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Background:Telomere shortening in peripheral blood mononuclear cells (PBMCs) has been
associated with biological age and several chronic degenerative diseases. However, the
relationship between telomere length and sarcopenia, a hallmark of the aging process, is
unknown.The aim of the present study was therefore to determine whether PBMC telom-
eres obtained from sarcopenic older persons were shorter relative to non-sarcopenic peers.
We further explored if PBMC telomere length was associated with frailty, a major clinical
correlate of sarcopenia.

Methods: Analyses were conducted in 142 persons aged ≥65 years referred to a geriatric
outpatient clinic (University Hospital).The presence of sarcopenia was established accord-
ing to the EuropeanWorking Group on Sarcopenia in Older People criteria, with bioelectrical
impedance analysis used for muscle mass estimation. The frailty status was determined
by both the Fried’s criteria (physical frailty, PF) and a modified Rockwood’s frailty index
(FI). Telomere length was measured in PBMCs by quantitative real-time polymerase chain
reaction according to the telomere/single-copy gene ratio (T /S) method.

Results: Among 142 outpatients (mean age 75.0±6.5 years, 59.2% women), sarcopenia
was diagnosed in 23 individuals (19.3%). The PF phenotype was detected in 74 partici-
pants (52.1%). The average FI score was 0.46±0.17. PBMC telomeres were shorter in
sarcopenic subjects (T /S =0.21; 95% CI: 0.18–0.24) relative to non-sarcopenic individuals
(T /S =0.26; 95% CI: 0.24–0.28; p=0.01), independent of age, gender, smoking habit, or
comorbidity. No significant associations were determined between telomere length and
either PF or the FI.

Conclusion: PBMC telomere length, expressed as T /S values, is shorter in older outpa-
tients with sarcopenia. The cross-sectional assessment of PBMC telomere length is not
sufficient at capturing the complex, multidimensional syndrome of frailty.
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INTRODUCTION
The remarkable inter-individual variability in functional and
health status observed in late life indicates that chronological age
per se does not precisely reflect the actual biological age of an
organism (Mitnitski et al., 2002). This has instigated a great deal
of research aimed at identifying clinical and biological parameters
that are able to provide an overview of the health status, predict
the risk of age-related diseases, and help estimate the remaining
lifespan of an individual (Vasto et al., 2010).

Telomere biology has gained a special interest in the field of
aging biomarkers (Lehmann et al., 2013). Telomeres are specialized
structures located at the termini of mammalian chromosomes and

consist of protein-bound, non-coding tandem-repeated hexam-
ers (Blackburn, 1991). They serve to protect genome integrity
by camouflaging chromosome ends from the DNA damage-
response machinery, which would otherwise sense them as double-
stranded breaks (Blackburn, 1991). In somatic cells, each round
of DNA replication causes a loss of telomere repeats at the lag-
ging strand, due to the presence of a terminal gap after degra-
dation of the most distal primer. This phenomenon limits the
total number of divisions normal somatic cells can undergo
(Allsopp et al., 1992).

The observation that telomeres shorten over the life course and
are implicated in cellular senescence has led to the hypothesis that
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telomere attrition may be a mechanism driving the aging process
(Mikhelson and Gamaley, 2012). Indeed, associations have been
determined between telomere erosion and premature aging syn-
dromes, several age-sensitive measures (e.g., blood pressure, lung
function, cognition, bone mineral density), age-related conditions
(e.g., insulin resistance, type II diabetes mellitus, coronary artery
disease, chronic obstructive pulmonary disease, dementia, can-
cer), and mortality [reviewed by Blasco (2005)]. As such, telomere
length is considered to be an indicator of health status and, more
in general, of biological age (Fossel, 2012).

