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While pain behaviors are increased in Alzheimer’s disease (AD) patients compared to
healthy seniors (HS) across multiple disease stages, autonomic responses are reduced
with advancing AD. To better understand the neural mechanisms underlying these
phenomena, we undertook a controlled cross-sectional study examining behavioral
(Pain Assessment in Advanced Dementia, PAINAD scores) and autonomic (heart rate,
HR) pain responses in 24 HS and 20 AD subjects using acute pressure stimuli. Resting-
state fMRI was utilized to investigate how group connectivity differences were related
to altered pain responses. Pain behaviors (slope of PAINAD score change and mean
PAINAD score) were increased in patients vs. controls. Autonomic measures (HR
change intercept and mean HR change) were reduced in severe vs. mildly affected AD
patients. Group functional connectivity differences associated with greater pain behavior
reactivity in patients included: connectivity within a temporal limbic network (TLN)
and between the TLN and ventromedial prefrontal cortex (vmPFC); between default
mode network (DMN) subcomponents; between the DMN and ventral salience network
(vSN). Reduced HR responses within the AD group were associated with connectivity
changes within the DMN and vSN—specifically the precuneus and vmPFC. Discriminant
classification indicated HR-related connectivity within the vSN to the vmPFC best
distinguished AD severity. Thus, altered behavioral and autonomic pain responses in
AD reflects dysfunction of networks and structures subserving affective, self-reflective,
salience and autonomic regulation.
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INTRODUCTION

Several experimental studies probing behavioral indicators of pain in Alzheimer’s disease (AD)
patients have found evidence of increased responsiveness, relative to healthy seniors (HS; Porter
et al., 1996; Cole et al., 2006; Kunz et al., 2007, 2009; Jensen-Dahm et al., 2014; Beach et al.,
2015, 2016). On the other hand, autonomic pain responses become diminished, particularly as
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AD worsens (Porter et al., 1996; Rainero et al., 2000;
Benedetti et al., 2004; Beach et al., 2015), suggesting reduced
pain processing and/or central autonomic dysfunction in AD
(Rainero et al., 2000; Plooij et al., 2011). Understanding the
neural mechanisms of AD’s differential effects on various
components of pain is challenging, but necessary in order
to improve patient pain assessment and treatment. Our
understanding of pain in AD would thus benefit from examining
the pain-autonomic relationship more closely.

Pain-autonomic interactions are widespread, particularly
supraspinally. Here, viscero-sensory and central autonomic
network (CAN) structures overlap and interconnect extensively
with medial pain structures, which mediate pain affect,
behavioral motivation and cognition (Price, 2000, 2002). This
integration of physiologic, affective-behavioral and cognitive
processes thus allows for cohesive adaptive responses to noxious
stimuli. Key anatomic sites of pain-autonomic interaction
include brainstem (e.g., rostral ventral medulla, solitary
tract, parabrachial nuclei, periaqueducal gray), hypothalamic,
subcortical (amygdala) and cortical (insula, cingulate and
ventromedial prefrontal) structures (Benarroch, 2006). In
healthy individuals acute pain ratings and pain behaviors are
thus generally well-correlated with sympathetic responses like
increased heart rate (HR) and skin conductance (Dowling, 1983;
Puntillo et al., 1997; Turpin et al., 1999; Loggia et al., 2011;
Kyle and McNeil, 2014). The importance of pain-autonomic
integration is exemplified by their alteration in chronic pain
conditions (e.g., fibromyalgia and headache disorders) as
well as in autonomic disorders (e.g., pure autonomic failure
and multiple system atrophy; Bleasdale-Barr and Mathias,
1998; Mathias et al., 1999; Solano et al., 2009; Koenig et al.,
2015).

Imaging and pathological studies confirm that many cortical
(e.g., ventromedial prefrontal, insular) and subcortical structures
(parabrachial, periaqueductal gray) subserving pain processing
and autonomic regulation are targeted by AD (Chu et al.,
1997; Parvizi et al., 2000; Rüb et al., 2001; Scherder et al.,
2003). However, the effects of AD pathology on pain processing
and autonomic function are not immediately apparent. AD
patients experiencing acute experimental pain have similar EEG
responses (Gibson et al., 2001; Jensen-Dahm et al., 2016) as
well as greater fMRI activation and temporal synchronicity
(i.e., functional connectivity) of prefrontal and medial pain
structures compared to HS (Cole et al., 2006, 2011). It may
be that dysfunctional pain-memory and top-down prefrontal
inhibitory processing is responsible for apparently increased pain
sensitivity in AD patients (Cole et al., 2006, 2011; Oosterman
et al., 2009, 2014; Kunz et al., 2015). What of autonomic
function, then? Autonomic dysfunction in AD patients is
described by numerous studies (Vitiello et al., 1993; Burke
et al., 1994; Algotsson et al., 1995; Giubilei et al., 1998;
Idiaquez et al., 2002; Zulli et al., 2005; de Vilhena Toledo
and Junqueira, 2008; Idiaquez and Roman, 2011; Zakrzewska-
Pniewska et al., 2012; Struhal et al., 2014; Jensen-Dahm et al.,
2015; Kim et al., 2015); many studies found evidence of severity-
dependent (Idiaquez et al., 2002; Zulli et al., 2005), centrally
mediated sympathetic dysfunction during various autonomic

