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Normal aging is typically characterized by abnormal resting-state functional connectivity
(FC), including decreasing connectivity within networks and increasing connectivity
between networks, under the assumption that the FC over the scan time was stationary.
In fact, the resting-state FC has been shown in recent years to vary over time even within
minutes, thus showing the great potential of intrinsic interactions and organization of
the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic
dynamic balance in the resting brain and was altered with increasing age. Two groups
of individuals (N = 36, ages 20–25 for the young group; N = 32, ages 60–85 for
the senior group) were recruited from the public data of the Nathan Kline Institute.
Phase randomization was first used to examine the reliability of the dynamic FC. Next,
the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations
within a higher frequency band were calculated and further checked for differences
between groups by non-parametric permutation tests. The results robustly showed
modularization of the dynamic FC variation, which declined with aging; moreover, the FC
variation of the inter-network connections, which mainly consisted of the frontal-parietal
network-associated and occipital-associated connections, decreased. In addition, a
higher energy ratio in the higher FC fluctuation frequency band was observed in
the senior group, which indicated the frequency interactions in the FC fluctuations.
These results highly supported the basis of abnormality and compensation in the
aging brain and might provide new insights into both aging and relevant compensatory
mechanisms.

Keywords: aging, dynamic functional connectivity, functional connectivity variation, functional connectivity
fluctuation frequency, resting-stated fMRI

INTRODUCTION

Normal aging in the human brain refers to degradation phenomena that occur in brain
structures, brain function and brain morphology with increasing age, indicating that a certain
degree of senior brain dysfunction will occur (Hedden and Gabrieli, 2004; Fjell et al., 2014).
Considering the increasing size of the aging population, the incidences of diseases that are
highly associated with age, such as Alzheimer’s (Kern and Behl, 2009; Mosher and Wyss-
Coray, 2014) and Parkinson’s (Xu et al., 2012; Reeve et al., 2014), are also increasing.
Until now, the mechanism of aging has remained unclear, and further investigation of
brain aging could greatly help in managing problems associated with both aging and disease.
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Functional connectivity (FC) based measures of the resting
state functional magnetic resonance imaging (rs-fMRI), which
reflect the coherence between temporal fluctuations across
brain regions, are organized into distinct systems or networks
(Damoiseaux et al., 2008; Zuo et al., 2010). Most studies of
FC have focused on the decline of specific functional systems,
such as the default mode network (DMN; Raichle et al.,
2001; Damoiseaux et al., 2008; Wang et al., 2010; Ferreira
and Busatto, 2013), or have focussed on other specific brain
networks or regions, such as the language system (Zou et al.,
2012), subcortical regions (Yi et al., 2015) or the motor system
(Coynel et al., 2010; De Vico Fallani et al., 2013). Increasing
evidence has shown that the decline in cognitive function
associated with aging is related to changes in communication
between different brain regions and subsystems (Andrews-
Hanna et al., 2007; Sambataro et al., 2010), even in the
resting state (Shehzad et al., 2009; Meindl et al., 2010; Guo
et al., 2012; Zuo et al., 2013). Despite this progress, how
brain systems cooperate to handle aging-associated declines
remains unclear, especially considering the averaging of complex
spatiotemporal phenomena during a period of time (Hutchison
et al., 2013a).

Traditionally, functional connectivities derived from fMRI
data are computed using signals across the entire scan time;
it is assumed that the functional connectivities among the
brain regions are static during the duration of the resting
time (Handwerker et al., 2012; Zuo et al., 2013). However,
recent work has shown that FC is temporally dynamic (Chang
and Glover, 2010; Calhoun et al., 2014) even at rest. This
dynamic FC, which varies over a timeframe of seconds, could
be highly related to unconstrained mental activity during the
resting state (Hutchison et al., 2013a; Allen et al., 2014; Zalesky
and Breakspear, 2015) and even under anesthesia (Hutchison
et al., 2013b). A widely applied method for analyzing temporal
dynamics is the sliding window correlation method (Sakolu
et al., 2010; Hutchison et al., 2013a; Di and Biswal, 2015). A
series of FC matrices was obtained using this method, which
showed the time-varying connectivity network. Thus, researchers
have started to perform dynamic FC investigations of mild
cognition impairment (Wee et al., 2016), epilepsy (Liu et al.,
2016), schizophrenia (Rashid et al., 2014; Du et al., 2016),
major depressive disorder (Demirta et al., 2016) and normal
development (Sakolu et al., 2010; Rashid et al., 2014; Qin et al.,
2015).

