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We investigated age-related changes in electroencephalographic (EEG) coupling of
theta-, alpha-, and beta-frequency bands during bottom–up and top–down attention.
Arrays were presented with either automatic “pop-out” (bottom–up) or effortful “search”
(top–down) behavior to younger and older participants. The phase-locking value was
used to estimate coupling strength between scalp recordings. Behavioral performance
decreased with age, with a greater age-related decline in accuracy for the search than
for the pop-out condition. Aging was associated with a declined coupling strength
of theta and alpha frequency bands, with a greater age-related decline in whole-
brain coupling values for the search than for the pop-out condition. Specifically,
prefronto-frontal coupling in theta- and alpha-bands, fronto-parietal and parieto-occipital
couplings in beta-band for younger group showed a right hemispheric dominance,
which was reduced with aging to compensate for the inhibitory dysfunction. While pop-
out target detection was mainly associated with greater parieto-occipital beta-coupling
strength compared to search condition regardless of aging. Furthermore, prefronto-
frontal coupling in theta-, alpha-, and beta-bands, and parieto-occipital coupling in
beta-band functioned as predictors of behavior for both groups. Taken together
these findings provide evidence that prefronto-frontal coupling of theta-, alpha-, and
beta-bands may serve as a possible basis of aging during visual attention, while parieto-
occipital coupling in beta-band could serve for a bottom–up function and be vulnerable
to top–down attention control for younger and older groups.

Keywords: aging, electroencephalographic (EEG), visual pop-out, visual search, control of attention, inter-region
phase coupling, theta, alpha

INTRODUCTION

Normal aging is associated with decline in the performance of a variety of cognitive functions,
including effects observed in the visual search (Plude and Doussard-Roosevelt, 1989) and in the
tasks involving both bottom–up attention and top–down attention, with a more prominent decline
in tasks emphasizing top–down attention control (Greenwood et al., 1997; Kok, 2000; Madden
et al., 2005; Madden, 2007; Lien et al., 2011; Li et al., 2013). Normal aging is correlated with changes
in neural structure, including decline in brain volume (Scahill et al., 2003; Fotenos et al., 2008)
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and gray and white matter volumes (Raz et al., 2005;
Gordon et al., 2008). Age-related losses in gray and white
matter in medial-temporal, parietal, and frontal areas
were reported. Hypotheses of age-related brain functional
changes mainly include Compensation Related Utilization
of Neural Circuits Hypothesis (CRUNCH) (Reuter-Lorenz
and Lustig, 2005; Grady, 2008; Reuter-Lorenz and Cappell,
2008) and dedifferentiation hypothesis (Madden et al.,
2007).

A variety of functional imaging, neurophysiological and
neuropsychological studies have provided compelling evidence
that frontoparietal networks play important roles in both top–
down cognitive and bottom–up sensory factors of attention
control (Corbetta and Shulman, 2002; Giesbrecht et al., 2003;
Bledowski et al., 2004a,b Buschman and Miller, 2007; Husain
and Nachev, 2007; Knudsen, 2007; Li et al., 2010). An
aging study of visual attention has reported that older adults
showed increased magnitude and spread of activity in fronto-
parietal regions compared with younger adults, suggesting
a compensation for a decline in overall bottom–up sensory
input (dedifferentiation; Madden et al., 2007; see reviews
Reuter-Lorenz and Park, 2010). However, activity decreases
with aging in frontal cortex (Anderson et al., 2000; Milham
et al., 2002; Johnson et al., 2004) and occipital cortex
(Madden et al., 2004) were also reported in attention studies,
pointing to an age-related decline in allocation of attentional
resources efficiency (Lorenzo-López et al., 2008) or reduction
in inhibitory control functions in attention (Colcombe et al.,
2003; Madden et al., 2004; Andrés et al., 2006; Hasher et al.,
2008). Performance has been found associated with fronto-
parietal activation for older adults and with occipital activation
for younger adults in top–down attention (Madden et al.,
2007), but with prefrontal activation for younger adults and
with deep gray matter structures for older adults in visual
target detection (Madden et al., 2004). Increased activities in
frontal regions associated with improved performance (Grady
et al., 2002; Madden et al., 2004; Lorenzo-López et al., 2008;
Vallesi et al., 2010), or with decreased performance (Madden
et al., 2005) in older adults have also been reported in
certain tasks. The CRUNCH interprets these contradictory
results at some degree, whereby older adults use more or
new neural circuits to accomplish tasks compared to younger
adults.

A functional imaging study shows that aging is associated with
decreased connectivity between areas within the fronto-parietal
control network and between areas within the somatomotor
network in a selective attention task, but with increased
connectivity between the fronto-parietal and somatomotor
network (Geerligs et al., 2014). Functional connectivity decreases
with aging within the fronto-parietal regions during cue
processing under executive control was reported (Madden et al.,
2010). There has been study showing both selective increases
between visual attention regions and supplementary motor area
and decreases between sensorimotor systems and supplementary
motor area in resting-state functional connectivity with age
(Roski et al., 2013). In summary, aging is associated with
lower connectivity within task-relevant networks and greater

connectivity between the task-relevant networks and outside
networks by functional imaging studies (Madden et al., 2005,
2010; Dennis et al., 2008; St Jacques et al., 2009; Geerligs
et al., 2014), supporting the CRUNCH that older adults use
more or new neural circuits to compensate for age-related
decline.

In electrocephalogram (EEG) studies, older adults show
reduced frontal theta activity during sustained attentional
processes, and reduced theta connectivity strength within frontal
regions and between frontal midline and temporal cortices
during working memory maintenance (Kardos et al., 2014).
Decreased posterior alpha activation in an attention network
test (Deiber et al., 2013) and reduced beta activation in a
visual attentional task correlated to alertness and sustaining
attentional processes (Gola et al., 2012, 2013) with aging were
reported. Aging is associated with decreased modularity and
clustering and increased connectedness of anterior nodes in
beta-band network during resting condition, pointing to a
compensation of the anterior atentional system (Knyazev et al.,
2015). These findings provide evidence that aging modulates
distinct neural circuits at different oscillatory frequencies
during attention functions. There is, however, relatively
little evidence directly investigating aging-related functional
connectivity by EEG in bottom–up and top–down attention
together.

