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Accumulation and aggregation of amyloid-β (Aβ) peptides in the brain trigger the develop-
ment of progressive neurodegeneration and dementia associated with Alzheimer’s disease
(AD). Perturbation in Aβ clearance, rather than Aβ production, is likely the cause of sporadic,
late-onset AD, which accounts for the majority of AD cases. Since cellular uptake and
subsequent degradation constitute a major Aβ clearance pathway, the receptor-mediated
endocytosis of Aβ has been intensely investigated. Among Aβ receptors, the low-density
lipoprotein receptor-related protein 1 (LRP1) is one of the most studied receptors. LRP1
is a large endocytic receptor for more than 40 ligands, including apolipoprotein E,
α2-macroglobulin and Aβ. Emerging in vitro and in vivo evidence demonstrates that LRP1
is critically involved in brain Aβ clearance. LRP1 is highly expressed in a variety of cell
types in the brain including neurons, vascular cells and glial cells, where LRP1 functions
to maintain brain homeostasis and control Aβ metabolism. LRP1-mediated endocytosis
regulates cellular Aβ uptake by binding to Aβ either directly or indirectly through its co-
receptors or ligands. Furthermore, LRP1 regulates several signaling pathways, which also
likely influences Aβ endocytic pathways. In this review, we discuss how LRP1 regulates the
brain Aβ clearance and how this unique endocytic receptor participates in AD pathogenesis.
Understanding of the mechanisms underlying LRP1-mediated Aβ clearance should enable
the rational design of novel diagnostic and therapeutic strategies for AD.
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INTRODUCTION
The low-density lipoprotein receptor (LDLR) family con-
sists of structurally related single transmembrane receptors,
including LDLR, LDLR-related protein 1 (LRP1), LRP1B,
megalin/LRP2, very-LDLR (VLDLR), apolipoprotein E recep-
tor 2 (ApoER2)/LRP8, sortilin-related receptor (SorLA/LR11),
LRP5, and LRP6 (Herz and Bock, 2002; Jaeger and Pietrzik,
2008; Holtzman et al., 2012). These cell surface receptors recognize
extracellular ligands for subsequent signaling and/or trafficking to
either degradation or recycling pathways (Bu, 2009; Holtzman
et al., 2012). While the LDLR family members often recognize the
same ligands, they regulate distinct physiological or pathophysio-
logical pathways due to unique tissue expression patterns (Krieger
and Herz, 1994). In particular, apolipoprotein E (apoE), which
transports cholesterol, is a critical ligand for several receptors of
the LDLR family (Herz and Bock, 2002; Bu, 2009). Since the APOE
ε4 allele increases the risk for late-onset Alzheimer’s disease (AD)
compared with the APOE ε2 and ε3 alleles (Corder et al., 1993;
Farrer et al., 1997), LDLR family has been vigorously studied as a
target to explore the complex pathogenesis of AD.

Amyloid-β (Aβ) peptides cleaved from amyloid precursor pro-
tein (APP) are the key molecules involved in AD pathogenesis;
deposition of Aβ in the brain as senile plaques and cerebral amy-
loid angiopathy (CAA) likely triggers a cascade of events leading
to disease onset (Hardy and Selkoe, 2002; Blennow et al., 2006).
Recent evidence has also shown that soluble Aβ oligomers injure

synapses resulting in cognitive impairment prior to Aβ deposition
(Mucke and Selkoe, 2012). While familial AD, which accounts for
∼1% of AD cases, is likely caused by genetic mutations in APP,
PSEN1, and PSEN2 leading to enhanced Aβ production (Thies
and Bleiler, 2013), a positive correlation between Aβ levels and
APP processing is not evident in sporadic late-onset AD (Shino-
hara et al., 2014), which represents the bulk of all AD cases. In
fact, the disturbance of Aβ clearance machinery appears to be a
leading cause of Aβ accumulation in the brain (Mawuenyega et al.,
2010). Thus, the dysregulation of Aβ clearance pathways may be
a central disease event in the majority of AD cases. Improved
understanding of such pathways should help to both understand
the complex pathogenesis of AD and allow for rationale design for
AD therapy.

Among the LDLR family members, LRP1 is the most stud-
ied receptor due to its involvement in multiple pathways in AD
pathogenesis (Zlokovic et al., 2010; Spuch et al., 2012). LDLR also
mediates Aβ metabolism (Kim et al., 2009; Basak et al., 2012) and
SorLA/LR11, which controls APP trafficking/processing (Ander-
sen et al., 2005), is genetically associated with AD (Rogaeva et al.,
2007). LRP1 is a large multi-functional receptor that regulates the
endocytosis of diverse ligands and transduces several cell signaling
pathways by coupling with other cell surface receptors. LRP1 is
detected in most tissues and is highly expressed in liver, brain and
lung. In the central nervous system, LRP1 is abundantly expressed
in neurons, glial cells and vascular cells, and plays a critical role in
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maintaining brain homeostasis (Herz and Strickland, 2001; Lillis
et al., 2008). In this review, we discuss how LRP1 regulates AD
pathogenic pathways in different cell types with particular focus
on Aβ clearance pathways.