The convergent results of previous studies have suggested
that the dynamic resting state FC is highly intrinsic and
physiologically relevant. Several studies have reported that the
FC states revealed by changes in connectivity over the course
of the scan can be sensitive to changes related to neurological
disorders (Sakolu et al., 2010; Li et al., 2014; Leonardi and Van
De Ville, 2015; Ou et al., 2015; Shakil et al., 2016). Increasing
efforts have been directed toward using functional microstates
and their transmissions to depict the working mechanisms of
the brain (Allen et al., 2014; Shakil et al., 2016). Microstate
transmissions could be the bases of integration and segregation
between different brain networks or cognitive resources (Hansen
et al., 2015; Yu et al., 2015; Shakil et al., 2016). Previous work has

shown that aging impacts not only within-network connectivity
but also the integration and segregation of different brain
networks (Ferreira and Busatto, 2013). Advancing age induces
increased reorganization to establish compensatory mechanisms
or plasticity that counteract the aging process (Meunier et al.,
2014; Sala-Llonch et al., 2015; Sugiura, 2016). Segregation
and integration are the bases of reorganization of the brain
connectivity network. The investigation of dynamic FC in the
resting state may provide new insights into communication
between various cognitive resource pools in the aging brain. The
derived patterns of temporal variation in FC thus reflect the
interactions of the brain functional networks and are therefore
expected to facilitate our understanding of the mechanisms that
underlie mental diseases.

We expected that the fluctuations of resting FC comprise
a dynamic balance that maintains the intrinsic connectivity
patterns in the brain. The dynamic balance of FC allows us
to capture the interactions between all of the subsystems and
the basic states of brain connectivity. Since the FC levels and
patterns are age-related, this dynamic balance and the serial
connectivity networks must also change with increasing age. A
previous study (Leonardi and Van De Ville, 2015) suggested
that the spontaneous fluctuations in the FC have frequency
dependence and result from the interactions of various frequency
components associated with neural activities. Limited resources
and decreased processing speed can indicate performance during
aging; thus, we hypothesized that the dynamic FC can provide
clues for the capacity and efficiency of the connectivity states
that transfer and present aging features. This article focuses on
revealing the effects of aging on the time-varying FC of the brain
in the resting state. Using the sliding window correlationmethod,
the resting state fMRI data from two groups of young and
senior healthy individuals were processed to construct dynamic
FC matrices. We expected that the variation and the frequency
spectrum of the FC fluctuations were the important bases of the
dynamic balance and were highly related to aging.

MATERIALS AND METHODS

Participants and fMRI Data Acquisition
All resting-state fMRI data used in this study were obtained
from the NKI-Rockland Sample (NKI-RS1), which is provided
by the Nathan Kline Institute (NKI, Orangeburg, NY, USA)
and is available online in a public database. To study the
changes in the dynamic characteristics of FC that resulted
from normal brain aging, we collected fMRI data from
68 healthy subjects who were organized into two groups:
36 young subjects were assigned to one group (mean age,
28.1 years; range, 20–35 years; 24 male), and 32 senior subjects
were assigned to the other group (mean age, 70.6 years;
range, 60–85 years; 15 male). According to the demographic
information provided by the NKI-RS data set, there was a
remarkable difference in the age of the participants, but no
significant differences in either gender or hand dominance
between the two groups.