We used a paradigm based on a study in non-human
primates by Buschman and Miller (2007) to investigate age-
related coupling of different frequency bands during top-
down and bottom-up attention control. Arrays were presented
with either automatic “pop-out” (bottom–up) or effortful
“search” (top–down) behavior to younger and older participants.
Buschman and Miller found that fronto-extrastriate coherences
were greater in the search than in the pop-out condition
at low gamma-band (22–34 Hz) and parietal–extrastriate
coherences were greater in the pop-out than in the search
condition at high gamma-band (35–55 Hz). In a human EEG
study, a double dissociation was reported, with significantly
increased power from 4 to 24 Hz in parietal areas for
pop-out targets and increased power from 4 to 24 Hz in
frontal regions for search targets (Li et al., 2010). Greater
frontal-parietal synchrony at low gamma-band frequencies
for inefficient than efficient visual search were reported
(Phillips and Takeda, 2009). Based on above neuroimaging
and electrophysiology literatures, as well as the results from
our previous studies (Li et al., 2010, 2013), we expected
the differential roles of fronto-parieto-occipital connectivity
at different lower oscillatory frequencies under both types
of attention for younger and older groups. The purpose
of the present study was to examine the effects of aging
on functional connectivity at different oscillatory frequencies
during visual search and simultaneously compare the fronto-
parieto-occipital connectivity during top–down and bottom–up
attention. We hypothesized that (a) aging and search condition
are associated with decreases in connectivity due to a slowing
in performance, and (b) connectivity at different oscillatory
frequencies plays a differential role contributing to group and
attentional control.
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FIGURE 1 | An example of the stimulus array in the two experimental
conditions. Each trial includes a target. In the (up panel), the distractors
differ from the target in both color and orientation, so that target detection is
highly efficient and easy. In this pop-out condition, search is influenced
primarily by the bottom–up attention. In the (down panel), the distractors
differ from the target only in orientation, so that target detection is less efficient
and difficult. In this search condition, target detection is controlled mainly by
top–down attention.

MATERIALS AND METHODS

Subjects
We utilized data reported in a previous study (Li et al.,
2013) consisting of 13 younger subjects (6 females, mean
age ± standard deviation = 23.9 ± 4.3 years, range from
18 to 35 years old) and 13 older subjects (6 females, mean
age ± standard deviation = 63.1 ± 6.2 years, range from 52
to 75 years old). The mean numbers of years of education
for the younger and older subjects were 15.9 ± 2.5 and
16.0 ± 2.2 years respectively. All the subjects were right-
handed, had normal color vision, and had no history of
neurological problems. None of the subjects were taking
any psychotropic, neurological, or psychiatric medications
at the time of testing. The experimental procedures were
approved by the Committee for the Protection of Human
Subjects for the University of California, Berkeley. Written
Informed consent was obtained from all subjects prior to being
tested.

Stimuli and Procedure
The stimuli were made up of 16 acute isosceles triangles, each
with a particular color (red or green) and orientation [one of
eight, (i-1) × 45◦, i = 1, 2, 3, 4, 5, 6, 7, 8]. The triangles
had two equal sides 6.5 cm in length and a third side 5.5 cm
long, with an area of 16.20 cm × 16.20 cm. Figure 1 illustrates
an example of the stimulus sequence. After a 500 ms fixation
cross, a target triangle (one of 16 triangles) appeared in the
center of the screen for 1000 ms and was followed by a short
500 ms delay screen with a fixation cross. After the delay, a
four stimulus array was presented, consisting of the target and
three distracter triangles in the four quadrants of the screen.
The target was randomly presented in one of these locations
(upper-left, lower-left, upper-right, and lower-right). The center
of each triangle was 6.2 cm vertical (either up or down) from
the horizontal midline and 8.2 cm lateral (either right or left)
from the vertical midline, resulting in stimuli at a visual angle
of 5.34◦ from fixation. The array remained on the screen until
a response and was followed by a 1000 ms fixation to show
the end of the trial. Three distractor triangles were chosen to
create the two main attention conditions in the experiment:
“pop-out” and “search.” The pop-out condition was created
using distracters that differed from the target in both color
and orientation (Treisman and Gelade, 1980), while the search
condition was created by using distracters that differed from the
target only in orientation. Half of the trials were in the pop-
out condition and half were in the search condition. Half of the
targets were presented in left visual field and half were in right
visual field.

Subjects were asked to centrally fixate throughout the
recording and to respond as quickly as possible whether the
target was to the left or right of fixation. Participants used their
right-hand for responding by pressing either button 1 for left
or 2 for right from a computer key pad. Participants performed
two practice blocks before starting the experiment and extra
practice blocks were given as required until subjects were able
to reach a mean accuracy of 80% in the task. After the practice,
12 experimental blocks comprising 32 trials each lasting about
2.5 min were run. There were 1–2 min breaks between blocks,
with longer breaks every three blocks. E-prime (Psychology
Software Tools, Pittsburgh, PA, USA) was used to present the
stimuli and analyze the behavioral data.

Data Recording and Preprocessing
EEG was recorded by an ActiveTwo system (Biosemi, The
Netherlands) with a 64 channel electrode cap. Right and left
earlobes and four electrooculogram (EOG) were simultaneously
recorded. EEG data were off-line referenced to the average of the
right and left earlobes. EOG was measured from an electrode
above and below the right eye to record vertical eye movements
and electrodes on the outer canthus of each eye to measure
horizontal eye movements. All channels were amplified with
an analog bandpass filter of 0.06–208 Hz and were digitized at
1024 Hz.