LRP1 AND ALZHEIMER’S DISEASE
LRP1: STRUCTURAL AND FUNCTIONAL FEATURES
Low-density lipoprotein receptor-related protein 1 was initially
identified in liver cells as LDLR homology (Herz et al., 1988).
It is composed of two subunits including an 85-kDa C-terminal
transmembrane domain and a 515-kDa N-terminal extracellular
domain. LRP1 is synthesized as a glycosylated precursor pro-
tein and then cleaved into two subunits in the Golgi complex.
After proteolytic processing, the extracellular domain of LRP1
is non-covalently connected to the transmembrane domain as it
matures to the cell surface (Kowal et al., 1989). The extracellu-
lar domain of LRP1 contains four ligand-binding domains I-IV
with 2, 8, 10, and 11 cysteine-rich complement-type repeats,
respectively (Neels et al., 1999). These motifs contain a net neg-
ative charge, which allows the bindings of a variety of positively
charged ligands (Spuch et al., 2012). The domains II and IV of
LRP1 are the major binding regions (Obermoeller-McCormick
et al., 2001). The cytoplasmic tail of LRP1 contains two copies of
NPXY motifs, which commonly present in most members of the
LDLR family and serve as the endocytosis signal for the LDLR
(Krieger and Herz, 1994). In addition to the two NPXY motifs,
the LRP1 cytoplasmic tail has a YXXL motif, which along with
two di-leucine motifs serve as the dominant endocytosis signals
for its rapid endocytosis (Li et al., 2000). When the endocyto-
sis rates of several LDLR family members were compared using
in vitro cellular models, the LRP1 tail showed faster endocyto-
sis with t1/2 of ∼0.5 min compared with those of the LDLR
tail (t1/2 = 4.8 min) and megalin/LRP2 tail (t1/2 = 3.1 min),
whereas VLDLR and ApoER2 exhibit relatively slower endocytosis
rates (t1/2 = ∼8 min; Li et al., 2001). Thus, the main function
of LRP1 is to capture its ligands through extracellular ligand-
binding domains, rapidly internalize them through its unique
cytoplasmic tail and deliver them to the endosomal/lysosomal
compartments. After dissociation of ligands in the early endo-
some, LRP1 is known to efficiently recycle back to the cell
surface by coupling with sorting nexin 17 (van Kerkhof et al.,
2005).

Low-density lipoprotein receptor-related protein 1 also reg-
ulates signaling pathways in response to extracellular ligands
by several mechanisms (Gonias and Campana, 2014). Binding
of tissue-type plasminogen activator (tPA) or α2-macroglobulin
(α2M) to LRP1 induces Src family kinase (SFK) activation and
SFK-dependent Trk receptor transactivation in neuronal cells (Shi
et al., 2009). LRP1 also controls cell signaling by mediating the
endocytosis of preformed receptor-ligand complexes into endo-
somes as a co-receptor. For example, LRP1 couples with the
platelet-derived growth factor (PDGF) receptor and traffics into
endosomes, where the phosphorylation of the PDGF receptor is
induced in the presence of PDGF (Muratoglu et al., 2010). In
addition, LRP1 modifies the distribution of several membrane
proteins between the cell surface and intracellular pools, which
impacts their signaling strength (Gonias et al., 2004). In some

cases, LRP1 deletion appears to increase total, or cell surface, levels
of PDGF receptor (Boucher et al., 2003) and urokinase plasmino-
gen activator (uPA) receptor (Weaver et al., 1997), and activate
their downstream signaling pathways. In neurons, LRP1 inter-
acts with the N-methyl-D-aspartate (NMDA) receptor through
PSD-95, and regulates its trafficking to recycling compartments
or degradation pathway. When LRP1 is deleted in neurons, degra-
dation of the NMDA receptor is accelerated, resulting in decreased
NMDA receptor levels and disturbed signaling pathways (May
et al., 2004; Maier et al., 2013). Furthermore, the C-terminal
intracellular domain of LRP1 (LRP1-ICD), cleaved from the
transmembrane domain by γ-secretase, likely regulates the tran-
scription of target genes (Spuch et al., 2012). In fact, it has been
demonstrated that LRP1-ICD suppresses LPS-induced inflamma-
tory responses by binding to the interferon-γ promoter (Zurhove
et al., 2008).

Taken together, LRP1 serves as a multifunctional receptor that
controls the endocytosis of a variety of ligands, influences signaling
pathways by coupling with other cell surface receptors or proteins,
and directly regulates gene expression through its intracellular
domain.