1http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
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Resting-state fMRI data were collected using an
echo-planar imaging (EPI) sequence on a 3.0 T SIMENS
Trio scanner. The scanning parameter settings were as
follows: TR/TE = 2500/30 ms, flip angle (FA) = 80◦, field
of view (FOV) = 216 × 216 mm2, voxel size = 3 × 3 × 3 mm3,
number of slices = 38, scan time = 650 s time points = 260.
During the data acquisition, the subjects were instructed to keep
their eyes closed and to stay awake. High-resolution T1-weighted
images were also acquired using the magnetization-prepared
rapid gradient echo (MPRAGE) sequence. The acquisition
parameter settings were as follows: TR/TE = 2500/3.5 ms,
FA = 8◦, FOV = 256 × 256 mm2, voxel size = 1 × 1 × 1 mm3,
slice = 192.

Data Preprocessing
Functional images were preprocessed using the Connectome
Computation System (CCS2). The CCS designed by Zuo et al.
(2013) provides a computational platform for multimodal
neuroimaging brain connectomics computations by integrating
the functionalities of AFNI, FSL and FreeSurfer (Zuo et al., 2013;
Betzel et al., 2014; Cao et al., 2014). The functional preprocessing
included the following: the first ten functional volumes were
discarded to allow for signal equilibration; slice timing was
corrected using the middle slice as the reference frame; 3D
geometrical displacement was used to correct for head motion;
and 4D global mean-based intensity correction was performed.
In addition, the Friston-24model was used to removemicro-level
motion artifacts (Friston et al., 1996) and nuisance regressors; for
instance, the individual white matter and the cerebrospinal fluid
(CSF) mean signals were regressed out. The functional data were
also temporal band-pass filtered (0.01–0.1 Hz) and detrended
(both linear and quadratic trends). Finally, spatial smoothing
was performed with a Gaussian filter kernel (FWHM = 6 mm).
The structural processing steps were as follows: the image noise
was removed using a spatially adaptive non-local means filter
and brain surface reconstruction; the individual functional space
was spatially normalized to the MNI152 standard brain space;
a customized group T1 template in the standard space was
generated to reduce the error term that resulted from the image
registration and bias in the template selection; and the fMRI
images in the native space of each subject was registered to the
standard space with a final resolution of 3 mm.

Dynamic Functional Connectivity Network
Construction
Because time-varying FC is complicated and differs from static
FC, the recruitment of more regions in the associated networks
could help to provide more precise information. A total of
142 regions that covered the cingulo-opercular network (CON),
DMN, fronto-parietal network (FPN), occipital network (OCC)
and sensorimotor network (SMN) as defined by Dosenbach et al.
(2010) were selected. The cerebellum network was neglected
because we sought to examine only the effects of aging on the
higher-order brain network interactions and the dynamics of
brain cognition and perception. Among these networks, OCC

2http://lfcd.psych.ac.cn/ccs.html

and SMN are involved in perception and primary visual and
motion processing, respectively; the other three networks are
important to higher-order cognitive functions. In each of these
brain regions, time courses were extracted and averaged over
a spherical region of interest (ROI) with a diameter of 6 mm.
Then, a dynamic FC network was estimated using the sliding
window Pearson correlation method, which yielded a series of
142 × 142 correlation matrices. We used a fixed-length rectangle
window (width = 24 × TRs = 60 s), and the window was shifted
by 1 TR. The obtained correlation series were then Fisher-Z
transformed and low-pass filtered with a cut-off frequency of
1/w Hz. All of these network matrices were vectorized to simplify
the analysis.

Phase Randomization
As suggested previously (Hutchison et al., 2013a; Hindriks et al.,
2016), phase randomization analysis was used to explore the
dependability of the dynamic FC fluctuation. The processed
rs-fMRI time courses from the senior and young groups were
phase randomized into new time courses in which the frequency
spectra of the bold signals were invariable. We called the
phase processed data the null group, which was then compared
with the senior and young groups. Phase randomization was
conducted for all parameters except amplitude (Friston et al.,
1994; Handwerker et al., 2012), which could preserve the
temporal correlation properties. These steps were taken to allow
for assessing the dependability of the dynamic fluctuations and
to verify whether the FC fluctuations over the rs-fMRI involved
specific neural activities.