Matlab was used for all data processing. Re-referenced EEG
signals were filtered from 0.5 to 55 Hz with a two-way FIR
bandpass filter (eegfilt.m from EEGLAB toolbox, Delorme and
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Makeig, 2004) and segmented from 200 ms before the onset
of the stimulus (visual array) to 1000 ms after the stimulus.
Trials were rejected if they had an incorrect response or lacked
a button press between 200 and 1500 ms (younger adults) or
200–2000 ms (older adults) after the onset of the stimulus array.
Epochs with EOG artifacts were removed if there was a difference
in amplitude between the two vertical EOG or between the two
horizontal EOG of greater than 100 μV, or if there was more
than 3 standard deviations (SDs) from the mean of the EOG
difference wave. For each epoch, the linear drift was removed and
the data was baseline corrected using the 200 ms pre-stimulus
period. Finally, any epoch with a channel containing amplitudes
of more than four standard deviations from the epoch mean was
rejected. After above preprocessing, 537 trials remained for left
pop-out targets, 480 trials remained for right pop-out targets,
479 trials remained for left visual search targets, and 424 trials
remained for right search targets for the younger participants.
417 trials remained for left pop-out targets, 402 trials remained
for right pop-out targets, 332 trials remained for left visual
search targets, and 344 trials remained for right search targets
for the older participants. These trials were used for ERP analysis
(see in Li et al., 2010, 2013) and for the current EEG coupling
analysis. At least 25 trials were included in the average for each
condition.

EEG Cross-channel Coupling Analysis
To minimize the contribution of volume conduction and
remove spurious coupling (Nunez et al., 1997; Lachaux et al.,
1999), the following steps were applied to single trial of EEG
data before the computation of the phase synchrony. Step
1: each single trial of 4 conditions (2 × 2, target condition
and visual field) of every subject for both groups was filtered
by the band-pass finite impulse response filters at 4 Hz
intervals between 4 and 40 Hz. Totally signals of 9 frequency
bands EEG were obtained. Step 2: we used a current source
density (CSD) toolbox of MATLAB supplied by Kayser J.
(http://psychophysiology.cpmc.columbia.edu/Software/CSDtool
box/index.html) that implemented a spherical spline algorithm
of Perrin et al. to estimate scalp current density (SCD) for EEG
data (Perrin et al., 1989; Kayser and Tenke, 2006). The spline
interpolation constant was set to 4.

After above SCD computation, the data from 200 ms before
the onset of stimuli array to 1000 ms after the stimuli were used
to estimate long-range neural phase synchrony in nine frequency
bands by calculating phase-locking value (PLV). The PLV has
been used to measure the bivariate phase synchronization in a
number of EEG studies (Mormann et al., 2000; Quian Quiroga
et al., 2002; Knyazev et al., 2015). The PLV between electrodes j
and k, at each sample time t, across theN trials, were quantified as

PLVj,k,t=
∣
∣
∣
∣
1
N

∑

N
ei[ϕj(t)−ϕk(t)]

∣
∣
∣
∣

. Instantaneous phase ϕ(t) of a signal was

estimated by Hilbert transform.
The PLV takes on values between 0 and 1, but the PLV must

first be normalized before it can be used as a metric of cross-
electrode coupling strength. That is, we are interested in the
properties of the distribution of phase difference between two
electrodes. One way is to compare the actual mean PLV with a

set of surrogate PLV created by offsetting phase of one signal
by some large time lag. Two hundred surrogate PLV values
for each frequency and time point were calculated, and the
mean and standard deviation of surrogate PLV were estimated.
Therefore, the normalized PLV [(real PLV – mean of surrogate
PLV)/standard deviation of surrogate PLV] were defined as the
modulation index used in this paper. For a given number of
sample points, we can directly compare this normalized PLV
for cross-electrode coupling strength across different pairs as
well as different frequency bands which may have very different
power levels. The normalized PLV index was computed for
all pair-wise combinations of channels, generating 2016 (totally
64 channels) index values for each time point in 9 frequency
bands in each condition for both groups. With α = 0.01 and
N = 2016 comparisons, an index value greater than 4.42 was
required for significance by Bonferroni correction for multiple
comparisons.

Statistical Analysis
Behavioral data were analyzed with a repeated measure ANOVA
with condition (pop-out and search) and target visual field
(left and right) as the within-subject factors and age (young
and old) as the between-subject factor, followed by Bonferroni
corrected t-tests if necessary with p-value <0.05 as a significant
threshold.

Mean normalized PLV values and mean numbers of
connection were calculated first by the mean of whole-
brain significant coupling values in 0–600 ms time-window.
Then mean normalized PLV multiplied by mean numbers of
connection to obtain total coupling values. Finally, the total
coupling values were analyzed with a repeated measure ANOVA
with condition (pop-out and search) and target visual field (left
and right) as the within-subject factors and age (young and old)
as the between-subject factor for 9 frequency bands.

Eight regions of interest (ROIs) were selected including left
prefrontal (Fp1, AF7, AF3, F5, F3, F1), right prefrontal (Fp2,
AF8, AF4, F6, F4, F2), left central-frontal (FC5, FC3, FC1, C5,
C3, C1), right central-frontal (FC6, FC4, FC2, C6, C4, C2),
left central-parietal (CP5, CP3, CP1, P5, P3, P1), right central-
parietal (CP6, CP4, CP2, P6, P4, P2), left parietal-occipital
(PO7, PO3, O1), and right parieto-occipital (PO8, PO4, O2)
regions (see Figure 2). Max normalized PLV values for all pair-
wise combinations of eight regions of interest were calculated,
generating 28 (totally 8 ROIs) index values for frequency
bands of interest in four conditions for both groups. With
α = 0.05 and N = 28 comparisons, an index value greater
than 2.91 was required for significance by Bonferroni correction
for multiple comparisons. Each significant connectivity between
ROIs were then analyzed with a repeated measure ANOVA
with condition (pop-out and search) and target visual field
(left and right) as the within-subject factors and age (young
and old) as the between-subject factor for frequency bands of
interest.