LRP1 IN AD PATHOGENESIS
Low-density lipoprotein receptor-related protein 1 ligands, specif-
ically apoE, α2M, tPA, uPA, plasminogen activator inhibitor-1,
lipoprotein lipase, and lactoferrin co-deposit with Aβ in senile
plaques in AD brains (Namba et al., 1991; Rebeck et al., 1995). In
fact, the soluble form of LRP1 is also likely a prominent compo-
nent of senile plaques and has been found to co-localize exclusively
with these ligands (Rebeck et al., 1995). Although it is not clear
whether LRP1 and its ligands are independently associated with
senile plaques, these observations suggest that they do interact with
Aβ in AD brains. Immunohistochemical analysis has revealed that
LRP1 is up-regulated in neurons and in GFAP-positive activated
astrocytes, in particular in astrocytic processes surrounding senile
plaques in AD (Arelin et al., 2002). Consistent with this finding,
LRP1 mRNA levels are shown to be increased in temporal neo-
cortex in AD patients (Matsui et al., 2007). Since the mRNA levels
of both LRP1 and GFAP are up-regulated in AD brains with a
positive correlation (Matsui et al., 2007), LRP1 expression is likely
enhanced in activated astrocytes. On the other hand, LRP1 levels
have been shown to be decreased in midfrontal cortex in AD cases
(n = 39) as compared to age-matched controls (n = 39; Kang
et al., 2000). Interestingly, higher LRP1 levels significantly corre-
late with later ages at onset of AD, while age and LRP1 expression
in normal individuals appears inversely correlated (Kang et al.,
2000). In addition, when the regional correlations between LRP1
and synaptic markers (synaptophysin and PSD95) or GFAP were
assessed, a moderate-to-strong positive regional correlation was
observed between LRP1 and postsynaptic marker PSD95, but
not presynaptic marker synaptophysin and GFAP in the brains
from non-demented individuals (Shinohara et al., 2013). Thus,
LRP1 expression may be either up-regulated in glial cells due
to neuroinflammation or suppressed in neurons due to post-
synaptic damages in AD. Further studies are needed to clarify
the temporal and spatial regulation of LRP1 expression in AD
brains.
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Several lines of evidence support a role of LRP1 in regulat-
ing APP endocytosis. LRP1 can bind to the Kunitz-type protease
inhibitor (KPI) domain of APP and mediate its degradation
(Kounnas et al., 1995). The association of APP with LRP1 leads
to increased trafficking of APP through the endosomal compart-
ments, resulting in accelerated Aβ production and APP processing
(Ulery et al., 2000; Cam et al., 2005). Consistent with these results,
the regional correlation between LRP1, APP, and Aβ showed pos-
itive correlations in non-demented individuals (Shinohara et al.,
2013). Therefore, LRP1 may function to increase Aβ levels from
the perspective of APP processing and Aβ production. On the
other hand, LRP1 plays a critical role as an endocytic recep-
tor to eliminate Aβ from the brain. In fact, after intracerebral
microinjections of [125I]-Aβ40 in young mice, Aβ was rapidly
removed from the brain (t1/2 < 25 min). Aβ40 clearance was
significantly inhibited by LRP1 antagonist, RAP, or antibodies
against LRP1 (Shibata et al., 2000). Thus, the ability of LRP1
to regulate both Aβ production and clearance suggests a criti-
cal role of this receptor in AD pathogenesis. In Aβ-independent
pathways, conditional deletion of the Lrp1 gene in forebrain neu-
rons in mice leads to age-dependent dendritic spine degeneration,
synapse loss, neuroinflammation, memory loss, and neurode-
generation (Liu et al., 2010), which are all common features
of AD.

RELATIONSHIP AMONG LRP1, APOE, AND Aβ IN AD
Low-density lipoprotein receptor-related protein 1 is a major apoE
metabolic receptor in the brain (Zerbinatti et al., 2006; Liu et al.,
2007). As APOE4 dramatically increases AD risk and accelerates
disease onset compared with APOE2 and APOE3 (Bu, 2009; Liu
et al., 2013), understanding how apoE is involved in AD patho-
genesis has been both an opportunity and a challenge. Given that
apoE4 is related to increased Aβ aggregation and deposition in
the brain (Bu, 2009; Liu et al., 2013), apoE-Aβ interaction has
been actively studied to understand the specific roles of apoE iso-
forms. While the main function of apoE is to transfer lipid from
cell to cell through cell surface LRP1 and other apoE receptors,
apoE can also bind to Aβ through a region overlapping with
its receptor-binding site (Winkler et al., 1999) or lipid-binding
site (Strittmatter et al., 1993) in an isoform-dependent man-
ner (Kanekiyo et al., 2014). Although growing evidence supports
apoE-Aβ binding, a recent report showed that only a small por-
tion of soluble, cell-derived Aβ interacted with astrocyte-secreted
or artificially reconstituted apoE particles in solution (Verghese
et al., 2013). Thus, the effects of apoE on Aβ cellular uptake are
likely complex. While recombinant apoE accelerates neuronal Aβ

uptake in an isoform-dependent manner (apoE3 > apoE4; Li et al.,
2012), apoE particles inhibited the cellular uptake of soluble Aβ in
astrocytes (Verghese et al., 2013). Of note, the suppressive effect of
apoE particles on Aβ uptake was not detected in LRP1-deficient
cells. The LRP1-blocking antibody also significantly decreased the
effect of apoE on Aβ uptake in astrocytes (Verghese et al., 2013).
Thus, apoE may either facilitate or inhibit LRP1-dependent or
independent Aβ endocytosis depending on its concentration, Aβ

aggregation state, apoE isoform, apoE lipidation and the expres-
sion pattern of the receptors on the cell surface (Kanekiyo et al.,
2014).

The activated form of α2M (α2M∗) is also a well validated LRP1
ligand (Strickland et al., 1990). While α2M∗ associates with Aβ and
prevents fibril formation (Hughes et al., 1998), α2M∗ enhances the
clearance of soluble Aβ via LRP1 in neurons (Narita et al., 1997;
Qiu et al., 1999). RAP, which is an LRP1 chaperone and antag-
onist, can also interact with Aβ and facilitate its cellular uptake
through heparan sulphate proteoglycan (HSPG), rather than LRP1
(Kanekiyo and Bu, 2009). Thus, it is interesting to note that sev-
eral major LRP1 ligands can bind to Aβ, suggesting the existence of
common mechanisms by which Aβ and other ligand interact with
LRP1 and/or HSPG. Further biochemical and structural studies
are needed to determine the binding properties among Aβ, LRP1
and its ligands, which may provide insights as to the differential
effects of LRP1 ligands on cellular Aβ metabolism.