At the clinical level, the assessment of muscle mass and func-
tion has emerged as a possible biomarker for aging (Fisher, 2004).
Notably, the age-related loss in muscle mass and strength (sarcope-
nia) fulfills virtually all of the criteria defining an aging biomarker
(Sprott,2010). Indeed, sarcopenia (1) is an aging trait shared across
species (Augustin and Partridge, 2009), (2) begins in adulthood
and worsens over the course of aging (Frontera et al., 1991), (3)
develops as a consequence of aging itself rather than being a mere
correlate of other diseases (Iannuzzi-Sucich et al., 2002), (4) is
not directly lethal, albeit impacting the health and functional sta-
tus of an individual (Rolland et al., 2008), (5) is measurable and
reproducible (Cruz-Jentoft et al., 2010), and (6) shows a clinical
evolution that can be followed over relatively short periods of time
(Marzetti, 2012).

The relationship between telomere attrition and muscle aging
is currently unknown. The purpose of the present investigation
was therefore to explore whether telomere length, measured in
peripheral blood mononuclear cells (PBMCs), was associated with
sarcopenia in a sample of older adults referred to a geriatric out-
patient clinic. We further evaluated if PBMC telomere length
was related to frailty, a major clinical consequence of sarcope-
nia (Roubenoff, 2000) and a possible additional clinical indicator
of biological age (Mitnitski et al., 2002; Goggins et al., 2005).

MATERIALS AND METHODS
PARTICIPANT RECRUITMENT AND SETTING
The study was conducted at the outpatient clinic of the Depart-
ment of Geriatrics, Neurosciences and Orthopedics, Teaching
Hospital “Agostino Gemelli,” Catholic University of the Sacred
Heart (Rome, Italy). All patients aged 65+ years, admitted between
October 2012 and January 2013, were invited to take part in the
investigation. Exclusion criteria were: presence of disease con-
ditions with an estimated life expectancy <6 months, inability
to walk for 4 m, peripheral edema, presence of pacemaker or
implantable cardioverter defibrillator, and unwillingness or inabil-
ity to provide informed consent. The study was approved by the
Institutional Review Board of the Catholic University of the Sacred
Heart, and all participants signed a written consent. Study visits
for physical function testing, body composition assessment, and
blood sampling were scheduled within a week of enrollment.

DATA COLLECTION
Demographic, clinical data, and lifestyle habits were collected at
the time of enrollment through a dedicated questionnaire. Dis-
ability status was evaluated by the Katz’s Activities of the Daily
Living (ADL) (Katz and Akpom, 1976). Cognition was assessed
using the mini-mental state examination (MMSE) (Folstein et al.,

1975), while mood was evaluated by the 15-item Geriatric Depres-
sion Scale (GDS) (Sheikh and Yesavage, 1986). Diagnoses were
gathered from the patient, attending physicians, and the careful
review of medical charts. Finally, the comorbidity burden was cal-
culated via the Cumulative Illness Rating Scale (CIRS) (Linn et al.,
1968).

IDENTIFICATION OF SARCOPENIA
The presence of sarcopenia was established according to the Euro-
pean Working Group on Sarcopenia in Older People (EWGSOP)
criteria (Cruz-Jentoft et al., 2010). Whole-body fat-free mass was
measured by bioelectrical impedance analysis (BIA) using a Quan-
tum/S Bioelectrical Body Composition Analyzer (Akern Srl, Flo-
rence, Italy) with an operating frequency of 50 kHz at 800 µA.
Measurements were taken under standard conditions, with the
subject in a supine position and surface electrodes placed on the
right wrist and ankle (NIH Expert Panel, 1996). Muscle mass was
estimated using the equation developed by Janssen et al. (2000).
The skeletal muscle index [SMI (kg/m2)] was obtained divid-
ing absolute muscle mass by squared height. According to the
EWGSOP indications, low SMI was defined based on the fol-
lowing cut-offs: <8.87 kg/m2 in men and <6.42 kg/m2 in women
(Cruz-Jentoft et al., 2010).

DEFINITION OF FRAILTY STATUS
The frailty status of participants was assessed according to both
the Fried’s criteria (physical frailty, PF) (Fried et al., 2001) and a
modified Rockwood’s frailty index (FI) (Searle et al., 2008). The
following indicators were considered to define PF: (1) uninten-
tional weight loss in prior 12 months; (2) poor endurance and
energy; (3) weakness, defined by poor grip strength; (4) slowness,
assessed via timed 4-m walk speed; and (5) low physical activity
level according to the Physical Activity Scale for the Elderly (PASE)
(Washburn et al., 1993) (Table 1).