Linear relationship between above coupling values and
behaviors were then tested by Pearson correlation coefficient
for four conditions in both groups in each frequency band,
respectively.
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FIGURE 2 | Eight regions of interest (ROIs, marked by red rectangles)
for inter-region analysis were selected including left prefrontal (Fp1,
AF7, AF3, F5, F3, F1), right prefrontal (Fp2, AF8, AF4, F6, F4, F2), Left
central-frontal (FC5, FC3, FC1, C5, C3, C1), right central-frontal (FC6,
FC4, FC2, C6, C4, C2), Left central-parietal (CP5, CP3, CP1, P5, P3,
P1), right central-parietal (CP6, CP4, CP2, P6, P4, P2), Left
parietal-occipital (PO7, PO3, O1), and right parieto-occipital (PO8,
PO4, O2) regions.

RESULTS

Behavioral Results
Mean reaction times (RTs) and accuracy rates are summarized
in Table 1 (mean ± standard deviation). There was a main
effect of age (young and old), condition (pop-out and search),
and target visual field (left and right) on mean RTs [age effect:
F(1,24) = 31.35, p < 0.001; condition effect: F(1,24) = 786.05,
p < 0.001; target visual field effect: F(1,24) = 5.70, p = 0.025,
ANOVA], with slower RTs in the older subjects and in the
search condition and in the left visual field target. However,
there was no significant interaction in RTs among age, condition
and target visual field. A main effect of age and condition

was observed on accuracy rates [age effect: F(1,24) = 19.75,
p < 0.001; condition effect: F(1,24) = 88.55, p < 0.001], with
higher accuracy overall in the younger group and in the pop-
out condition. There was a significant interaction in accuracy
between age and condition [F(1,24) = 14.28, p = 0.001], showing
an increased decline in accuracy for the older compared with
the younger subjects in the search condition compared with the
pop-out condition.

Reaction times and accuracy rates were assessed using
a two-way repeated ANOVA with condition and target
visual field for both groups, respectively. There was only a
main effect of condition on mean RTs and accuracy rates
for younger group [RTs: F(1,12) = 449.51, p < 0.0001;
accuracy rates: F(1,12) = 30.95, p < 0.001], with quicker
RTs and higher accuracy in the pop-out condition. For older
group, there was a main effect of condition on mean RTs
and accuracy rates [RTs: F(1,12) = 355.06, p < 0.0001;
accuracy rates: F(1,12) = 58.46, p < 0.001], with quicker
RTs and higher accuracy in the pop-out condition, and
there was a main effect of target visual field only on RTs
[F(1,12) = 5.06, p = 0.044], with slower RTs in the left visual field
target.

EEG Coupling Results
Whole-brain Total Coupling Values
Supplementary Table S1 summarizes the statistical effects of three
factors of age, condition, and target visual field and interaction
on the total coupling values for 9 frequency bands. As can
be seen in Supplementary Table S1, there was a main effect
of age for total coupling values only in the theta and alpha
bands [theta band: F(1,24) = 9.28, p = 0.006; alpha band:
F(1,24) = 5.89, p = 0.023], and there was a main effect of
condition in almost all frequency bands. Since there was not
any effect of age or any interaction effect between age and other
factors in the higher frequency bands (24–40 Hz), we did not
report these results in the following analyses. In three beta bands
(12–24 Hz) there was an interaction between age and target
visual field, so that we averaged their coupling values as one
beta band to analyze. Hence, the frequency bands of interest
were theta (4–8 Hz), alpha (8–12 Hz), and beta (12–24 Hz)
activities.

Table 2 presents the total coupling values of whole-brain
in the theta, alpha, and beta frequency bands of two target
visual fields for the pop-out and search conditions in younger

TABLE 1 | Behavioral results (mean ± SD).

Condition Target
visual field

RT (ms) Accuracy (%)

Young Old Young Old

Visual pop-out Left 487.74 ± 106.82 704.91 ± 97.57 99.03 ± 1.16 97.75 ± 1.64

Right 476.44 ± 94.39 678.11 ± 96.20 99.20 ± 0.87 98.16 ± 1.60

Visual search Left 775.67 ± 129.86 1025.53 ± 74.26 92.74 ± 4.75 81.15 ± 9.35

Right 768.45 ± 106.63 979.53 ± 148.64 93.13 ± 3.88 85.80 ± 7.64

Mean reaction times (RT, ms) and accurate rates (%) and their corresponding standard deviations as a function of condition and target visual field in younger and older
subjects.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 December 2015 | Volume 7 | Article 223

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Li and Zhao Age-Related EEG Coupling During Attention

and older participants. For theta frequency band, there was a
main effect of age (young and old) and target visual field (left
and right), with bigger coupling values in the younger subjects
only for search condition [independent t-tests, pop-out and left:
t(24) = 2.39, Bonferroni corrected p > 0.05; pop-out and right:
t(24) = 2.23, corrected p > 0.05; search and left: t(24) = 3.57,
corrected p < 0.05; search and right: t(24) = 2.79, corrected
p < 0.05]. There was an interaction between age and visual
target field [F(1,24) = 6.50, p = 0.018], so that we tested two-
way repeated measure ANOVA for the total coupling values with
condition (pop-out and search) and target visual field (left and
right) as the within-subject factors for both groups, respectively.
There was only a main effect of target visual field for younger
group [F(1,24) = 9.26, p = 0.01], with bigger coupling values in
the left visual field target for pop-out condition [Paired t-tests,
pop-out: t(12) = 2.74, corrected p < 0.05; search: t(12) = 2.18,
corrected p > 0.05], but no such effect was present for the elderly
group.

For alpha frequency band, there was a main effect of age
and a marginal effect of condition on the total coupling
values (Supplementary Table S1), and there was no significant
interaction among age, condition and target visual field. The
total coupling values were smaller for older compared to younger
adults only in search condition [independent t-tests, pop-out
and left: t(24) = 1.81, corrected p > 0.05; pop-out and right:
t(24) = 1.74, corrected p > 0.05; search and left: t(24) = 3.52,
corrected p < 0.05; search and right: t(24) = 2.63, corrected
p < 0.05].