Functional Connectivity Variation (FCV)
The dynamic functional connectivity variation (FCV) was
calculated as the standard variation of the dynamic FC series.
In this approach, the stability of the FC fluctuation over time
is quantitatively measured and compared between brain region
pairs. Previous studies of resting-state fMRI have demonstrated
that some intrinsic neural activities are related to the variations in
FC. These findings likely suggest the internal mechanism of the
resting-state fMRI; thus, the FCV matrix was calculated for each
subject. The original FCV matrices and phase randomized FCV
matrices of both groups were statistically analyzed and compared
with the averages of each group using a one-sample t-test. Thus,
we could easily examine network modularization and the FCV of
each network or connection.

Frequency Spectrum Analysis
A sliding rectangle window was used with a low-pass filtering
effect on the functional fluctuations. The cut-off frequency was
1/w (1/60 Hz = 0.018 Hz). We assumed that the frequency
spectrum of the dynamic FC fluctuation would change with
aging; thus, we sought to specify the age-related changes in
frequency or energy as age increased. The frequency band of the
FC fluctuation was divided equally into two frequency bands,
0–1/2w Hz and 1/2w–1/w Hz, within which the fluctuation
energies were calculated with a Fourier transform. Then, the
energy ratio of the two frequency bands was calculated as the
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energy of the lower frequency band dividing the energy of the
higher frequency band.

Permutation Tests
To obtain robust results on aging-related variations within
and between groups, a non-parametric permutation
test with 5000 randomizations of the group labels was
utilized for all measures described above. We defined
the t-statistics between the two groups as the difference
measurement, yielding a distribution of t-statistics after
5000 randomizations. Then, p = 0.001 was set as the
threshold of significance. To better understand the results,
both connectivity-based and network-averaged indices were
examined. With the non-parametric approach, the size of
the Type I error was guaranteed to be set at the prescribed
significance level. The permutation test demonstrated
an excellent ability to differentiate between different
profiles, even when those profiles appeared to be highly
similar.

Sliding Window Length Analysis
Previous works (Hutchison et al., 2013a; Hindriks et al., 2016)
have much discussed the influence of sliding window parameter
settings. However, there have been no definite conclusions about
the optimal window length. In this article, we also carefully
assessed the influence of the window length on the variation and
frequency spectrum of the dynamic FC. A sequence of window
lengths from 2 to 256 time points was selected to examine
the FC variation between the mean dynamic FC and the static
FC. Another sequence of window lengths from 10 to 70 time
points was selected to obtain the frequency characteristics of the
dynamic function connectivity time series.

RESULTS

Phase Randomized and Within-Group
Analyses
The within group and between group comparisons were
conducted after passing the normality tests. Both groups lost the
network organization pattern after phase randomization, and all
of the within- and between-network connections showed similar
FC variations (Figures 1A,D). From the original data obtained
from both groups, clear modularization could be identified from
the lower within-network variation and the higher between-
network variation (Figures 1B,E). In the young group, higher
variation of the dynamic FC was found in the DMN-related
inter-network connections and the connections between the
FPN and OCC. By contrast, in the senior group, only the
DMN-related inter-network connections showed high variation.
In both groups, however, the inter-network variations of the
connections between the CON and SMN were clearly lower than
the corresponding group averaged values; a similar result was
obtained for the CON and OCC. Both the within- and between-
network variations based on the original data were significantly
higher than those of the phase randomized data for almost all of
the connections (Figures 1C,F).