LRP1 AND BRAIN Aβ CLEARANCE
LRP1-MEDIATED Aβ CLEARANCE IN BRAIN PARENCHYMA
Cellular Aβ clearance through lysosomal degradation in brain
parenchyma cells (microglia, astrocytes, neurons) and in cere-
brovascular system constitutes a major pathway (Figure 1), while
Aβ is also efficiently degraded by a large set of proteases including
neprilysin and insulin-degrading enzyme in extracellular space
(Figure 1; Saido and Leissring, 2012). Neurons not only pro-
duce Aβ from APP proteolytic processing but also eliminate it
through cellular uptake and lysosomal degradation (Li et al., 2012).
If neuronal Aβ endocytosis is disturbed, the accumulation and
aggregation of Aβ may lead to synaptic injury and eventual neu-
ronal death. In neurons, LRP1 is expressed predominantly in the
postsynaptic region (May et al., 2004) and the cell body (Bu et al.,
1994), where LRP1 mediates Aβ uptake and subsequent degrada-
tion (Figure 1; Kanekiyo et al., 2011, 2013). When LRP1 is deleted
in neurons in adult mice, the half-life of interstitial fluid (ISF)
Aβ in cortex increases, resulting in exacerbated amyloid pathology
(Kanekiyo et al., 2013). In addition, it is interesting to note that
upon internalization from distal axons, Aβ can also be transported
to neighboring neurons after secretion through exosomes (Song
et al., 2014). Pharmacological inhibition of dynamin-mediated
endocytosis leads to accumulation of Aβ on the cell surface and
further prevents the transneuronal transmission of Aβ (Song et al.,
2014). Although potential involvement of LRP1 in the Aβ tran-
scytosis pathway is not clear, it is tempting to speculate that the
cellular uptake of Aβ through LRP1-dependent pathway might be
an important step. In this regard, it might be interesting to test
the effect of neuronal LRP1 deletion on Aβ propagation path-
way. While lysosome has a strong ability to degrade Aβ, any
disturbances of this pathway or when the accumulation of Aβ

exceeds its degradation capacity could lead to Aβ aggregation in
the lysosomes (Hu et al., 2009; Li et al., 2012), thus accelerating
intraneuronal Aβ aggregation and deposition (Eimer and Vassar,
2013). In fact, lysosomal enzymes, cathepsins B and D, seem to
be reduced when Aβ accumulates in the lysosomes of amyloid
model mice (Torres et al., 2012). In addition, if these lysosome-
initiated Aβ aggregates are spread through neuronal connections,
it may contribute to the propagation of Aβ aggregation as well as
neuronal toxicity.

Cellular Aβ uptake by glial cells (i.e., astrocytes and microglia)
is likely to represent alternative Aβ clearance pathways (Figure 1).
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FIGURE 1 | LRP1-mediated Aβ clearance pathways. Aβ is predominantly
generated in neurons and secreted into ISF. Proteolytic degradation by
endopeptidases (e.g., neprilysin, insulin-degrading enzyme) comprises a
major Aβ clearance pathway. Cellular Aβ clearance also plays a critical
role in eliminating Aβ from the brain, where LRP1 significantly regulates
its endocytosis and subsequent lysosomal degradation. LRP1 is
expressed in several different brain cell types, including neurons,
astrocytes, microglia, endothelial cells, and vascular mural cells (vascular

smooth muscle cells and pericytes). In brain parenchyma, neurons,
astrocytes, and microglia can take up and degrade Aβ mainly in
lysosomes. ISF is drained along the cerebrovasculature, where Aβ is
degraded by vascular cells. A portion of Aβ may be transported out of
the brain through the BBB. Disturbances of these pathways induce Aβ

accumulation and deposition as amyloid plaques in brain parenchyma,
perivascular regions as CAA and sometimes also inside neurons and
intraneuronal Aβ.

When adult mouse astrocytes are co-cultured with brain sections
from amyloid model mice containing Aβ deposition, Aβ levels
in these sections are reduced (Wyss-Coray et al., 2003). Exces-
sive astrocyte activation is a common pathological feature of AD
(Verkhratsky et al., 2010); while activated astrocytes promote neu-
rodegeneration (Verkhratsky et al., 2010), they might also have
protective functions by facilitating Aβ clearance. Interestingly,
exogenous adult astrocytes can efficiently eliminate Aβ in an apoE-
dependent manner, perhaps in a manner that depends on LRP1
function (Koistinaho et al., 2004). Several in vitro experiments
have also shown that LRP1 controls Aβ uptake in astrocytes and
further mediates Aβ-induced astrocyte activation (LaDu et al.,
2000). In vivo studies using astrocyte-specific Lrp1 knockout mice
should address the specific role of LRP1 in astrocyte-mediated Aβ

clearance.
In microglia, soluble Aβ is likely internalized by fluid-phase

macropinocytosis into lysosomes (Mandrekar et al., 2009). On
the other hand, microglia takes up larger Aβ fibrils through
phagocytosis via a multi-component cell surface receptor complex
(Bamberger et al., 2003). Importantly, the uptake of Aβ-coated
yeast particles in microglia was suppressed by the presence of LRP1
ligands including lactoferrin, α2M∗ or RAP (Laporte et al., 2004),
indicating that LRP1 might regulate Aβ phagocytosis (Figure 1).