maneuvers (Burke et al., 1994; Zakrzewska-Pniewska et al.,
2012; Struhal et al., 2014; Jensen-Dahm et al., 2015). These
general autonomic findings are antiparallel to those of altered
pain responses in AD patients, suggesting central autonomic
dysfunction leads to the disconnection between behavioral and
autonomic pain responses in patients. However, no studies have
attempted to test this notion in the context of AD patient brain
function.

Recent work using resting-state fMRI (rs-fMRI) has shown
that baseline functional connectivity between somatosensory,
prefrontal andmedial pain structures strongly influences somatic
sensation, pain perception and even autonomic function (Boly
et al., 2007; Ziegler et al., 2009; Ploner et al., 2010; Fan et al.,
2012; Haag et al., 2015). Resting connectivity strength measures
also correspond well with task-based fMRI activation in both AD
and HS populations (Zamboni et al., 2013), further indicating
an influence of resting-state network (RSN) connectivity on
pain processing. Key pain processing and CAN structures are
considered core hubs of three RSNs in particular: the default
mode network (DMN) with the posterior cingulate, precuneus,
and retrosplenial cortex; the salience network (SN) with the
middle cingulate, ventromedial prefrontal cortex (vmPFC) and
insula; and temporal limbic network (TLN) including temporal
pole and amygdala. Altered connectivity within and between
the DMN, SN and TLN is implicated in chronic pain disorders
(Baliki et al., 2008; Napadow et al., 2010; Farmer et al., 2012;
Loggia et al., 2013; Yao et al., 2013; Zamboni et al., 2013)
as well as AD (Greicius et al., 2004; Seeley et al., 2009;
Brier et al., 2012). These observations suggest abnormal resting
connectivity within or between pain/autonomic-related RSNs
and their associated structures may, in part, facilitate altered pain
responses in AD.

The primary aim of this study was to further elucidate the
neural underpinnings of altered pain responses in AD patients
using rs-fMRI. To do so, we scanned a subset of AD and
HS subjects who participated in a prior study of behavioral
and autonomic acute pressure pain responses (Beach et al.,
2015). This allowed us to evaluate the relationship between
RSN connectivity and pain behavior differences between AD
patients and HS. We also investigated how RSN connectivity
was associated with autonomic response changes across a
spectrum of AD severity. These analyses emphasized examining
connectivity of RSNs implicated first on pain processing and
second the CAN. In so doing we investigated both voxelwise
(RSN to whole brain) and between network connectivity
measures.

MATERIALS AND METHODS

Subjects
Twenty-three patients with diagnosed probable AD (14 ♀)
and 26 HS subjects (16 ♀), all of whom took part in a
larger behavioral study of pain responses in AD (Beach et al.,
2015), participated in this study. However, three AD and
two HS subjects were not utilized in imaging analyses due
to excessive movement during scanning, leaving 20 AD and
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TABLE 1 | Subject demographics (mean ± standard deviation).

HS (n = 24) AD (n = 20) pψ mAD (n = 13) sAD (n = 7) pδ

Age (years) 75.1 (6.7) 76.5 (8.6) 0.54 78.1 (5.7) 73.6 (12.3) 0.27
Gender (F | M) 16 | 8 14 | 6 0.54 9 | 4 5 | 2 0.92
MMSE 29.1 (1.0) 15.3 (7.6) <0.001 20.2 (3.5) 6.3 (3.7) <0.001
SIB-S - - - 41.6 (9.4) - - - 47.1 (3.5) 31.3 (8.3) <0.001
CSDD 1.21 (1.3) 8.6 (3.8) <0.001 8.1 (4.0) 9.6 (1.3) 0.39
FAQ - - - 18.5 (8.4) - - - 14.1 (7.2) 26.1 (3.0) 0.001
Baseline HR (bpm) 69.9 (8.4) 68.2 (11.4) 0.56 69.3 (11.9) 66.2 (11.1) 0.68
AChEI (%) - - - 80.0 - - - 92.3 57.1 0.06
SSRI (%) 12.3 60.0 0.003 53.8 71.4 0.44

HS, healthy senior controls; AD, Alzheimer’s disease; mAD, mild/moderate Alzheimer’s disease (MMSE 23–11); sAD, severe Alzheimer’s disease (MMSE = 10); MMSE, Mini

Mental State Examination; CSDD, Cornell Scale for Depression in Dementia (normal range 0–12); FAQ, Functional Activities Questionnaire; HR, heart rate; SIB-S, Severe

Impairment Battery-Short Form; AChEI, acetylcholine esterase inhibitor; SSRI, selective serotonin reuptake inhibitor. Between-group testing of age, MMSE, Cornell, and

baseline heart rate via univariate ANOVA; gender, AChEI, and SSRI testing via Chi-square. ψ Indicates between HS and AD ANOVA testing. δ Indicates between mAD

and sAD subgroup ANOVA testing. Bold indicates significant group difference at p < 0.01. Note: sample sizes reflect those subjects not removed from analyses due to

excessive motion.