Age-Related Changes in Static FC
Compared with the young group, all connections indicated
decreased within-network FC in the senior group, and fewer
within-network functional connections showed increases within
the CON and OCC (Figure 2A). Most of the between-network
connections, especially between the CON, DMN, FPN and OCC,
showed increased FC in the senior group compared with those
of the young group. From the 3D view in Figure 2B, more of
the connections crossing the cerebral hemispheres were changed
compared with the connections within one side. Most of the
connections that both crossed hemispheres and occurred within
a hemisphere were located between the posterior-anterior brain;
in these connections, several distinct, intensively connected
nodes were found. In the networks that were averaged and
assessed, all or most of the between-network connectivities
increased and the inner network functional connectivities
decreased in the senior group compared with those of the young
group (Figure 2C). However, only the DMN and SMN showed
significantly decreased within-network FC.

Age-Related Changes in FC Variation
Most of the significantly changed connections shown in Figure 3
were between-network connections. The few connections with
increased connectivity were located between the hemispheres,
and the changed connections shared a similar location
with the FC connection, which crossed both hemispheres,
showed a posterior-anterior distribution and was also changed
(Figure 3B). Several intensively connected nodes were also
obvious in the prefrontal and occipitotemporal regions. The
averaging analysis of the networks showed that these decreases
occurred only in the inter-networks, including all of the
FPN-associated inter-networks, the OCC-DMN inter-network
and the OCC-CON inter-network. The solid black lines in
Figures 2–4 mark the subcortical regions.

Age-Related Changes in Frequency
Spectra
The connections that covered all networks showed increased
energy ratios between the energies of the higher and lower
frequency bands (Figure 4A). On average, the within-network
connections, which included the DMN, OCC and SMN, and the
inter-network connections CON-OCC and OCC-SMN indicated
significantly increased ratios in the senior group. The 3D
view revealed that these changed connections had both cross-
hemisphere and anterior-posterior distributions (Figure 4B).

Influence of the Sliding Window Length
The absolute difference between the mean dynamic FC and
the static FC over the scan time was calculated and illustrated
(Figure 5). Five network differences between the dynamic FC
and the static FC are shown in the chart in Figure 5, in
which the red central lines are the mean values and the gray
lines indicate the values for different subjects. All five networks
followed similar trends of variance, and when the window
length was increased, the dynamic deviation of the static FC
also varied. At approximately 50–60 s this difference reached a
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FIGURE 1 | Illustration of the dynamic functional connectivity (FC) variation patterns within groups. Pictures (A,D) show the one-sample t-test results of senior and
young null groups with phase randomization processed data (FDR p-value < 0.05; actual p-value < 0.0010); Pictures (B,E) show the one-sample t-test results of
senior and young groups with the original data (FDR p-value < 0.05; actual p-value < 0.0011); Pictures (C,F) show two-sample t-test results between the original
and phase randomized data within the senior and young groups (FDR p-value < 0.05; actual p-value < 0.0008). Red indicates a higher-than-average level in the
one-sample t-test and a higher-than-null group in the two-sample t-test.

FIGURE 2 | Illustration of the two-sample t-test results of the static FC compared between the senior and young groups. Pictures (A,C) depict the connections level
and the network averaging level, respectively; Picture (B) is a 3D view of the results shown in picture (A) (constructed using the BrainNet Viewer). Red indicates an
increase in the senior group; blue indicates a decrease in the senior group. The significant level is a p-value < 0.001.

minimum, and at approximately 300 s the difference was at its
maximum.

Accordingly, the frequency spectrums of the five networks
from one typical subject also varied when the sliding window
length increased from 10 to 70 time points (25–175 s Figure 6).

The white line in Figure 6 is at 1/60 Hz and indicates the
cut-off frequency of the low-pass filtering on the dynamic FC
time series. With the increasing length of the sliding window,
the energy of the higher frequency attenuated faster than the
energy of the lower frequency. At frequencies above 1/60 Hz,
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FIGURE 3 | Illustration of the two-sample t-test results of the dynamic FC variation (FCV) between the senior and young groups. Pictures (A,C) depict the
connections level and network averaging level, respectively; Picture (B) is a 3D view of the results shown in picture (A) (constructed using the BrainNet Viewer). Red
indicates an increase in the senior group; blue indicates a decrease in the senior group. The significance level is a p-value < 0.001.