For beta frequency band, there was a main effect of condition
[F(1,24) = 7.10, p= 0.014] and target visual field [F(1,24) = 4.52,
p = 0.044], but no main effect was present in age. There was an
interaction between age and visual target field [F(1,24) = 6.40,
p = 0.018], so that we tested two-way repeated measure ANOVA
for the total coupling values with condition (pop-out and search)
and target visual field (left and right) as the within-subject factors
for both groups, respectively. There was only a main effect of
target visual field for younger group [F(1,24) = 9.20, p = 0.01],
with bigger coupling values in the left visual field target for
search condition [Paried t-tests, pop-out: t(12) = 2.23, corrected
p > 0.05; search: t(12) = 2.40, corrected p < 0.05], but no such
effect was present for the elderly group.

Supplementary Figure S1 illustrates the presence of
significant positive linear relationship within the older adults
between total coupling values and RTs in the pop-out condition

with left visual field target in theta frequency band [Pearson
correlation coefficient (r) = 0.588, p = 0.035]. A regression was
used to test whether a quadratic relationship also contributed to
the variance, but it was not significant [r = 0.605, p = 0.103].
All other correlation between total coupling values and RTs or
accuracies was not significant (p > 0.05).

ROIs Coupling Value in Theta Frequency Band
Max normalized PLV values for all pair-wise combinations of
eight regions of interest were calculated, generating 28 (totally 8
ROIs) index values for theta band (4–8 Hz) in four conditions
for both groups. Figure 3A summarizes the main effect of
age (blue line) and condition (red line) among eight regions
of interest. As can be seen in Figure 3A, there was a main
effect of age for coupling values on five long range connections,
including the connections between left prefrontal and left central-
frontal regions [1 and 3, F(1,24) = 6.14, p = 0.02], between
right prefrontal and right central-frontal regions [2 and 4,
F(1,24) = 4.73, p = 0.04], between right central-frontal and
right central-parietal regions [4 and 6, F(1,24) = 5.43, p = 0.03],
between left central-parietal and left parietal-occipital [5 and
7, F(1,24) = 11.47, p = 0.002], between right central-parietal
and right parieto-occipital regions [6 and 8, F(1,24) = 5.60,
p = 0.04], with smaller coupling values in older subjects. There
was a main effect of condition for coupling values between
left central-frontal and left central-parietal regions [3 and 5,
F(1,24) = 6.64, p = 0.017], with smaller coupling values in the
search condition.

For the connection between left prefrontal and central-
frontal regions, there was an interaction between age and
target visual field [F(1,24) = 7.88, p < 0.001], and there
was no significant effect of condition. Hence we averaged
the coupling values of the pop-out and search conditions,
and applied repeated measure ANOVA with target visual field
(left and right) as the within-subject factor and age (young
and old) as the between-subject factor. Figure 3B shows the
coupling values in both groups for both target fields. There
was a main effect of age [F(1,24) = 6.14, p = 0.02] and
an interaction between age and target field [F(1,24) = 16.63,
p < 0.001], with bigger coupling values in left target than in
right target for younger subjects [Paried t-tests, t(12) = 3.28,
p = 0.007] and bigger coupling values in right target than
in left target for older subjects [Paried t-tests, t(12) = 2.43,
p = 0.032].

TABLE 2 | The total coupling values for all pair-wise combinations of electrodes in the theta, alpha, and beta frequency bands (mean ± SEM).

Condition Target
visual field

Theta band (4–8 Hz) Alpha band (8–12 Hz) Beta band (12–24 Hz)

Young Old Young Old Young Old

Pop-out Left 488.98 ± 64.69 270.28 ± 64.69 724.80 ± 130.16 391.14 ± 130.16 586.45 ± 81.01 433.29 ± 81.01

Right 422.78 ± 55.43 248.36 ± 55.43 712.57 ± 137.41 375.45 ± 137.41 503.33 ± 74.08 410.13 ± 74.08

Search Left 445.81 ± 52.71 179.77 ± 52.71 599.18 ± 70.38 249.36 ± 70.38 489.66 ± 56.17 277.76 ± 56.17

Right 369.09 ± 43.39 198.13 ± 43.39 501.36 ± 60.03 278.36 ± 60.03 398.02 ± 54.24 316.03 ± 54.24

The total coupling values and their corresponding standard error of mean as a function of condition and target visual field in younger and older subjects.
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FIGURE 3 | (A) Inter-regions coupling in theta frequency band. Blue lines indicate main effect of age (younger > older) and red line indicates main effect of condition
(pop-out > search). (B) Coupling values between left prefrontal and central-frontal regions as a function of target visual field in younger and older subjects, with
greater coupling values in left target than in right target for younger subjects and greater coupling values in right target than in left target for old subjects.
(C) Coupling values between left central-frontal and central-parietal regions as a function of target visual field in both conditions for older group, with greater values in
pop-out condition and in right target, and no such effects for younger group. (D) Linear negative regression between mean RT and coupling value between left
prefrontal and central-frontal regions for the pop-out condition with the left field target in the younger group. (E) Linear positive regression between mean RT and
coupling value between right central-frontal and central-parietal regions for the pop-out condition with the left field target in the older group.

For the connection between left central-frontal and left
central-parietal regions, there was an interaction between age and
target visual field [F(1,24) = 9.62, p = 0.005]. Hence we divided
the test into two repeated measure ANOVA with condition and
target visual field as the within-subject factors for younger and
older groups, respectively. There was a main effect of target field
[F(1,12) = 12.22, p = 0.004] and condition [F(1,12) = 5.69,
p = 0.034] for older group, with greater coupling values in the
right field target and in the pop-out condition. There was no
significant effect for the younger group. Figure 3C shows the
coupling values in both conditions and target fields for older
group. For the other four long range connections, there was no
other significant effect.