FIGURE 1 | Flow chart describing general study methods. AD, Alzheimer’s disease; HS, Healthy senior; rs-fMRI, resting-state functional magnetic resonance
imaging; PAINAD, Pain Assessment in Advanced Dementia scale; HR, Heart Rate; mAD, mild AD; sAD, severe AD; RSNs, Resting-State Networks; GLM, General
Linear Model; ∗Beach et al. (2015).

24 HS. General subject demographics reflecting subjects utilized
in the current study are found in Table 1; general study
methods are further found in Figure 1. HS subjects were

recruited through senior newsletters and local AD support
groups. HS were included only if they had no current pain
or history of subjective memory complaint. AD subjects
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were recruited through the outpatient Cognitive and Geriatric
Neurology clinic at Michigan State University. Diagnosis of
probable AD was made by a geriatric neurologist (ACB)
based on DSM-IV (American Psychiatric Association, 2013)
and NINCDS-ADRDA (McKhann et al., 1984) criteria. General
study exclusion included history of: Type II diabetes, history
of stroke or transient ischemic attack, central or peripheral
neuropathy and diagnosis of neurological (e.g., seizure disorder)
or psychiatric disorders (e.g., major depression, schizophrenia)
other than AD. All participants were screened for baseline
pain via subject interview, chart review, or caregiver discussion
as inclusion required abstinence from analgesics for 24 h
prior to study. We excluded individuals with current arthritic
pain, those with a history of arthritis in the distal forearms
(the stimulus application region), and those taking daily
arthritic pain medication. As our index of autonomic response
was HR, individuals taking beta-adrenergic and AV-nodal
calcium channel blocking medications were also excluded.
Though effects of acetylcholinesterase inhibitors (AChEI) and
selective serotonin reuptake inhibitor (SSRI) anti-depressants on
autonomic function have been documented (Siepmann et al.,
2003; Masuda, 2004; Licht et al., 2010; da Costa Dias et al., 2013),
their use was not exclusionary. Recent work suggests AChEI
effects are limited to initial administration (Isik et al., 2010;
Umegaki and Khookhor, 2013) and likely unrelated to general
autonomic dysfunction in AD (Kim et al., 2015; Nonogaki
et al., 2017). SSRI effects were also previously found to be
non-contributory to autonomic dysfunction in AD (Jensen-
Dahm et al., 2015).

Once subjects passed screening they underwent
neuropsychological testing, including completion of
Mini-Mental State Examination (MMSE; Folstein et al.,
1975), and Cornell Scale for Depression in Dementia (CSDD;
Alexopoulos et al., 1988). The MMSE is subject to floor
effects with increasing severity of dementia. As such, the
short form of the Severe Impairment Battery (SIB-S; Saxton
et al., 2005) was utilized to better understand cognitive
heterogeneity within the AD patient group. AD subjects were
also tested for their instrumental activities of daily living
(IADLs) through the Functional Activities Questionnaire (FAQ;
Pfeffer et al., 1982), a proxy measure in which increasing
scores describe worsening IADL ability (max. 30). Mean
demographics and scores for neuropsychological tests are
found in Table 1. No subjects had a CSDD score indicative of
probable depression (>12; Alexopoulos et al., 1988). Of note:
as in a prior study of the authors’ examining severity dependent
effects of pain responses in AD (Beach et al., 2015), we defined
mild/moderate AD (mAD) as MMSE 11–23 and severe AD
(sAD) as MMSE ≤10.

Testing procedures were conducted in accordance with the
Declaration of Helsinki and were approved by the Michigan
State University Internal Review Board. Written informed
consent was obtained for all HS as well as AD subjects
via named guardians or health care proxies identified as
a power of attorney for health care. We obtained assent
from all participants before behavioral testing and MRI
scanning.