FIGURE 4 | Illustration of the two-sample t-test results of the energy percentage in the low fluctuation frequency band compared between the senior and young
groups. Pictures (A,C) depict the connections level and the network averaging level, respectively; Picture (B) is a 3D view of the results shown in picture (A)
(constructed using the BrainNet Viewer). Red indicates an increase in the senior group; blue indicates a decrease in the senior group. The significance level is a
p-value < 0.001.

the energy was very small, and at window lengths below
approximately 60 s the energy difference was sufficiently stable
for examination.

DISCUSSION

In this study, we showed the pattern of age-related changes
in the dynamic connectivity profile between and within the
whole-brain resting state networks. The originality of this
study consisted of characterizing the age-related variation and
frequency transition of whole-brain dynamic FC with the
sliding window correlation approach. Several interesting findings
were as follows: (1) in both groups, the FC variation showed
distinct organization and age-related modularization, which
were missing after phase randomization; (2) the FC variation
indicated a significant decrease between networks, which

increased with age and was dramatic in the FPN-associated and
OCC-associated inter-networks; and (3) at a higher frequency,
the dynamic FC showed an increased energy ratio in the senior
group. These results not only shed light on the mechanisms
of dynamic FC but also add to our understanding of normal
brain aging. Here, we carefully discuss the results described
above as well as the methodology of the sliding window
correlation.

Similar to the functional specialization in FC, temporal
variation of the connectivity also revealed a similar pattern
or modularization, as illustrated in Figure 1. The whole-brain
variations in the dynamic FC were not uniform across all systems
and fell into two sides of the mean level within each group.
The within-network connectivity showed a lower variation,
and most of the between-network connectivity showed higher
variation compared with the mean except for the CON-SMN and
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FIGURE 5 | Illustration of the difference (absolute value of the difference) between the mean dynamic FC and the static FC. The results of five networks are
individually averaged for all connections, which are plotted as gray curves; the red curves represent the means of all subjects from both groups.

FIGURE 6 | Illustration of the frequency spectrum, which varied with the sliding window length, for all five networks of one typical subject. The results of five networks
were calculated from the individually averaged FC sequence of the within-network connections.

CON-OCC connections. Many previous studies have reported
that the states of the dynamic FC matrices showed high
variation in the between-network connectivity (Allen et al.,
2014; Hansen et al., 2015). Allen et al. (2014) reported that
seven reproducible states could be differentiated by connectivity
between the DMN regions, indicating great variation. Those
findings are consistent with the current results (Figures 1B,E),
in which the inter-networks of the DMN showed high variation
in both groups. No type of pattern among the networks was
indicated in the phase randomized analysis (Figures 1A,D). This
modularization of the FC variation was most likely associated
with the intrinsic neural activities and interactions between the
systems.

The pattern and modularization of the dynamic FC variation
showed a clear decline in the senior group. The connections
with higher and lower levels of variation both tended toward
the mean, which indicated that less diversity in the variation
between the subsystems occurred with increased age. A previous
study (Du et al., 2016) reported that the FC of some
connections showed less variation in schizophrenic patients.
The changed modularizations of the FC variation in the two

groups provided clear evidence that the modularization of
the connectivity variation also declined with age, which also
reflected functional integration and segmentation in aging brains
(Hagmann et al., 2008; La Corte et al., 2016). Dedifferentiation
of cognitive functions occurs in the aging brain, and many
regions are reconfigurable to compensate for declines in other
regions that occur with increased age (Sleimen-Malkoun et al.,
2014). The dynamic variation in connectivity reflected that
reconfiguration occurs all the time and follows some patterns,
and when age increases, this pattern slowly changes. Previous
studies have also reported that the brain regions dynamically
participate or reconfigure into different modules during the
scan time at rest (Bassett et al., 2011; Schaefer et al., 2014).
The declining modularization of the FC variation in the
senior group was likely related to aging and compensatory
mechanisms.