Figure 3D illustrates the presence of significant negative linear
relationship within the younger adults between coupling values

of left prefrontal and central-frontal regions and RTs in the pop-
out condition with left visual field target [r = −0.61, p = 0.026].
Figure 3E illustrates a significant positive linear relationship
within the older adults between coupling values of right central-
frontal and central-parietal and RTs in the pop-out condition
with left visual field target [r = 0.72, p = 0.005]. All other
correlation between coupling values and RTs or accuracies was
not significant (p > 0.05).

ROIs Coupling Value in Alpha Frequency Band
Figure 4A summarizes the main effect of age (blue) and
condition (red) among eight regions of interest. As can be
seen in Figure 4A, there was a main effect of age for coupling
values on two long range connections, including the connections
between left prefrontal and left central-frontal regions [1 and
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FIGURE 4 | (A) Inter-regions coupling in alpha frequency band. Blue lines indicate main effect of age (younger > older) and red line indicates main effect of condition
(pop-out > search). (B) Coupling values between left prefrontal and central-frontal regions as a function of target field and condition in younger subjects, with greater
coupling values in the left field target and in the pop-out condition. There was only a main effect of condition for the older group, with greater coupling values in the
pop-out condition. (C) Coupling values between right prefrontal and central-frontal regions as a function of target field in younger and older subjects, with greater
coupling values in left target than in right target for younger subjects and no difference between right and left targets for old subjects. (D) Linear negative regression
between mean RT and coupling value between left prefrontal and central-frontal regions for the pop-out condition with the left field target in the younger group.
Linear positive regression between mean RT and coupling value between left prefrontal and central-frontal regions for the pop-out condition with the left field target
(E) and for the search condition with the right target (F) in the older group. (G) Linear negative regression between mean accuracy and coupling value between right
prefrontal and central-frontal regions for the search condition with the right target in the older group.

3, F(1,24) = 5.174, p = 0.03], between right prefrontal and
right central-frontal regions [2 and 4, F(1,24) = 5.87, p = 0.02],
with smaller coupling values for older subjects. There was a
main effect of condition for coupling values on connections
between left prefrontal and left central-frontal regions [1 and 3,
F(1,24) = 14.03, p = 0.001], between left central-frontal and left
central-parietal regions [3 and 5, F(1,24) = 5.87, p = 0.02], with
smaller coupling values in search condition.

For the connection between left prefrontal and central-
frontal regions, there was an interaction between age and
target visual field [F(1,24) = 9.02, p = 0.006]. Hence we
divided the test into two repeated measure ANOVA with
condition and target visual field as the within-subject factors
for younger and older groups, respectively. There was a
main effect of target field [F(1,12) = 7.75, p = 0.017] and
condition [F(1,12) = 5.09, p = 0.044] for younger group,
with greater coupling values in the left field target and in the
pop-out condition. There was only a main effect of condition

[F(1,12) = 10.36, p = 0.007] for the older group, with greater
coupling values in the pop-out condition. Figure 4B shows the
coupling values in both conditions and target fields for younger
group.

For the connection between right prefrontal and central-
frontal regions, there was an interaction between age and target
visual field [F(1,24)= 5.55, p= 0.03], and there was no significant
effect of condition. Hence we averaged the coupling values of the
pop-out and search conditions, and applied repeated measure
ANOVA with target visual field (left and right) as the within-
subject factor and age (young and old) as the between-subject
factor. Figure 4C shows the coupling values in both groups for
both target fields. There was a main effect of age [F(1,24) = 5.87,
p = 0.02] and an interaction between age and target field
[F(1,24) = 5.58, p = 0.03], with bigger coupling values in left
target than in right target for younger subjects [Paried t-tests,
t(12) = 3.58, p = 0.004]. Thus, greater bilateral prefronto-frontal
coupling were shown in the left visual target for younger group.
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FIGURE 5 | (A) Inter-regions coupling in beta frequency band. Blue lines indicate main effect of age (younger > older) and red line indicates main effect of condition
(pop-out > search). Coupling values between left central-frontal and central-parietal regions (B), between left central-parietal and parietal-occipital regions (C), and
between right central-parietal and parietal-occipital regions (D) as a function of target field and condition in younger subjects, with bigger coupling values in left target
than in right target, and no such effect was presented in the older group.

Figure 4D illustrates the presence of significant negative linear
relationship within the younger adults between coupling values
of left prefrontal and central-frontal regions and RTs in the pop-
out condition with left visual field target [r = −0.61, p = 0.026].
Figures 4E,F illustrate the significant positive linear relationships
within the older adults between coupling values of left prefrontal
and central-frontal regions and RTs in the pop-out condition with
left visual field target [r = 0.59, p = 0.033] and in the search
condition with right visual field target [r = 0.68, p = 0.011],
respectively. Figure 4G illustrates the significant negative linear
relationship within the older adults between coupling values of
right prefrontal and central-frontal regions and accuracies in
the search condition with right visual field target [r = −0.74,
p= 0.004]. All other correlation between coupling values and RTs
or accuracies was not significant (p > 0.05).

ROIs Coupling Value in Beta Frequency Band
Figures 5A and 6A summarizes the main effect of age and
condition among eight regions of interest. As can be seen
in Figure 5A with blue lines, there was a main effect of
age for coupling values on two long range connections,
including the connections between left prefrontal and left central-
frontal regions [1 and 3, F(1,24) = 5.49, p = 0.03], between
right prefrontal and right central-frontal regions [2 and 4,

F(1,24) = 5.03, p = 0.03], with smaller coupling values for older
subjects. In addition, there was a main effect of condition for
those two frontal connections [1 and 3, F(1,24)= 4.46, p = 0.045;
2 and 4, F(1,24) = 7.26, p = 0.01] marked with red lines in
Figure 5A, with smaller coupling values in search condition.
There was a main effect of condition for coupling values between
left central-frontal and left central-parietal regions [3 and 5,
F(1,24) = 4.87, p = 0.04], between right central-frontal and
right central-parietal regions [4 and 6, F(1,24) = 5.96, p = 0.02],
between left central-parietal and left parietal-occipital [5 and 7,
F(1,24)= 5.81, p= 0.02], between right central-parietal and right
parieto-occipital regions [6 and 8, F(1,24) = 7.75, p = 0.01], with
smaller coupling values in search condition (Figure 5A).