Procedures

Behavioral Testing
The study took place over two sessions. First, subjects underwent
behavioral testing as part of an expanded examination of pain
responses in AD (Beach et al., 2015, 2016). Mechanical pressure
was applied to the volar surface of the distal forearm (2–5 cm
from the wrist) using a Force Dial FDK 20 Force Gauge (Wagner
Instruments, Greenwich, CT, USA), which allows accurate
recording of pressure (kg/cm2; see Supplementary Figure S1).
The device, scaled in units of ‘‘kg,’’ is fitted with a 1 cm wide
rubber disc to prevent skin abrasion. Subjects were seated,
upright, during testing. Stimuli ranged from 1 kg to 5 kg in
intensity. Each intensity was repeated four times, between the
right and left forearms, in a pseudorandom fashion with the
order determined once for use in all subjects. Stimulus order
was limited by the following rules: no intensity could occur
more than twice, sequentially; any sequential intensity repetition
could not occur on the same arm. Stimuli were applied at a
rate of ∼1 kg/s to peak intensity. Pressures were held at peak
intensity for 5 s prior to an∼50 s interstimulus interval. A single
investigator (PAB) performed all pressure testing. Continuous
video recordings during testing allowed for coding of autonomic
responses and pain behaviors. Stimulus onset and offset was
marked audibly.

As in a prior behavioral study by the authors (Beach
et al., 2015), acute pain behaviors were scored during the
5 s stimulus period via the Pain Assessment in Advanced
Dementia (PAINAD) scale, an observational pain scale validated
for assessing pain in long-term and acute care settings (Warden
et al., 2003; Hutchison et al., 2006; Zwakhalen et al., 2006;
DeWaters et al., 2008; Herr et al., 2010; Herr, 2011; Guo et al.,
2015). The full PAINAD measures five behavioral domains:
breathing, consolability, negative vocalizations, facial expressions
and bodily responses. Each PAINAD domain score ranges from
zero to two for a maximum combined score of 10. Because
breathing and consolability are considered poor indicators of
pain (van Iersel et al., 2006; Zwakhalen et al., 2006; Schuler
et al., 2007; Herr et al., 2008) these domains were not included
the authors’ prior behavioral studies. However, for the current
study pain behavioral responses were re-scored using the full
PAINAD to prevent issues with instrument validity. The use of
the PAINAD, vs. more experimental methods such as the Facial
Action Coding System (FACS; Ekman et al., 2002), was based
on its clinical utility and strong correlation with both FACS
measures and subjective pain ratings (Beach et al., 2016). Its
use here thus allowed for an improved understanding of how
changes in clinically relevant and measurable pain behaviors
are related to altered RSN connectivity. PAINAD rater training
took place via an online resource whereby trainees viewed
and scored videos of cognitively intact and impaired elderly
individuals prior to feedback and score explanation (Horgas and
Miller, 2008). A single trained rater (JTH), blinded to stimulus
order and group designation, scored video recorded sessions.
PAINAD intra-rater reliability was strong (intraclass correlation
coefficient 0.86) and subject internal consistency was high
(Crohnbach’s alpha 0.84). The PAINAD also correlated strongly
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(r = 0.56) with subjective pain report of mAD subjects (Beach
et al., 2016), suggesting maintenance of the tool’s construct
validity.

A portable infrared monitor (ePulse2TM—Impact Sports
Technologies), attached just above the elbow, displayed HR
throughout testing. Responses were video recorded and reviewed
later for scoring. HR was measured on a fixed time window of
every 5 s. A given response was determined by subtracting theHR
at stimulus onset (baseline) from the maximum response within
30 s after offset, resulting in a positive or negative response.
Return to resting HR occurred during the interstimulus interval.

fMRI Scanning
In a separate session up to 1 week later, anatomical and
rs-fMRI data were collected with a GE 3.0 Tesla Signa HDx
MR scanner (GE Healthcare, Waukesha, WI, USA) with an
8-channel head coil. Anatomical scanning involved collection
of 180 T1 weighted sagittal volumetric images (TE = 3.8 ms,
TR = 8.6 ms, time of inversion = 831 ms, flip angle = 8◦,
field of view = 25.6 cm × 25.6 cm, matrix size = 256 × 256,
slice thickness = 1 mm, receiver bandwidth = ±20.8 kHz).
Next, subjects underwent two 7-min resting-state functional echo
planar image scans under dimly lit conditions (TE = 27.7 ms.
TR = 2500 ms, flip angle = 80◦, field of view = 220 mm, matrix
64 × 64 voxels, 168 brain volumes via 36 contiguous axial 3 mm
axial slices). Scanning sessions, including anatomical and resting-
state scans, was 30 min. One AD subject was unable to complete
the second resting-state scan. Prior to each scan subjects were
instructed to hold still as much as possible, with their eyes open
and stay awake. Wakefulness was monitored live during resting-
state scanning through anMR compatible eye camera, which was
attached to the head coil.