The participant frailty status was further evaluated by con-
structing a FI based on the summation of “health deficits”principle
(Rockwood et al., 2005), according to the procedure described by
Searle et al. (2008). A total of 30 deficits were used for the construc-
tion of the FI, which is expressed as the ratio of deficits observed
to the total number of deficits considered. The variables used for
the computation of the FI and their corresponding cut-points are
listed in Table 2.

BLOOD SAMPLING AND PROCESSING
Blood samples were obtained by Vacutainer™ venipuncture of
the median cubital vein after overnight fasting. Blood samples
(10 mL) were diluted 1:1 in phosphate-buffered saline (PBS) and
PBMCs separated within 1 h of blood draw by Ficoll-Hypaque
(Comercial RAFER, Zaragoza, Spain) density gradient following
the manufacturer’s instructions. Cells were washed twice with PBS
and cryopreserved at -80°C in RPMI 1640 containing 50% fetal
bovine serum and 10% dimethylsulfoxide.

MEASUREMENT OF TELOMERE LENGTH BY QUANTITATIVE REAL-TIME
POLYMERASE CHAIN REACTION
Genomic DNA was extracted from isolated PBMCs using a com-
mercial DNA isolation kit (Norgen Biotek, Thorold, Canada) as
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Table 1 | Indicators of physical frailty.

Frailty criteria Parameters

Weight loss Loss of ≥5 kg in prior 12 months, unintentional

Exhaustion Response of “a moderate amount of the time (3–4 days)”

or “most of the time” to the CES-D scale item: “I felt that

everything I did was an effort” during the past week

Weakness Low grip strength assessed by a North Coast handheld

dynamometer. Gender- and BMI-specific cutoff points

provided by Fried et al. (2001) were adopted

Slowness Time in seconds to complete a 4-m walk at usual pace.

Gender- and height-specific cutoff points provided by

Fried et al. (2001) were adopted

Low physical

activity levels

Physical Activity Scale for the Elderly (PASE); cut-points:

Men < 64, women < 52 (Rothman et al., 2008)

Frailty status Number of criteria

Robust 0

Pre-frail 1–2

Frail ≥3

BMI, body mass index; CES-D, Center for Epidemiologic Studies-Depression.

per the manufacturer’s instructions. Relative telomere length was
measured by quantitative real-time polymerase chain reaction
(qRT-PCR) according to the telomere/single-copy gene ratio (T /S)
method (Cawthon, 2002) with minor modifications. Briefly, the
method measures the ratio between the copy number of telom-
ere repeats (T ) and that of the single-copy gene 36B4 (S) used
as a quantitative control, relative to a calibrator sample (human
genomic DNA; Roche Diagnostic, Indianapolis, IN). qRT-PCR
was performed using an Applied Biosystems 7300 RT-PCR System
(ABI, Foster City, CA) with the following cycling conditions: 95°C
for 10 min, 40 cycles at 95°C for 5 s, 56°C for 30 s, 72°C for 30 s. T
and S were analyzed in duplicate within the same plate. The same
calibrator sample was included in all plates to allow comparisons
across runs. A no-template control was also included for quality
control. The relative T /S values were calculated according to the
2-∆∆CT method (Livak and Schmittgen, 2001).

STATISTICAL ANALYSES
All data are expressed as proportions (%) or mean± SD. Given the
non-normal distribution of T /S values, analyses were run using
log-transformed values to ensure equality of variances and render
the errors approximately normally distributed. Analysis of covari-
ance (ANCOVA) was used to compare adjusted means of log T /S
values according to sarcopenia, SMI categories, and frailty. Geo-
metric means of T /S values are shown in tables and text. Analyses
were adjusted for age, gender, smoking habit, presence of diabetes,
and CIRS score. The Spearman’s rank correlation coefficient was
used to calculate the strength of association between variables. All
analyses were performed using the SPSS software (version 18, SPSS
Inc., Chicago, IL, USA).

Table 2 | Health variables and cut-points used for the computation of a

modified Rockwood’s frailty index.