Due to the interaction between age and target visual field for
these three connections [3 and 5, F(1,24)= 4.29, p = 0.049; 5 and
7, F(1,24) = 7.54, p = 0.01; 6 and 8, F(1,24) = 4.38, p = 0.047],
we divided the test into two repeated measure ANOVA with
condition and target field as the within-subject factors for both
groups, respectively. There was only a main effect of target visual
field [3 and 5, F(1,12) = 6.73, p = 0.023; 5 and 7, F(1,12) = 9.69,
p = 0.009; 6 and 8, F(1,12) = 8.93, p = 0.011] for the younger
group in these three connections, with bigger coupling values in
left target than in right target, and no such effect was present
for the older group. Figures 5B–D show the coupling values
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FIGURE 6 | (A) Inter-regions coupling in beta frequency band. Blue lines indicate main effect of age (younger > older) and red line indicates main effect of condition
(pop-out > search). (B) Linear negative regression between mean RT and coupling value between left central-parietal and parietal-occipital regions for the pop-out
condition with the left field target in the younger group. Linear positive regression between mean accuracy and coupling value between left central-parietal and
parietal-occipital regions for the search condition with the right target in the younger group (C) and for the pop-out condition with the left target in the older group
(D). Linear positive regression between mean accuracy and coupling value between right central-parietal and parietal-occipital regions for the pop-out condition with
the right target (E) and the left target (F) in the older group.

in both conditions and target fields for younger group at three
connections.

For the coupling values between right prefrontal and central-
frontal regions, there were significant positive linear relationships
within the older subjects between values and RTs in all four
conditions [pop-out and left: r = 0.63, p = 0.02; pop-out and
right: r = 0.61, p = 0.03; search and left: r = 0.58, p = 0.04;
search and left: r = 0.58, p = 0.04]. Figures 6B,C illustrate the
significant positive linear relationships within the younger adults
between coupling values of left central-parietal and parietal-
occipital regions and performance in the pop-out condition with
left target [RTs: r = −0.60, p = 0.032] and in the search condition
with right visual field target [accuracy: r = 0.58, p = 0.036],
respectively. Figure 6D illustrates the significant positive linear
relationship within the older adults between coupling values of
left central-parietal and parietal-occipital regions and accuracies
in the pop-out condition with left target [r = 0.63, p = 0.02].

Figures 6E,F illustrate the significant positive linear relationships
within the older adults between coupling values of right central-
parietal and parietal-occipital regions and accuracies in the pop-
out condition with left target [r = 0.55, p = 0.049] and right
target [r = 0.71, p = 0.007], respectively. All other correlation
between coupling values and RTs or accuracies was not significant
(p > 0.05).

DISCUSSION

Aging Effects on Behavior and
Inter-regions Coupling
Aging had prominent effects on both behavioral and
EEG coupling strength under the control of top–down
and bottom–up attention. Aging led to slowed RT and
decreased accuracy (Table 1), indicating a slowing of
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cognitive performance with advancing age (Salthouse, 1996).
Specifically, greater age-related reductions in accuracy in
the search condition than in the pop-out condition were
shown, suggesting additional attentional demands for
older subjects with increased task complexity (Greenwood
et al., 1997; Hommel et al., 2004; Madden et al., 2004,
2007).

Aging was associated with a declined whole-brain coupling
strength of theta and alpha frequency bands, with a greater
age-related decline in the search than in the pop-out condition
(Table 2), in accord with their accuracy. Specifically, older
adults showed a decreased lateral prefronto-frontal coupling
in theta, alpha and beta frequency bands in both conditions
(Figures 3A, 4A, and 5A), which confirmed the well-established
age-related decline in allocation of attentional resources efficiency
or reduction in inhibitory control functions in attention
(Colcombe et al., 2003; Madden et al., 2004; Andrés et al.,
2006; Hasher et al., 2008; Lorenzo-López et al., 2008; Gola
et al., 2012; Deiber et al., 2013; Gola et al., 2013; Kardos et al.,
2014).

Greater prefronto-frontal coupling (left lateral theta coupling,
Figure 3B; and bilateral alpha coupling, Figures 4B,C),
greater fronto-parietal coupling (left beta coupling, Figure 5B),
and greater parieto-occipital coupling (bilateral beta coupling,
Figures 5C,D) in the left target than in the right target for
younger group were presented, suggesting a left visual field
advantage (Holländer et al., 2005; Verleger and Smigasiewicz,
2015). This advantage might be related to the right hemispheric
dominance in the ventral attentional network, which seems
to particularly activate regions largely lateralized to the right
hemisphere and involves right temporo-parietal and ventral
frontal cortices in healthy subjects (Corbetta and Shulman,
2002; Shulman and Corbetta, 2012; Hong et al., 2015). Left
visual field advantage was reduced with aging, supporting the
Hemispheric Asymmetry Reduction in Older Adults (HAROLD)
theory (Cabeza, 2002). Furthermore, older adults showed a
greater left prefronto-frontal theta coupling (right two bars
in Figure 3B) in the right visual target than in the left
visual target, in accord with their quicker RTs, supporting
the idea that older adults use bilateral neural circuits as
compensation to accomplish visual search tasks (Reuter-Lorenz
and Lustig, 2005; Grady, 2008; Reuter-Lorenz and Cappell,
2008). Interestingly, there was a greater left fronto-parietal
theta coupling (Figure 3C) in the right visual target than
in the left visual target for older group, whereas there
was no difference for younger group. For younger group,
left visual field advantage and the greater activity in the
contralateral hemisphere (right visual target) for directing of
attention may be counteracting, resulting in no difference
between the right and left visual targets. For older group,
the contribution of left visual field advantage is reduced,
so that the activity in the contralateral hemisphere (right
visual target) is in dominance, which is advantageous for
task performance. These findings support the idea that right
hemispheric dominance in the ventral attentional network is
reduced to compensate for the inhibitory dysfunction with aging
(Cabeza, 2002).