Sample Size
The current study utilized a subset of patients that took
part of a larger examination of pain response differences
(including PAINAD and HR measures) among HS and those
with AD of varying severity. An a priori power analysis for
the aforementioned parent study indicated that 15 subjects per
group (HS, mAD and sAD) would be sufficient to reach at
least a small effect (d = 0.3) at 95% power with alpha = 0.05.
For the neuroimaging component of this study, we determined
baseline sample size from a prior fMRI study of pain in AD
as well as preliminary functional connectivity results (Cole
et al., 2006, 2011). Initial power calculations yielded necessary
n = 13 per group (β = 0.95, Cohen’s d = 1.49, α = 0.05). However,
considering the resting-state nature of this study, and in order to
assess connectivity differences within the AD group (i.e., mAD
vs. sAD), we reasoned that a sample size to ∼20/group with
recruitment of semi-equal numbers of mAD and sAD patients
to be sufficient.

Statistical Methods
Behavioral Analysis
Generalized linear modeling (GLMM: Generalized linear mixed
modeling) in SPSSTM (Version 22.0, Armonk, NY, USA: IBM
Corp) determined impact of level-two effects (subject group) on

level-one effects (PAINAD score, HR change), with subject and
stimulus level as predictors. We analyzed all behavioral results
with two subject groupings: first the entire HS and entire AD
groups were compared, and second the AD group alone was
analyzed, by dividing into mAD and sAD subgroups. This was
done to allow examination of disease severity effects separately
from disease presence effects. GLMM accounts for repeated
measures (trials) and covariates of non-interest (age, gender).
PAINAD scores were each recoded into a set of four clustered
scores to improve modeling of its non-normal distribution. HR
changes were similarly recoded to reflect no change (0), positive
response (+1), or negative response (−1) for GLMM testing.
Significant ‘‘group’’ (HS vs. AD, or mAD vs. sAD) or ‘‘group ×
stimulus level’’ interaction effects (p < 0.05) were followed-up
with post hoc nonparametric Mann-Whitney U independent
samples testing. Original data (i.e., non-recoded) were utilized
for post hoc tests between groups by stimulus level; the latter
occurred for PAINAD scores and HR responses. As this study
was focused on severity dependent effects of AD on HR pain
responsiveness we analyzed differences in HR responsiveness
between AD subgroups. Finally, we computed effect sizes based
on overall groupmeans for the two primary outcomes of interest:
for overall mean PAINAD score between HS and AD Glass’
delta was computed as standard deviations were not similar;
for overall mean HR responses between mAD and sAD Hedges
g was computed given sample sizes differences between these
subgroups.

The aforementioned analyses were followed up with testing
of three summary measures between groups. Specifically, each
subject’s PAINAD scores and HR responses were examined
across stimulus levels to determine slope of change, intercept
of the stimulus-response relationship, and mean responsiveness
(average measured PAINAD scores and HR changes). These
summary measures were explored in a prior study (Kunz et al.,
2004) involving multiple pain intensities, though in the context
of pain self-report. The measures generally represent indices of
degree of reactivity, response threshold, and average amplitude
of response, respectively. Again, as we focused on severity
dependent effects of AD on HR responses, only AD subgroups
were included in HR summary measure analyses. Group-level
analyses of summary variables took place via MANOVA testing
with age and gender again included as covariates of non-interest.
Significant group effects led to subsequent inclusion in rs-fMRI
analyses to determine connectivity-behavioral relationships.

fMRI Analysis
Basic rs-fMRI processing
Individual subject fMRI standard pre-processing was carried out
using FMRI Expert Analysis Tool (FEAT) Version 6.00, part of
FMRIB’s Software Library (FSL1). Steps included: removal of the
first two volumes due to enhanced longitudinal magnetization
in the first few scans; brain extraction (Smith, 2002); motion
correction (Jenkinson et al., 2002); spatial smoothing (FWHM
5mm); and high pass temporal filtering (sigma 100 s). Individual
subject functional scans were nonlinearly registered to MNI

1www.fmrib.ox.ac.uk/fsl
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space via structural scans (Jenkinson and Smith, 2001; Jenkinson
et al., 2002; Andersson et al., 2007a,b). Because meaningful
neuronal signal was recently found to be associated with
frequencies beyond 0.08 Hz (Niazy et al., 2008; Smith et al., 2008;
Cole et al., 2010), low-pass filtering was not employed. Instead,
single subject independent components analysis (ICA; Cole
et al., 2010; Boubela et al., 2013), using Multivariate Exploratory
Linear Decomposition into Independent Components, Version
3.13 (MELODIC; Beckmann and Smith, 2004), was employed
to check for and regress out individual time course artifacts.
Resulting components for each subject were visually inspected to
sort out those likely representing neuronal signal vs. physiologic
and/or motion artifact in accordance with Kelly et al. (2010).
Artifactual components were then regressed out of each subject
functional time series, resulting in individual subject denoised
datasets.