Health variables Condition or variable

cut-points

Score

Marital status Married or single 0

Widow or divorced 1

Social involvement Yes 0

No 1

Impaired ADL None 0

1 0.25

2 0.5

3–4 0.75

4–6 1

Impaired IADL None 0

1–2 0.25

3–4 0.5

5–6 0.75

7–8 1

Walk speed (4 m) ≥0.8 0

<0.8 1

Grip strengtha Normal 0

Low 1

Cognition (MMSE) >24 0

20–24 0.25

18–20 0.50

11–17 0.75

<10 1

Mood (GDS) 0–2 0

3–5 0.25

6–8 0.5

9–11 0.75

>11 1

Sedentarism (PASE) Men≥64, women≥52 0

Men < 64, women < 52 1

Hospital admission(s) in

prior 12 months

No 0
Yes 1

BMI 18.5–24.9 0

25–30 0.5

>30 or <18.5 1

Nutrition (MNA) ≥23.5 0

≥17 < 23.5 0.5

<17 1

Unintentional weight loss

(>5 kg in prior 12 months)

No 0
Yes 1

Chronic pain No 0

Yes 1

Fall(s) in prior 12 months No 0

Yes 1

(Continued)
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Table 2 | Continued

Health variables Condition or variable

cut-points

Score

Cancer or active cancer

treatment

No 0
Yes 1

Cardiovascular disease No 0

Yes 1

Chronic lung diseases No 0

Yes 1

Hematological diseases No 0

Yes 1

Renal diseases No 0

Yes 1

Central nervous system

diseases

No 0
Yes 1

Peripheral nervous

system diseases

No 0
Yes 1

Gastrointestinal diseases No 0

Yes 1

Ear, nose, and throat

diseases

No 0
Yes 1

Orthopedic diseases No 0

Yes 1

Psychiatric disorders No 0

Yes 1

Diabetes mellitus No 0

Yes 1

Endocrine disorders No 0

Yes 1

Sarcopenia No 0

Yes 1

Polypharmacy (≥6 drugs) No 0

Yes 1

aMen: 1, BMI≤24, grip strength≤29 kg; BMI 24.1–28, grip strength≤30 kg;

BMI > 28, grip strength≤32 kg. Women: 1, BMI≤23, grip strength≤17 kg; BMI

23.1–26, grip strength≤17.3 kg; BMI 26.1–29, grip strength≤18 kg; BMI > 29,

grip strength≤21 kg.

ADL, activities of daily living; BMI, body mass index; IADL, instrumental activities

of daily living; GDS, Geriatric Depression Scale; MMSE, mini-mental state exam-

ination; MNA, Mini nutritional assessment; PASE, physical activity scale for the

elderly.

RESULTS
A total of 142 subjects were enrolled in the study. The main
characteristics of the study sample are shown in Table 3. Sar-
copenia was identified in 23 participants (19.3%). The prevalence
of sarcopenia was uniform across ages and genders. Frailty, as
determined by the Fried’s criteria (PF), was detected in 74 partic-
ipants (52.1%). Individuals classified as frail according to PF were
older relative to non-frail subjects (76.6± 6.7 vs. 73.1± 6.0 years;
p= 0.001), with no differences between genders. An identical

Table 3 | Study sample characteristics.

Whole sample (n=142)

n (%)

Age, years (mean±SD) 74.9±6.5

Female gender 84 (59.2)

Smokers 11 (7.7)

Education, years (mean±SD) 10.0±5.0

Hospital admission in prior 12 months 41 (29.0)

MMSE score (mean±SD) 26.2±3.4

CIRS (mean±SD) 3.0±2.2

GDS (mean±SD) 10.8±7.6

ADL scale (mean±SD) 5.0±1.3

IADL scale (mean±SD) 5.9±2.4

Fall in prior 12 months 66 (46.5)

BMI (mean±SD) 27.7±4.7

Number of drugs (mean±SD) 6.1±3.3

Frail (Fried’s criteria, PF) 74 (52.1)

Number of frailty criteria (mean±SD) 2.3±1.8

Frail (modified Rockwood’s frailty index, FI) 74 (52.1)