The presence of FC variation, even within a single brain state
(including the resting state), has been increasingly recognized
(Chang and Glover, 2010; Hutchison et al., 2013a; Allen
et al., 2014) and has been established as clinically relevant
(Damaraju et al., 2014; Kucyi and Davis, 2014; Elton and Gao,
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2015). A recent direct comparison of the awake, resting state
with the anesthetized state has revealed a dramatic reduction
in the connectivity variation during unconsciousness, which
suggests that the connectivity variation is at least partly related
to conscious operations (Barttfeld et al., 2015). One potential
source of connectivity variation during consciousness is ‘‘mind
wandering’’, in which the brain consciously engages in different
mental operations that produce fluctuations in the FC. However,
we expected that the FC variation is a capacity of elasticity
or operations to maintain states or connectivity transitions.
This concept is similar to the cognition capacity resource, in
which cognitive resources are limited and reduced in the aging
brain. High variation of FC leads to the increased possibility
of reconfiguration to address the loss of some resources. Qin
et al. (2015) used the amplitude of the low frequency fluctuations
(ALFF) of the dynamic FC to predict brain maturation between
7 years and 30 years of age. The findings of that study suggested
that the increased variation was highly related to maturation. The
ALLF was essentially the same with respect to the FC variation,
both of which could be associated with the plasticity of the
brain.

All decreased dynamic FC variations in the senior group
were located in the between-network connections, especially
in the FPN-linked and OCC-linked inter-networks. The inter-
network between FPN and OCC was also indicated to be
missing in the senior group (Figures 1B,E). These findings
might indicate a posterior-anterior shift in aging (Davis et al.,
2008; Vinette and Bray, 2015), which has been interpreted
as compensatory in that higher-order cognitive processes are
recruited to offset deficits in sensory processing. In all of
the 3D views of changed connections, many posterior-anterior
connections were also obvious. Cognitive and perceptual changes
could be linked because they are susceptible to the same
age-related factors, and a perceptual system decline could have
an impact on the cognition outcome (Allen and Roberts,
2016). In young adults, visual learning engages an extended
network of occipito-temporal, parietal and frontal regions, which
is known to be involved in perceptual decisions (Kim and
Shadlen, 1999; Shadlen and Newsome, 2001; Heekeren et al.,
2004; Mayhew and Kourtzi, 2013). The subcortical regions,
including the basal ganglia and thalamus, have been shown
to be associated in cognition processing (Koziol and Budding,
2009). The results for the subcortical regions showed mainly
increased connectivity in the DMN and decreased variation in
the FPN and OCC. Considering the central or hub roles of
both functional and structural networks, the subcortical regions
might regulate passing signals or communication between
the perception and cognitive systems, such as the OCC and
FPN, the OCN and OCC, or the CON and SMN (Marchand
et al., 2011). The increased fluctuation energy ratio of the
high-frequency connected networks of the subcortical region
might further reflect an age-related dynamic regulation, which
requires further research in terms of behavioral and task fMRI
experiments. With limited cognitive resources of the cognitive
and perceptual systems in the aging brain, the interaction
between these two systems declines as brain processing capacity
is reduced.