Voxelwise regressors were then computed to remove effects
of regional atrophy on connectivity measures. For each subject,
individual anatomical T1 scans, already in MNI space, were
segmented using FSL’s FAST (Zhang et al., 2001) to obtain gray
matter (GM) partitions. Individual Jacobian maps were then
calculated using warp coefficients produced during nonlinear
registration of subject anatomical scans. The GM partitions
produced by FAST were then modulated by the Jacobian maps
to reflect areas of local expansion or contraction of atrophied
regions. Individual Jacobian modulated GM partitions were then
merged into a single 4D file to be used as a voxelwise regressor of
non-interest for group analyses.

General linear model creation
General linear models (GLMs) were then created to test
significant associations of resting connectivity with significant
behavior summary measures. Each GLM included regressors
of interest (i.e., a significant behavioral summary measure)
and non-interest (age, gender, voxelwise atrophy measures).
Age and gender covariates were demeaned prior to GLM
entry. The first set of GLMs were specific to PAINAD
summary measures that reached significant differences between
HS (n = 24) and AD (n = 20) groups (Figure 1, bottom
blue box). Here a continuous covariate interaction model
was designed to assess potential interactions of connectivity
and behavioral differences (i.e., interaction effects between
group and PAINAD summary measures; PAINAD measures
were input as continuous variables). The second set of GLMs
probed potential connectivity associations between HR-related
summary measures found to be different between mAD and sAD
subgroups (Figure 1, bottom red box; HRmeasures were input as
continuous variables). Because our scanned sAD subject sample
was limited, a between-groups (i.e., mAD vs. sAD) analysis was
not performed. Rather, a within-AD group design was utilized for
HR-related GLMs to assess connectivity along a spectrum of AD
severity. Once all GLMs were created, further steps were taken
prior to group analyses.

Group ICA
Next, we created to Group-level ICAs (GICAs) using MELODIC
(Beckmann and Smith, 2004). Two GICAs occurred, one for

each type of GLM: GICA1 (for PAINAD analyses, Figure 1
middle blue box) included all scanned subjects of both groups;
GICA2 included all 20 AD subjects (Figure 1, red boxes).
Via MELODIC, principal component analysis (with automatic
estimation of dimensional number and variance normalization)
allowed for denoised single-subject resting-state fMRI time
courses to be temporally concatenated and decomposed
into independent spatial maps characteristic of the included
study sample (Hyvärinen, 1999; Minka, 2000; Beckmann
and Smith, 2004). During this process, non-brain voxels
were masked. Estimated component maps were thresholded
(p > 0.5) by fitting a mixture model to the histogram of
intensity values (Beckmann and Smith, 2004). This process
resulted in 28 components for GICA1 and 30 for GICA2.
Visual comparison to ‘‘canonical’’ RSNs (Smith et al., 2009)
indicated which GICA components were neuro-anatomically
plausible.

Group-level rs-fMRI analyses
FSL’s dual regression technique (Filippini et al., 2009) was then
employed to generate subject-specific versions of each GICA
spatial map and associated time series. For each subject, all
estimated component spatial maps from GICA were regressed
(as spatial regressors) into the subject’s 4D space-time dataset,
resulting in subject-specific time series, one for eachGICA spatial
map. Next, individual subject time series were regressed (as
temporal regressors) back into a single 4D dataset, resulting in
a set of subject-specific spatial maps, again one for each GICA
spatial map.

Further analysis was limited to those components whose
spatial distributions closely matched RSNs comprised of
structures associated with pain processing (Kong et al., 2010,
2013; e.g., salience, default mode, executive/fronto-parietal,
somatomotor, and limbic RSNs or related structures—visualized
in Figure 2 for GICA1) and the CAN (Beissner et al., 2013;
e.g., salience, default mode, temporal limbic—visualized in
Figure 3 for GICA2). Each GICA’s selected components
were subjected to nonparametric permutation-based testing
via FSL’s randomize (Nichols and Holmes, 2002; Winkler
et al., 2014) tool (10,000 permutations), with threshold-free
cluster enhancement (TFCE; Smith and Nichols, 2009).
GLMs were then incorporated to test the relationship
between connectivity of selected components and summary
behavioral measures. Resultant spatial maps assessed
connectivity between the RSN of interest and all voxels of
the brain. We addressed the issue of multiple comparisons
by controlling family-wise error (FWE) with a threshold of
p< 0.05.

To examine connectivity strictly between RSNs of interest,
we utilized the FSLNets package2 as implemented in Matlab3.
For each RSN of interest individual subject time courses were
first extracted and normalized to their standard deviations.
Artifactual components and those not of interest were regressed
out of each subject’s time course. Next, subject-level network

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
3http://www.mathworks.com/products/matlab/
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FIGURE 2 | Independent Components (ICs) of interest resulting from Group ICA of all HS and AD subjects. These ICs were used in permutational tests exploring
relationships between connectivity and PAINAD score differences between groups. ICs of interest determined via consideration of brain regions/networks typically
associated with pain, emotion and behavior. Resultant ICs of non-interest, as well as those representing non-neuronal signal not shown. MNI coordinates (x, y, z)
shown below each map.

correlation matrices were generated based on the residual time
series of each component (L1-regularized, λ = 10). Specifically,
partial correlations were utilized, as they are thought to better
assess ‘‘direct’’ network connections, in comparison to full
correlations (Smith, 2012). Each matrix’s partial r-coefficients
were then z-transformed and subjected to autocorrelation
correction. Finally, individual subject correlation matrices were
averaged to form group level matrices. The group-level matrix
was then pre-masked with a t-value >8, preventing connections
that were not strong on average across all subjects from being
tested. Nonparametric permutation testing on networks of
interest occurred again via FSL’s randomize (5000 permutations)
and GLM integration as outlined above. Multiple comparison
control was applied through FWE correction, thresholded at
p< 0.05.