FI (mean±SD) 0.46±0.17

Sarcopenia (EWGSOP criteria) 23 (19.3)

PBMC telomere length (T /S) 0.27±0.10

ADL, activities of daily living; BMI, body mass index; CIRS, Cumulative Illness

Rating Scale; EWGSOP, European Working Group on Sarcopenia in Older People;

FI, frailty index; GDS, Geriatric Depression Scale; IADL, instrumental activities

of daily living; MMSE, mini-mental state examination; PBMC, peripheral blood

mononuclear cell; PF, physical frailty.

prevalence of frailty was observed using 0.44 as the cutoff for
the FI, as recommended by Rockwood et al. (2007). Similar to
PF, participants with a FI score ≥0.44 were older than those with
lower scores (76.4± 6.6 vs. 73.2± 6.2 years; p= 0.004), with an
equal gender distribution. Sixty-one participants were identified
as frail based on both PF and the FI score, and the two measures
of frailty were significantly correlated with each other (r = 0.63;
p < 0.0001). The strength of this correlation is comparable to that
reported using the original version of the FI (Rockwood et al.,
2007). Hence, the modified FI constructed for the present study
was able to capture the condition of interest. The coexistence of
sarcopenia and PF was observed in 21 subjects (91.3%), whereas
15 (65.2%) participants with sarcopenia were classified as frail
according to the FI.

PBMC telomeres were shorter in sarcopenic subjects
(T /S= 0.21; 95% CI: 0.18–0.24) relative to non-sarcopenic indi-
viduals (T /S= 0.26; 95%: CI: 0.24–0.28; p= 0.01), indepen-
dent of age, gender, smoking habit, presence of diabetes, and
comorbidity (Table 4). Of the three parameters considered
for the definition of sarcopenia (i.e., muscle mass, gait speed,
and handgrip strength), T /S was only correlated with SMI
(Figure 1).

PBMC telomeres showed a trend toward lower T/S values in
frail subjects relative non-frail participants, but the difference
did not reach the statistical significance in either unadjusted or
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Table 4 | Mean telomere/single-copy gene ratio (T /S) values according

to sarcopenia, skeletal muscle index, and frailty status.

Mean telomere/single-copy gene ratio (T /S)

Unadjusted p Adjustedb p

meana (95% CI) meana (95% CI)

SARCOPENIA (EWGSOP DEFINITION)

No sarcopenia (n=119) 0.26 (0.25–0.28) 0.004 0.26 (0.24–0.28) 0.01

Sarcopenia (n=23) 0.21 (0.17–0.24) 0.21 (0.18–0.24)

SKELETAL MUSCLE INDEX (SMI)

Normal SMI (n=116) 0.26 (0.24–0.28) 0.003 0.26 (0.24–0.28) 0.008

Low SMI (n=26) 0.21 (0.17–0.24) 0.21 (0.18–0.24)

FRAILTY, PF

No frailty (n=68) 0.27 (0.24–0.29) 0.11 0.26 (0.24–0.29) 0.31

Frailty (n=74) 0.24 (0.22–0.26) 0.24 (0.22–0.27)

FRAILTY, FI≥0.44

No frailty (n=68) 0.27 (0.24–0.29) 0.12 0.26 (0.24–0.29) 0.38

Frailty (n=74) 0.23 (0.22–0.26) 0.24 (0.22–0.27)

Low SMI was defined as SMI < 8.87 kg/m2 for men and SMI < 6.42 kg/m2 for

women.
aGeometric means were calculated from log-transformed values.
bAdjusted for age, gender, smoking habit, diabetes, and Cumulative Illness Rating

Scale score.

FIGURE 1 | Scatter plot of telomere/single-copy gene ratio (T/S) and
the skeletal muscle index (n=142).

adjusted analyses, regardless of the frailty assessment tool adopted
(Table 4). Finally, no significant correlations were determined
between T/S values and any of the five domains defining PF (data
not shown).