LRP1 is also shown to mediate phagocytosis of apoptotic cells
by binding to cell surface calreticulin in macrophages (Gardai
et al., 2005), suggesting that LRP1 may play a role in eliminat-
ing apoptotic cells containing Aβ. In addition, ABCA7, another
membrane protein that is implicated in AD risk, co-localizes with
LRP1 on cell surface and enhances the phagocytosis of apoptotic
cells through LRP1 in macrophages (Jehle et al., 2006). Whereas
CR1 is a receptor for the complement fragments C3 and C4b
(Crehan et al., 2012), LRP1 directly binds to C1q which trig-
gers a complement activation cascade (Duus et al., 2010), affecting
phagocytic function. Of note, several inflammation-related genes
expressed in macrophage/microglia, including TREM2, CD33,
CR1, and ABCA7, have been shown to be related to the risk of late-
onset AD and are generating great interests in the AD research
community (Harold et al., 2009; Lambert et al., 2009; Holling-
worth et al., 2011; Naj et al., 2011; Guerreiro et al., 2013). Further
studies may demonstrate cooperative roles among these GWAS-
identified molecules and LRP1 for Aβ clearance in microglia.
Interestingly, LRP1-deletion exacerbates inflammation by activat-
ing the NFκB pathway in peripheral macrophages (Gaultier et al.,
2008). Thus, it is possible that LRP1 also regulates Aβ uptake in
glial cells by controlling inflammatory responses and phagocytic
machinery.
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LRP1-MEDIATED Aβ CLEARANCE IN CEREBROVASCULATURE
The cerebrovascular system, which is composed of endothelial
cells, vascular mural cells (i.e., vascular smooth muscle cells and
pericytes) and astrocytes, plays critical roles in maintaining brain
homeostasis and perturbations of this system lead to neuronal loss
and cognitive decline (Zlokovic, 2011). Interestingly, epidemiolog-
ical studies have clearly shown that cerebrovascular disturbances,
including diabetes mellitus, atherosclerosis, stroke, hypertension,
transient ischemic attacks, microvessel pathology, and smoking,
are risk factors for AD (de la Torre, 2002). Vascular smooth mus-
cle cells, which are attached to endothelial cells and covered by
astrocytes, are a major component of intracerebral arteries. At
the brain capillary level, vascular endothelial cells and pericytes
attached to the basement membrane form the blood-brain barrier
(BBB) together with astrocyte end-foot processes (Zlokovic, 2011).
Importantly, the cerebrovascular system is yet another major path-
way that mediates brain Aβ clearance by either transporting Aβ out
of the brain via BBB or degrading it in vascular mural cells, which
include vascular smooth muscle cells in cerebral arteries and peri-
cytes in the capillaries (Figure 1; Marques et al., 2013; Sagare et al.,
2013c).

Low-density lipoprotein receptor-related protein 1 is highly
expressed in cerebrovasculature. In vascular smooth muscle cells,
serum response factor and myocardin suppress Aβ clearance by
down-regulating LRP1 (Bell et al., 2009). Our group has also
directly demonstrated that conditional deletion of LRP1 in vas-
cular smooth muscle cells in amyloid model mice exacerbated
Aβ deposition as amyloid plaques and CAA (Figure 1; Kanekiyo
et al., 2012). While LRP1 mediates lysosomal Aβ degradation in
vascular smooth muscle cells (Kanekiyo et al., 2012), LRP1 may
be involved in controlling the cerebrovascular function as a sig-
nal transducing receptor through coupling with other receptors
as described in previous sections. Since the cerebroarterial pul-
sations provide the driving force for drainage of ISF along the
cerebrovasculature (Schley et al., 2006), deletion of LRP1 in vascu-
lar smooth muscle cells may cause Aβ accumulation by disturbing
overall cerebroarterial functions as well as cellular Aβ clearance. In
addition, pericyte loss caused by haploinsufficiency of Pdgfrβ gene
suppresses Aβ clearance and accelerates Aβ deposition in amyloid
model mice (Sagare et al., 2013b). Given that LRP1 mediates Aβ

uptake and lysosomal degradation in cultured pericytes (Sagare
et al., 2013b); LRP1 is likely a critical player in Aβ clearance within
the cerebrovascular system (Figure 1).

Low-density lipoprotein receptor-related protein 1 is expressed
in mouse brain capillaries and mediates Aβ binding, internal-
ization, and clearance (Figure 1; Deane et al., 2004), although
the LRP1-independent pathway is also shown (Ito et al., 2010).
Vascular endothelial cells are major components of brain capil-
laries and BBB, which critically regulates the influx and efflux
of components between cerebral ISF and blood flow (Zlokovic,
2011). Thus, BBB breakdown may lead to the disturbance
of endothelial cell-mediated Aβ clearance across BBB. In vitro
BBB model using primary cultures of mouse endothelial cells
harboring mutated LRP1 endocytosis signal has shown that radi-
olabeled Aβ is transcytosed through LRP1 rather than degraded
(Pflanzner et al., 2011). On the other hand, other groups using
gene overexpressing or knockdown method have demonstrated