Because HR connectivity analyses were within-group, we
next performed a discriminant classification analysis via SPSS
to determine which connectivity result best differentiated
AD severity-dependent effects on HR responses. Discriminant
analyses allow for prediction of categorical dependent grouping
variables through a regression-style analysis of continuous
independent predictor variables. The goal is to create a
linear discriminant function that best differentiates dependent
grouping variables. Beta-values were first extracted from

significant clusters and then entered as independents, while
AD subgroup designation (i.e., mAD or sAD) was set as the
grouping variable. To ensure that data met analysis assumptions
of variance homogeneity, Box’s M was calculated. Prior
probabilities were then computed from group size as subgroup
numbers were not equal. Discriminant scores were cross-
validated using a leave-one-out classification approach. Finally,
Wilk’s Lambda and canonical correlations were calculated
to determine which predictor variable contributed the most
in differentiating AD subgroups. In assessing classification
results, the best predictor has the highest correlation, the
lowest Wilk’s Lambda, and an associated significance level
p< 0.05.

RESULTS

Demographics
Subject demographics are found in Table 1. No differences in age
and gender between HS and AD groups were found. Impaired
cognition was confirmed in the AD group, as seen by MMSE
score comparisons to HS (F = 77.0; p < 0.001). SIB-S scoring
further confirmed significant cognitive decline between mAD
and sAD subgroups (F = 36.4; p< 0.001). AD subjects had greater
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FIGURE 3 | ICs of interest resulting from Group ICA of only AD subjects. These ICs were used in permutational tests exploring relationships between connectivity and
HR change differences between mAD and sAD patients. ICs of interest determined via consideration of brain regions/networks typically associated with autonomic
responses and regulation. Resultant ICs of non-interest, as well as those representing non-neuronal signal not shown. MNI coordinate shown below each map.

CSDD scores than HS (F = 81.2; p < 0.001). However, no AD
subjects had CSDD scores indicative of depression. FAQ testing
in patients yielded worsening IADL abilities (i.e., increased
score) with increasing severity of AD (F = 17.5; p = 0.001).
No differences in baseline HR were found between HS and AD
(F = 0.36; p = 0.56), nor mAD and sAD subgroups (F = 0.33;
p = 0.68). A greater percentage of mAD subjects were on AChEI
medication than sAD, but this difference reached only marginal
significance (Chi-Sq = 3.5; p = 0.06). Finally, AD patients were
more likely to be on an SSRI antidepressant than HS (Chi-Sq. =
10.9; p = 0.001). There were no differences in SSRI use between
mAD and sAD patients (Chi-Sq. = 0.59; p = 0.44).

Behavioral Testing Results
In testing HS and AD differences in PAINAD scores, we found
a significant main effect of group and a group × stimulus level
interaction (F = 31.9, 171.2; p< 0.001, respectively). As indicated
in Figure 4A, post hoc Mann-Whitney U testing indicated that
AD subjects had greater PAINAD scores for 2–5 kg pressure
levels (Standardized Test Statistic, STS = 2.4, 3.6, 2.8, 2.6;
p = 0.02, <0.001, 0.005, 0.009 respectively). PAINAD responses
were not significantly different between mAD and sAD patients
(main group effect F = 0.03, p = 0.86; group× stimulus intensity
F = 1.8, p = 0.08; see Figure 4A). Summarymeasure testing across
stimulus levels for PAINAD scores are visualized in Figure 4B.
Here, significant between group effects for slope (F = 11.4;
p = 0.002) and mean PAINAD score (F = 9.3; p = 0.004) were
found. The intercept variable failed to reach significance (F = 3.4;

p = 0.07). Effect size (Gates’ delta) for overall mean PAINAD
score difference between HS and AD groups was measured at
1.47, indicating a very strong effect.