Attention Control Effects on Behavior
and Inter-regions Coupling
The control of top–down and bottom–up attention had
prominent effects on both behavioral and EEG coupling strength.
Top–down control led to slowed RT and decreased accuracy
for both groups (Table 1), indicating that the search task was
sufficiently difficult to demand more cognitive effort (Treisman
and Gelade, 1980). Top–down attentional control was associated
with a declined whole-brain coupling strength of alpha and beta
frequency bands, with a smaller coupling in the search than in
the pop-out condition (Table 2). Specifically, search condition
showed a decreased coupling of left fronto-parietal in theta
and alpha frequency bands, of left prefronto-frontal in alpha-
band, and of six inter-regions in beta-band compared to pop-out
condition (Figures 3A, 4A, and 5A).

Pop-out target detection was mainly associated with greater
parieto-occipital beta-coupling strength compared to search
condition regardless of aging, in accord with their better
performance, which confirmed previous findings that parietal
power at beta-band (12–24 Hz) in human and parietal-
extrastriate coherences at higher frequency band (35–55 Hz)
in monkey were greater in the pop-out than in the search
condition (Buschman and Miller, 2007; Li et al., 2010).
This supports the idea that posterior parietal cortex is
primarily responsible for the encoding of salient stimuli and
automatic detection (Constantinidis and Steinmetz, 2005).
Fronto-extrastriate coherences at intermediate frequency band
(22–34 Hz) were greater in the search than in the pop-out
condition (Buschman and Miller, 2007), but in the present
study no significant difference in fronto-parietal theta-coupling
strength between pop-out and search conditions for young
subjects was observed (Figure 3C). This may be due to strict
statistical method applied for significance in connections when
constructing the network, as a result, weaker coupling may be
ruled out. For example, if we use the normalized PLV values
directly without threshold, a greater theta-coupling strength
between left frontal and right occipital regions (regions 3 and 8)
in the search than in the pop-out condition in left target for young
subjects will be observed [3 and 8, paired t-test, t(12) = 3.59,
p = 0.0037]. We prefer to use strict statistical level to decrease
the type I error. In summary, our results may indicate that the
parieto-occipital coupling of beta-band could serve as a bottom-
up function and be vulnerable to top–down attention control in
both groups.

Relationships between Behavior and
Inter-regions Coupling
The greater prefronto-frontal coupling showed better
performance in theta and alpha bands for younger subjects
(Figures 3D and 4D), but worse performance in alpha and beta
bands for older subjects (Figures 4E–G). These results provided
additional information regarding the age-related change in the
prefronto-frontal coupling in attentional control during the
visual search task, suggesting that prefronto-frontal coupling for
both groups may be generated by distinct brain cortices. An fMRI
study has reported that younger individuals with higher levels
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of middle frontal gyrus activation exhibited better performance,
and older individuals with higher levels of putamen activation
showed worse performance during visual target detection
(Madden et al., 2004). In present study, prefronto-frontal
coupling results may most reflect connections within frontal
gyrus for younger group, and most show connections within
deep gray matter structures for older group in compensation
for the age-related decline in visual search. Prefronto-frontal
coupling was significant as a predictor of behavior for the younger
and older groups, but in the opposite direction.

And the bigger parieto-occipital coupling in beta band led
to better performance for both groups (Figures 6B–F), together
with above results, indicating synchrony as a mechanism of
attention (Miller and Buschman, 2013). Local synchrony between
parieto-occipital cortices in beta-band and between prefronto-
frontal cortices in theta, alpha and beta frequency bands may
help the brain to improve its signal-to-noise ratio for better
processing of bottom–up sensory input and top–down cognitive
control, respectively. Parieto-occipital coupling in beta band was
significant as a predictor of behavior for the younger and older
groups in the same direction, and greater coupling may carry
more bottom–up information.

In the current study, we found evidence for age-related
changes in the differential roles of fronto-parieto-occipital
connectivity at different oscillatory frequencies during the
control of top–down and bottom–up attention. Together with
evidence from past literature on the animal work on the
networks contributing to top–down and bottom–up attention
(Buschman and Miller, 2007; Miller and Buschman, 2013),
these results suggest that bottom–up and top–down target lead
to differential fronto-parieto-occipital connectivity at different
oscillatory frequencies in younger and older adults. Greater
prefronto-frontal coupling in theta and alpha-bands, fronto-
parietal coupling in beta-band, and parieto-occipital coupling in
beta-band in the left target than in the right target for younger
group indicates a right hemispheric dominance in the ventral
attentional network, which is reduced with aging to compensate
for the inhibitory dysfunction. While pop-out target detection

is mainly associated with greater parieto-occipital beta-coupling
strength compared to search condition regardless of aging, in
accord with their better performance. Prefronto-frontal coupling
in theta, alpha, and beta bands and parieto-occipital coupling in
beta band is a predictor of behavior for the both groups. Taken
together these findings provide evidence that prefronto-frontal
coupling of theta, alpha, and beta frequency bands may serve
as a possible basis of aging during visual attention task, while
parieto-occipital coupling in beta-band could serve for a bottom–
up function and be vulnerable to top–down attention control for
younger and older groups.

AUTHOR CONTRIBUTIONS

LL: Conceived, designed and performed the experiments. LL and
DZ: Analyzed the data. LL: Wrote the paper.

ACKNOWLEDGMENTS

This research was supported by grants from the National
Natural Science Foundation of China projects (NSFC, Nos.
61473062, 61203363, 91232725), 111 Project (B12027), and
the Fundamental Research Funds for the Central Universities
(ZYGX2014J077).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnagi.
2015.00223

FIGURE S1 | Linear regression between mean reaction time (RT) and total
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