that endothelial cell lines can internalize and degrade Aβ through
LRP1 (Nazer et al., 2008; Yamada et al., 2008). Thus, further
studies using endothelial cell-specific Lrp1 knockout mice are
needed to assess how much endothelial cell-internalized Aβ under-
goes transcytosis through LRP1 at the BBB. LRP1 antisense
treatment reduced Aβ clearance at the BBB, resulting in exacer-
bated brain Aβ accumulation and cognitive impairment (Jaeger
et al., 2009). Interestingly, LRP1-mediated Aβ clearance at the
BBB was reduced by apoE in an isoform-dependent manner
(apoE4 > apoE3 > apoE2; Deane et al., 2008). Furthermore,
apoE4 activates the cyclophilin A-MMP9 pathway through LRP1
in pericytes, leading to damages of BBB integrity (Bell et al.,
2012). Thus, apoE isoforms differentially regulate Aβ clearance
from the brain through several LRP1-regulated pathways in the
cerebrovascular system.

In leptomeningeal arteries from AD patients with CAA, West-
ern blot analysis revealed elevated Aβ levels and lower levels
of LRP1 compared with age-matched, non-demented controls
(Bell et al., 2009). Immunohistochemical analysis also showed
that LRP1-positive vessels were reduced in patients with AD (Shi-
bata et al., 2000) and cerebrovascular β-amyloidosis Dutch-type
compared to controls (Deane et al., 2004), although there are
also conflicting reports (Donahue et al., 2006; Wilhelmus et al.,
2007). While Aβ exposure decreased LRP1 levels in endothelial
cells in a dose-dependent manner (Deane et al., 2004), hypoxia or
reactive oxygen species, conditions often detected in AD (Fanelli
et al., 2013; Swerdlow et al., 2013), reduced LRP1 expression in
vascular smooth muscle cells (Bell et al., 2009; Kanekiyo et al.,
2012). In fact, LRP1 expression in brain microvasculature is
known to decline in an age-dependent manner in mice (Sil-
verberg et al., 2010). Therefore, aging or vascular damage may
impair Aβ clearance by reducing LRP1 expression in the cere-
brovascular system, which leads to eventual Aβ accumulation
and aggregation as senile plaques and CAA. In addition, accu-
mulation of copper in brain capillaries was associated with LRP1
reduction in mice. When mice were chronically treated with low
levels of copper in their drinking water, copper disrupted brain
Aβ clearance by decreasing LRP1 at BBB in a mouse model of
AD (Gu et al., 2011; Singh et al., 2013). Thus, toxic chemical
elements also appear to be involved in AD pathogenesis by influ-
encing LRP1, although further studies are needed to clarify the
pathways.

In addition, LRP1 likely mediates Aβ clearance at the blood-
cerebrospinal fluid (CSF) barrier as well as BBB. After intrac-
erebroventricular administration, radiolabeled Aβ was eliminated
from the CSF with a half-life of 17.3 min, which was signifi-
cantly suppressed in the presence of RAP or anti-LRP1 antibody
(Fujiyoshi et al., 2011). These findings suggest that LRP1 is
involved in the elimination of Aβ from CSF in epithelial cells at
choroid plexus.

SOLUBLE LRP1 AND Aβ CLEARANCE
The β-secretase BACE1 cleaves LRP1 on the cell surface, resulting
in the release of the LRP1 extracellular domain termed solu-
ble LRP1 (von Arnim et al., 2005). In addition, α-secretases
ADAM10 and ADAM17 are also likely involved in LRP1 shed-
ding. In MEF cells lacking ADAM10 and/or ADAM17, LRP1
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shedding was significantly decreased, while overexpression of
ADAM10 increased the release of soluble LRP1 (Liu et al., 2009).
While the biological functions of soluble LRP1, which normally
circulates in plasma (Quinn et al., 1997), are not fully under-
stood, plasma soluble LRP1 level appears to be decreased in AD
patients compared with control individuals (Sagare et al., 2007).
Zlokovic’s group has shown that 70–90% of Aβ is bound to
soluble LRP1 in plasma from cognitively normal individuals. Fur-
thermore, the remaining soluble LRP1 in AD patients appears
to be highly oxidized, which results in a lower binding affin-
ity for Aβ (Sagare et al., 2007). Thus, soluble LRP1 may be a
novel target as a plasma biomarker for AD, although the reli-
ability of blood biomarkers has been questioned (Rosen et al.,
2013). When recombinant soluble LRP1 domain IV (LRPIV)
or LRPIV-D3674G mutant were administrated intraperitoneally
into amyloid model mice for 3 months, brain Aβ levels were
significantly decreased (Sagare et al., 2007, 2013a). Since these
recombinant soluble LRP1 proteins do not cross BBB, they are
predicted to eliminate brain Aβ through a peripheral Aβ sink
mechanism. Decreasing peripheral Aβ levels likely drives Aβ trans-
port across the BBB (Zlokovic, 2011), although there are conflict-
ing reports on such a hypothesis (Walker et al., 2013; Henderson
et al., 2014). Pharmacological approaches to increase circulating
soluble LRP1 also appears to ameliorate amyloid pathology in
amyloid model mice (Sehgal et al., 2012). In addition, it is inter-
esting to note that LRPIV-D3674G increased cerebral blood flow
responses to whisker stimulation in amyloid model mice (Sagare
et al., 2013b). Further studies are again needed to investigate both
the mechanism and the therapeutic value of soluble LRP1 in
circulation.

