involved in emotional processing and
anxiety behaviors.

Neurotransmitters (NTs) and neuropeptides (NP), having var-
ious physiological effects have also been implicated in cognitive
functions such as learning and memory. The peptides include
corticotropin releasing factor, urocortin, neuropeptide Y, vasoac-
tive intestinal polypeptide, neurotensin, galanin, opioid peptides,
tachykinins, nociceptin, oxytocin, vasopressin, and angiotensin.
In addition to their many physiological functions, NTs elicit
psychic effects on mood (anxiety and depression) and memory.

For example oxytocin is cyclic nona-peptides (9 aa), capable
of eliciting numerous physiological responses [lactation, blood

GLU HIS SER

GLU glutamine
HIS histidine
SER seratonin

FIGURE 6 | Icons of cuinfo tagged with various neurotransmitters, as

ternary complexes.

coagulation (factor VIII)]. It also affects cognitive functions
related to memory as well as to emotions love, mood, appetite,
sexual behavior, social behavior. The 3-D structure of complexes
of oxytocin with Cu+2 and Zn+2 and insulin have been described.
For example, the groups in oxytocin, which participates in the
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FIGURE 7 | (A) Molecular structure of oxytocin (OXYT), with 14 potential
metal-complexing moieties marked with arrows. (B) Iconographic
representation of a monodendate cuinfo:OXYT complex.

formation of these complexes can also permit the formation
of mixed metal complexes with cuinfo. The metal complexing
moieties (indicated be arrows in Figure 7) include: the amino
terminal Cys1 group, the disulfide bond between Cys1 and Cys6,
the phenol group of Tyr2, the carboxamide groups of Gln4 and
Asn5, and the terminal carboxamide group of Gly9. In addition
the peptide bonds constitute multiple metal bonding ligands.

A set of cuinfo might be represented as adjacent units adorned
by redox or NT tags.

DISCUSSION
Memory is a mental function that permits recall of past events,
to guide future behavior. One could say: “No cognition with-
out memory.” How are different memories assigned value or
significance? What are the molecular-scale details? What are the
molecular encoders of emotions or feeling (James, 1884; Langer,
1967)?

We point out that the NTs elicit not only physiologic effects but
concommitantly elicit psychic effects described as emotions (see
Table 2). For the purposes of discussing memory, the NTs can be
considered to be the encoders of emotions. With the exception
of acetylcholine and muscarine, which both express a tetra-
substituted ammonium moiety and are true cations regardless of
the pH, the other NTs are all electron donors, capable of forming
ternary, metal-centered complexes, described as cuinfo:NT.

Consider the computer using binary code. Each bit is anony-
mous, (100111001110), exhibiting no flavor, color, value or prior-
ity, one over the other. The Turing machine computes (performs
a series of discrete procedures) inexorably according to the laws
of logic, mathematics and communication theory, with no emo-
tional context (Boole, 1853; Turing, 1950) or survival import. The

O NT

NT = Neurotransmitter
C=O = Keto carbonyl

coordinate/chelate bond

covalent neutrix lattice connector

: neutrix lattice electron donor moiety

Metal cations, M+v

cross-link

(v=valence +1 to +3)

FIGURE 8 | A set of cuinfo, tagged with keto group and a generic

neurotransmitter (NT).

NTs provide the neural system with a novel encoding modality
that is missing in binary codes, the emotive option for encod-
ing cog-info, critical for providing value and significance to the
memory consolidated from tagged cuinfo:NT, aiding survival.

The brain is first and foremost an emotive organ, men-
tating emotionally with combinatorially large sets of chemical
“encoders” (Lehn, 2002, 2012) to ensure survival. Emotions such
as fear, anger, love, etc., drive behavior, are the “coins of signif-
icance,” which provide a priority value to cog-info, are strongly
remembered.

We may not be able to penetrate the realm of subjective expe-
rience, but we can describe the molecular correlates and chemical
dispositions of psychical processes (mentation) of which mem-
ory is an example. The molecular correlates of emotions could
be considered to be encoded by NTs (Tables 1, 2), relatively small
molecules that are secreted into the nECM by activated neurons,
as part of non-synaptic “chemical signaling” (volume transmis-
sion) (Wu et al., 2004; Delgado et al., 2006; Ortega et al., 2007;
Syková and Nicholson, 2008; Adlard et al., 2010; Vizi et al., 2010;
Kaler, 2011; Sadiq et al., 2012; Trueta and De-Miguel, 2012; Goyal
and Chaudhury, 2013; Vizi, 2013). Vesicles containing psychoac-
tive neurometals (Al, Ca, Co, Cu, Fe, Mg, Mn, Zn) are also
released by the neuron into the nECM upon firing, combina-
torially encoding cog-info as cuinfo, ternary (mixed) complexes
capable of combing with NTs, described by the iconographic
notations in Figures 4–8.

Emotion without memory to guide behavior would be very
short-lived. . . the organism would not long survive. Emotions
provide value/priority to (incoming) sensorial cog-info. Emotion
and memory are functionally linked phenomena. . . providing
motivational significance (value) to guide adaptive behavior.
Emotions could be considered as responses that “flavor” cog-info
with value, to aid recall and guide behavior.

All animals need to respond emotionally to a specific cir-
cumstance, and to remember the specific situation within the
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limitations of its evolved capabilities to recall. The NTs are capable
of eliciting both physiologic and psychic responses to a significant
experience. Thus, they can affect behavior and also imprint cuinfo
with emotive tags, to enable “prioritized recall,” enabling sur-
vival. The above-described tripartite mechanism with NTs, brings
emotion-laden mental sensibility into the compass of biochemical
fact, applicable to all neural creatures exhibiting memory.
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