Except for the declining capacity of cognitive resources,
the changed FC fluctuation energy ratio of the higher
frequencies could allow for a deeper inspection of the
dynamic communication between regions. Shakil et al. (2015)
found that the dynamic FC has a frequency dependance.
Fluctuations within the frequency of 0–1/w were also suggested,
which implied a real, physiologically dynamic connectivity
(Leonardi and Van De Ville, 2015). The connectivity fluctuation
is a type of intrinsic interaction of different frequency
components involved in different neural activities. The speed
of processing in the aging brain (Park and McDonough, 2013)
is also an important property that reflects cognitive resources.
Aging-related decreases in the amplitudes of low-frequency
BOLD signal fluctuations have been observed, suggesting
that the low-frequency fluctuations of neuroactivities are
more vulnerable to aging-associated declines (Hu et al.,
2014). We thought that the increased energy ratio of the
fluctuating high frequencies was most likely caused by increased
damage to the fluctuations of the low frequencies. The
decreased variation and increased speed of fluctuations in
the dynamic FC would result in disorder of the dynamic
communications between different brain regions in senior
individuals.

Logically, in the sliding window correlation method, the
window length should have a substantial effect on the captured
connectivity fluctuation. This factor was the most important
consideration in terms of the overall accuracy of the technique
(Leonardi and Van De Ville, 2015; Hindriks et al., 2016; Shakil
et al., 2016). However, there is still no clearly determined
standard for window length selection. Convergent results
suggested that a window length between 50 s and 60 s is optimal.
As we expected, the dynamic FC during rest was found to
be a dynamic balance that maintained intrinsic connectivity
patterns and even vigilance for cognitive tasks. Moreover, the
variation in the FC was predicted to be centered around the
static connectivity level. This expectation was supported by the
appearance of a minimum on the difference curve between the
mean dynamic and the static FC, as shown in Figure 5. The
maximum was located at approximately 300 s (5 min), which
was consistent with the suggestion of a longer scan time for
reliably detecting resting state connectivity (Heekeren et al.,
2004; Zuo et al., 2013). The individual frequency spectrum
changed with the window length, as shown in Figure 6; this
result indicated that a window shorter than 60 s retained
potentially important energy for all of the networks, and the
lower frequency energy contributed most of the connectivity
fluctuation. A previous study (Leonardi and Van De Ville,
2015) suggested a meaningful frequency of under 1/w, which
was even lower than the commonly considered frequencies
for BOLD fluctuations. A fluctuation frequency of 0–1/w was
suggested previously (Leonardi and Van De Ville, 2015) and
employed in a later study (Qin et al., 2015; Liu et al., 2016).
In the present article, the frequency was even lower than
the commonly considered 0.01–0.10 Hz of the BOLD signal
fluctuation, which was in accordance with the neural activity.
This type of mismatch could be understood given that unlike
BOLD signal fluctuations, which indicate direct neural metabolic
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activity, the fluctuation in the functional connectivities reflected
interactions between the different regions. The interactions were
also revealed in the current results, which showed that more
of the affected connections were located in inter-network and
inter-hemispheric connections. Furthermore, we believe that the
FC variation must depended more on the fluctuation frequency,
which is influenced by various factors, including anatomy,
cognition, physiology and disease. The more that we understand
the physiology of dynamic FC and the methodologies used to
study these phenomena, the more insights we will have into the
mechanisms of aging and disease.

CONCLUSION

In conclusion, this study presented a resting-stated dynamic
FC analysis of normal brain aging. All of the results converged
to expound compensation and reorganization of the networks
during aging. We examined the modularization of the FC
variations in the brain and decreased modularization in the aging
brain. Additionally, decreased variation and increased damage
to the low frequency fluctuations of the dynamic FC with aging
were detected; these changes were interpreted to be associated
with declining cognitive resources and limited processing speeds
in the senior brain. In this article, we provided and applied new
insights into FC analysis for use in aging research. The results
indicated that the dynamic features of the resting-state FC were

actually the intrinsic interactions between regions and cognitive
resources.When some cognitive resources were reduced in aging,
this type of dynamic mechanism acts to reconfigure or even
train a new cognitive resource. Our conclusions in this article
were fully supported by dependable results; we believe that
the dynamic FC can potentially capture the intrinsic rules of
compensatory processes in the aging brain, and that the present
results will promote insightful understanding of spontaneous
fluctuations in FC as well as aging mechanisms.
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