MECHANISMS OF LRP1-REGULATED CELLULAR Aβ UPTAKE
Internalized Aβ has been shown to predominantly traffic through
the endosome/lysosome pathways for degradation (Figure 2;
Basak et al., 2012; Lee et al., 2012; Li et al., 2012). Overexpression
of small GTPases Rab5 and Rab7, which regulates vesicle fusion
for early and late endosomes, respectively, facilities the trafficking
of Aβ into lysosomes (Li et al., 2012). Blocking the late endocytic
pathway by Rab7 knockdown induced the enlargement of early
endosomes and amyloid fibril formation (Yuyama and Yanagi-
sawa, 2009). In addition, a small portion of endocytosed Aβ likely
traffics through the recycling vesicles (Figure 2) as a blockage of
this pathway by a constitutively active Rab11 mutant significantly
accelerated cellular Aβ accumulation in the recycling endosomes
(Li et al., 2012).

Recent GWAS studies have also identified several endocytosis-
related genes, including BIN1, PICALM, and CD2AP, as novel
AD risk genes (Harold et al., 2009; Lambert et al., 2009; Naj
et al., 2011). These genes are likely involved in clathrin-mediated
endocytosis and vesicular trafficking to the lysosome (Guerreiro
and Hardy, 2011). Thus, the altered endocytosis pathways likely
contribute to modifying AD pathology, although it is unclear
whether LRP1 function is related to these genes. LRP1 is a major
clathrin-dependent endocytic receptor (Spuch et al., 2012). We
have shown that the endocytic function of LRP1 is required for
neuronal Aβ uptake (Fuentealba et al., 2010). Overexpression of
a functional LRP1 minireceptor, mLRP4, increased Aβ uptake

in neuronal cells, where the effect is reversed when LRP1 endo-
cytic function was disturbed by either clathrin knockdown or by
removal of its cytoplasmic tail (Fuentealba et al., 2010). However,
the endocytosis rate of Aβ was slower than another LRP1 lig-
and RAP (Kanekiyo et al., 2011). These results suggest that LRP1
plays an important role in regulating Aβ endocytosis, although it
is possible that other mechanisms are also involved in the pro-
cess (Figure 2). In fact, it is controversial whether LRP1 directly
binds to Aβ for its endocytosis. Surface plasmon resonance (SPR)
analysis showed the high binding affinity of Aβ40 to immobi-
lized recombinant LRP1 fragments of its ligand-binding domains
II and IV with Kd values of 0.57 ± 0.12 and 1.24 ± 0.01 nM,
respectively. In case of Aβ42, the binding affinity for LRP1 was
reduced compared with Aβ40, where Kd values for LRP II and
IV domains were 3.00 ± 0.11 and 10.10 ± 0.03 nM, respectively
(Deane et al., 2004). In contrast, Yamada et al. (2008) reported
that Aβ did not show any significant binding to these LRP1
domains immobilized to microtiter plates in a solid phase binding
assay.

It is important to note that HSPG also serves as major Aβ bind-
ing receptor on the cell surface (Kanekiyo et al., 2011). HSPG
mediates the entry of diverse molecules such as exosomes, cell
penetrating peptides, polycation-nucleic acid complexes, viruses,
lipoproteins, growth factors, and morphogens into cells (Chris-
tianson and Belting, 2013). The HSPG endocytosis pathway likely
varies depending on the cellular context and type of extracellu-
lar ligands. In the case of Aβ, HSPG appears to provide an initial
binding site for Aβ on the cell surface, where LRP1 then medi-
ates its endocytosis (Figure 2; Kanekiyo et al., 2011) by forming
LRP1-HSPG complexes (Wilsie and Orlando, 2003). It is also pos-
sible that LRP1 constitutively endocytoses Aβ that is bound to
cell surface HSPG. GPI-anchored cellular prion protein (PrPc),
which is localized in cholesterol-rich lipid raft microdomains of
the plasma membrane (Taylor and Hooper, 2006), has also been
demonstrated to mediate Aβ oligomer binding on the cell sur-
face (Lauren et al., 2009; Wang et al., 2013). Interestingly, LRP1
interacts with PrPc (Jen et al., 2010) and facilitates its clathrin-
mediated endocytosis (Taylor and Hooper, 2007). Thus, LRP1
is required for Aβ oligomer-PrPc interaction and internalization
(Rushworth et al., 2013). While LRP1 is mainly localized in non-
raft regions of the plasma membrane, it is also known to interact
transiently with lipid rafts under specific conditions (Wu and
Gonias, 2005). In addition, cell surface HSPG glypican-1 is co-
localized with PrPc and recruits it to lipid rafts (Hooper, 2011).
Therefore, LRP1 may form a complex with PrPc and HSPG, and
regulate Aβ endocytosis in either clathrin- or caveolin-dependent
manner (Figure 2).