DISCUSSION
Previous studies have shown that telomere attrition and dysfunc-
tion are implicated in a host of age-related disorders, includ-
ing cancer, cardiovascular disease, type 2 diabetes mellitus,
osteoarthritis, chronic obstructive pulmonary disease, dementia,
and immunosenescence [reviewed by Xi et al. (2013)]. However,
the literature is void of investigations concerning the relationship
between telomere length and sarcopenia, a hallmark of the aging
process (Fisher, 2004). Furthermore, only sparse reports exist that
have examined the association between telomere length and frailty
(Woo et al., 2008; Collerton et al., 2012), an additional clinical
indicator of biological age (Mitnitski et al., 2002; Goggins et al.,
2005) and a major consequence of sarcopenia (Roubenoff, 2000).
The present investigation was therefore undertaken to explore
whether a popular senescence biomarker (PBMC telomere length)
was related to clinical measures of biological age (sarcopenia and
frailty). Our results indicate that PBMC telomere length, expressed
as T/S values, is associated with sarcopenia, but not frailty, in a
sample of older outpatients.

These findings are supportive of the proposition that sarcope-
nia may serve as a clinical biomarker for aging (Fisher, 2004).
The inverse association detected between PBMC telomere length
and muscle mass could be reflective of a common pathogenic
ground underlying age-related telomere shortening and mus-
cle atrophy. Indeed, oxidative stress and chronic inflammation
are involved both in telomere erosion (Aviv, 2004; Bayne and
Liu, 2005) and sarcopenia (Marzetti et al., 2013). The expo-
sure to high levels of free radicals has been identified as a
causative factor for telomere shortening both in vitro (Richter
and von Zglinicki, 2007) and in disease conditions character-
ized by enhanced oxidant generation, such as diabetes melli-
tus, dementia, cardiovascular disease, and cancer [reviewed by
Aubert and Lansdorp (2008)]. Likewise, oxidative stress is a major
culprit in the development of sarcopenia through irreversible
damage to myocyte macromolecules, bioenergetic failure, and
induction of apoptosis [reviewed by Marzetti et al. (2009) and
Calvani et al. (2013)].

A major consequence of oxidative stress is the activation of
redox-sensitive mediators, including nuclear factor-κB (NF-κB)
(Chung et al., 2009). The latter, in turn, regulates the transcrip-
tion of several pro-inflammatory cytokines (Chung et al., 2009).
Under normal conditions, NF-κB activation in response to oxida-
tive stimuli is short-lived, and the inflammatory reaction ceases
with resolution. However, the long-term exposure to high levels
of oxidants, as it seems to occur during aging, results in a chronic
activation of NF-κB-mediated inflammatory response and cellular
damage (Chung et al., 2006). Notably, increases in circulating lev-
els of C-reactive protein (CRP) and serum amyloid A (SAA) were
associated with proportional decreases in PBMC telomere length
in a cohort of middle-aged workers exposed to occupational envi-
ronmental pollution over 2 years of follow-up (Wong et al., 2014).
In addition, cross-sectional analyses in a population of 1,962 older
adults ranging in age between 70 and 79 years showed that individ-
uals with elevated circulating levels of either interleukin-6 (IL-6)
or tumor necrosis factor-alpha (TNF-α) had significantly higher
odds for short PBMC telomeres, after adjustment for potential
confounders (O’Donovan et al., 2011). Remarkably, the highest
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odds for short PBMC telomeres were found in older persons with
high levels of both IL-6 and TNF-α (O’Donovan et al., 2011).

It is noteworthy that IL-6 (Payette et al., 2003), TNF-α (Ped-
ersen et al., 2003), CRP (Cesari et al., 2005), and SAA (Zhang
et al., 2009) have all been implicated in the pathogenesis of mus-
cle atrophy in the context of sarcopenia or other muscle-wasting
disorders. Similar to telomere attrition, the concomitant elevation
of multiple inflammatory markers seems to play a synergistic role
in age-related muscle loss (Visser et al., 2002).

The association between telomere length and sarcopenia was
mainly driven by the relationship between T/S values and muscle
mass. Indeed, of the three parameters indicated by the EWGSOP
for the definition of sarcopenia (Cruz-Jentoft et al., 2010), PBMC
telomere length was only correlated with SMI (Figure 1). The rea-
sons for the absence of significant associations between T/S values
and measures of muscle performance (handgrip strength and walk
speed) are multifold. First, it is well known that losses in muscle
mass and function follow different temporal trajectories during
the course of aging, with steeper declines in strength relative to
mass (Delmonico et al., 2009). Hence, at any given time point,
PBMC telomere length may not necessarily correlate with all of the
components of the sarcopenia syndrome. In addition, while SMI
is intrinsic to muscle, force generation and ambulation depend on
the coordinated function of multiple organ systems (i.e., muscu-
loskeletal, cardiorespiratory, and central and peripheral nervous
systems). Since the rate of aging varies across organs and tissues
(Finkel et al., 1995), a single biological marker may not be equally
effective at tracking the multitude of intrinsic and extrinsic factors
responsible for muscle aging. A similar reasoning may explain the
inability of PBMC telomere length measurements to capture the
complex inter-organ interactions regulating muscle performance.

Since frailty has been proposed as a clinical meter for biological
age (Mitnitski et al., 2002; Goggins et al., 2005) and represents a
major consequence of sarcopenia (Roubenoff, 2000), one could
have expected a relationship existed between PBMC telomere
length and the frailty status. However, the lack of a significant
association between T/S values and measures of frailty is in keep-
ing with previous reports on the topic (Woo et al., 2008; Collerton
et al., 2012). Similar to the present study, PBMC telomere length
was indeed unrelated to either PF (Collerton et al., 2012) or the FI
(Woo et al., 2008; Collerton et al., 2012). As previously reasoned
with regard to muscle function, it is conceivable that the“snapshot”
assessment of a single biological marker may not be sufficient at
capturing a complex, multidimensional syndrome, such as frailty.

Although reporting novel findings, the present work presents
some limitations that deserve further discussion. First of all, the
study is exploratory in nature, evident by the relatively small sam-
ple size. For this reason, robust and pre-frail participants were
considered as a single group, which prevented us from observ-
ing a possible gradient of T/S values across the frailty spectrum.
Nevertheless, this approach allowed adjusting the analyses for a
number of potential confounders, which adds further relevance to
our findings. Second, the cross-sectional design of the study does
not allow inferring about the temporal relationship among PBMC
telomere length, frailty, and sarcopenia. Moreover, although BIA
is an established technique for the estimation of lean body mass
(Kyle et al., 2003), it does not represent the gold standard for the

quantification of muscle mass. Nevertheless, BIA is safe, inexpen-
sive, easy to use, and readily reproducible. This technique is indeed
recommended by the EWGSOP for the estimation of muscle mass
in ambulatory patients (Cruz-Jentoft et al., 2010), such as those
enrolled in the present study. Furthermore, following the recom-
mendations by the NIH Expert Panel (1996), BIA measurements
were obtained under standard conditions to limit the possible vari-
ability arising from body position, hydration status, consumption
of food and beverages, ambient air and skin temperature, recent
physical activity, and conductance of the examining table. Finally,
telomere length was estimated from T/S values, as determined by
qRT-PCR, in place of absolute quantification by classic Southern
blot methods on terminal restriction fragments. However, the T/S
method has proven to be highly consistent with Southern blot
(Epel et al., 2004; Grabowski et al., 2005).

CONCLUSION
Findings from this exploratory study indicate that PBMC telom-
eres are shorter in sarcopenic geriatric outpatients, after adjust-
ment for potential confounders. The relationship between telom-
ere length and sarcopenia appears to be mainly driven by muscle
mass, which may be indicative of a common pathogenic ground
for telomere erosion and muscle atrophy. The lack of a signif-
icant association between PBMC telomere length and measures
of muscle performance or the frailty status reinforces the notion
that telomere shortening may not suffice as a biomarker for com-
plex, multidimensional age-related conditions (Woo et al., 2008;
Collerton et al., 2012). Future studies are necessary to assess the
relationship among telomere shortening, sarcopenia, and frailty
over time as well as in response to interventions, such as physical
exercise and nutrition, proven effective against muscle aging and
its clinical correlates.
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