In addition to functioning as an endocytic receptor, LRP1
may control cellular Aβ uptake by modulating signaling pathways.
LRP1 is known to regulate Rac1 and RhoA activities in Schwann
cell, which influences cell migration and adhesion (Mantuano
et al., 2010). In fact, a part of Aβ42 oligomers is likely internalized
through a dynamin-dependent and RhoA-mediated endocytic
pathway in neuronal cells (Yu et al., 2010). While dynamin reg-
ulates both clathrin or caveolin-dependent and -independent
pathways, RhoA-mediated endocytosis does not require clathrin
or caveolin (Mayor and Pagano, 2007). Although it is not fully
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FIGURE 2 | Possible pathways for LRP1-mediated Aβ uptake. LRP1
regulates Aβ internalization on the cell surface through several possible
endocytic pathways: (1) Aβ binds to LRP1 directly for endocytosis through
clathrin-dependent pathways; (2) Aβ binds to alternative cell surface
receptors such as HSPG and PrPc with LRP1 directly or indirectly
regulating Aβ endocytosis in a clathrin- or caveolin-dependent manner; (3)
LRP1 may affect RhoA-mediated endocytic pathway for cellular Aβ uptake
by regulating signal transduction pathways; (4) LRP1 controls the

cytoskeleton architectures by modifying PI3K and/or FAK pathways, which
may influence macropinocytosis or phagocytosis of Aβ in specific cell
types. The majority of endocytosed Aβ traffics to lysosomes for subsequent
degradation, whereas a small amount of Aβ can be recycled. Under some
conditions, Aβ is likely to be exocytosed from the late
endosomes/multi-vesicular body, which may induce propagation of Aβ

aggregates. When Aβ accumulation overwhelms the capacity of lysosomes
for degradation, Aβ aggregation may be induced in lysosomes.

understood how LRP1 mediates the activity of these Rho fam-
ily GTPases in different cell types, LRP1 may also be involved
in RhoA-dependent endocytic mechanisms of Aβ (Figure 2). In
addition, larger size Aβ aggregates are thought be taken up by cells
through macropinocytosis or phagocytosis, where actin polymer-
ization is a critical step (Mayor and Pagano, 2007). Since LRP1 is
predicted to control cytoskeleton architectures by modifying phos-
phoinositide 3-kinase (PI3K)/extracellular signal-regulated kinase
(ERK) and/or focal adhesion kinase (FAK)/paxillin pathways
(Dedieu and Langlois, 2008), LRP1 may also affect macropinocy-
tosis or phagocytosis of Aβ (Figure 2).

SUMMARY AND PERSPECTIVE
Low-density lipoprotein receptor-related protein 1 regulates cel-
lular Aβ uptake and degradation in neurons, astrocytes, and
microglia in brain parenchyma, and in vascular smooth muscle
cells and pericytes in cerebrovasculature. It also mediates Aβ clear-
ance at the BBB by facilitating Aβ transport from brain to blood
(Figure 1). LRP1-mediated cellular Aβ uptake likely depends on
diverse molecular mechanisms including: (1) endocytosis of Aβ

through direct binding; (2) regulation of trafficking for other
Aβ receptors such as HSPG and PrPc; (3) regulation of RhoA-
dependent endocytosis pathway by controlling Rho family GTPase
activity; and (4) micropinocytosis/phagocytosis of Aβ by affecting
actin polymerization (Figure 2). Thus, LRP1 likely mediates cel-
lular Aβ clearance through several endocytic pathways depending
on each brain cell type.

Apolipoprotein E is a major ligand for LRP1 and influences AD
risk by affecting Aβ aggregation, cellular uptake and degradation.
While decreased apoE levels reduce Aβ deposition (Kim et al., 2011;
Bien-Ly et al., 2012), the pharmacological approaches to increase
lipidated apoE by liver X receptor (LXR) and retinoid X recep-
tor (RXR) agonists facilitate Aβ clearance and restore cognitive
function in amyloid model mice (Riddell et al., 2007; Terwel et al.,
2011; Vanmierlo et al., 2011; Cramer et al., 2012). While apoE and
Aβ can interact with each other, they also share common recep-
tors including LRP1, LDLR, and HSPG on cell surface. ApoE likely
competes with Aβ for their receptor binding but can also facili-
tate cellular Aβ uptake by forming apoE/Aβ complexes depending
on their concentrations, apoE isoform involved, lipidation status,
Aβ aggregation status and receptor distribution patterns. Dissect-
ing how LRP1 participates in apoE-mediated Aβ clearance will be
critical to develop apoE-targeted therapy for AD.

There have been several studies investigating the effects of
altered LRP1 expression on Aβ metabolism. It was shown that
treatment with a hydroxymethylglutaryl-CoA reductase inhibitor,
fluvastatin, increases LRP1 in mouse cerebral vessels, which results
in reduced brain Aβ level (Shinohara et al., 2010). Rifampicin and
caffeine also upregulate LRP1 levels at the BBB and enhance Aβ

elimination from the mouse brain (Qosa et al., 2012). In periph-
eral tissues, insulin facilitates the hepatic clearance of plasma Aβ by
increasing cell surface LRP1 distribution in hepatocytes (Tamaki
et al., 2007), which in turn affects brain Aβ clearance. Given that
LRP1 can control Aβ elimination from the brain in a variety of
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cell types, it might be important to define potentially different
LRP1-mediated Aβ clearance mechanisms in each cell type to
develop novel AD therapeutic methods, which target LRP1 and its
ligands.

Taken together, it is clear that LRP1 plays a critical role in
cellular Aβ uptake and brain Aβ clearance. It remains to be elu-
cidated how much of LRP1 function depends on interplay with
other mechanisms. Future studies are also needed to address how
LRP1 in each cell type participates in AD pathogenesis through
Aβ-dependent and/or independent pathways using both in vitro
and in vivo models.
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