Advanced AD patients showed reduced HR responses,
compared to more mild patients, with significant group and
group × stimulus level interaction effects (F = 5.7 and 801.9;
p = 0.004, <0.001, respectively). As indicated by Figure 5A,
post hoc Mann-Whitney U testing found significantly lower HR
responses in sAD subjects, compared with mAD subjects, for
stimulus levels 1 and 3 kg, andmarginally so at 5 kg (STS: 2.7, 2.3,
1.9; p = 0.005, 0.019, and 0.056, respectively). Summary measure
testing across stimulus levels for HR responses are visualized in
Figure 5B. Here, significant effects for intercept (F = 4.5; p = 0.05)
and mean (F = 6.6; p = 0.02) HR responses were found. Slope of
HR responses were not different between AD subgroups (F = 1.4;
p = 0.25). Effect size (Hedge’s g) for overall mean HR response
difference between mAD and sAD sub-groups was measured at
1.03, indicating a very strong effect.

Functional Connectivity Results
Fourteen RSNs from GICA1 (visualized in Figure 2) deemed
pain-relevant (Kong et al., 2010, 2013) were entered into dual-
regression/randomize and FSLNets analyses to examine how
group differences in slope of change and mean PAINAD scores
across stimulus levels were related to group differences in RSN
connectivity. A significant interaction effect was found for group
× PAINAD slope of change within the TLN (GICA1—IC 3),
for a right temporal pole cluster (p < 0.05, FWE; Table 2,
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visualized in Figure 6A, top-left). As indicated by Figure 6A,
connectivity between the TLN and right temporal pole cluster
was greater in more behaviorally reactive AD patients, with the
opposite occurring in HS. The same effect occurred between the
TLN and a cluster in the vmPFC (p < 0.05, FWE corrected;
Table 2; visualized in Figure 6A, top-right). Using FSLNets we
also found a group × PAINAD slope interaction associated with
connectivity between posterior DMN (pDMN, GICA1—IC1)
and ventral DMN (vDMN, GICA1—IC8) components. Here,
greater PAINAD slope of change in AD patients was associated
with reduced pDMN-vDMN connectivity, compared to HS
(p = 0.03, FWE; Table 2, visualized in Figure 6A, bottom-
left). Figure 6B shows connectivity results pertaining to mean
PAINAD scores. Here, greater average pain behavioral scores in
AD patients were associated with increased connectivity strength
between anterior DMN (aDMN) and ventral salience network
(vSN; GICA1—ICs 6 and 4, respectively) in AD, compared to
HS subjects (p = 0.03, FWE; Table 2). Further scrutiny of this
result indicated greater PAINAD scores in AD patients were
associated with reduced anti-correlation between the aDMN
and vSN.

Nine autonomic-related RSNs from GICA2 (Figure 3)
were selected for HR-related analyses of intercept and mean
response differences between mAD and sAD patients. With
respect to intercept, connectivity within a pDMN network
(GICA2—IC1), specifically a cluster in the precuneus, positively
correlated with HR responses of AD subjects (p = 0.002,
FWE; Table 2; visualized in Figure 7A). Similarly, within
pDMN connectivity (precuneus cluster; p = 0.005; Table 2;
visualized in Figure 7B, left) positively correlated with slope
of change of AD subjects. In contrast, connectivity within
the vSN (GICA2—IC14) to a left vmPFC cluster (p = 0.021,
FWE; Figure 7B, right; Table 2) was negatively correlated
with AD subject mean HR changes. No significant between-
network connectivity relationships were found for HR changes
via FSLNets.

In performing discriminant classification analyses of HR
connectivity clusters we found that homogeneity assumptions
were met (Box’s M: F = 5.3, p = 0.66). The results of discriminant
classification analyses are found in Table 3. Examination of
canonical correlations and Wilk’s Lambda results indicated that
the negative correlation of connectivity of the vSN to the vmPFC
by far best discriminated between AD severities.

DISCUSSION

Pain Behavioral Findings
Pain Behaviors in AD
Several studies have found greater degrees of acute pain
behaviors in AD patients, relative to HS (Cole et al., 2006; Kunz
et al., 2007; Jensen-Dahm et al., 2014; Beach et al., 2015, 2016).
We confirmed this in our sample of patients for all but the
lowest pressure level. When examining summary parameters of
pain behaviors (i.e., PAINAD scores), we found that patients
showed both a greater stimulus-response slope and greater
mean PAINAD scores, compared to controls. Thus, evidence

for greater pain reactivity in patients may be found across
single and multiple stimulus levels. Increased pain behaviors in
patients compared to controls were associated with a number of
connectivity differences.

rs-fMRI Correlates of Increased Pain Behaviors in AD
First, connectivity both within the TLN and between the
TLN and a cluster in the vmPFC correlated positively with
pain behavior reactivity (PAINAD score slope of change) in
AD subjects, but negatively in HS. The TLN elaborated by
GICA1 is comprised of bilateral hippocampal gyrus, amygdala
and temporal pole, which are among the earliest structures
to be affected by AD pathology (Braak and Braak, 1995;
Braak et al., 1999). These TLN structures are implicated in
pain-related episodic memory, negative affect and associated
behaviors, and socio-emotional regulation, respectively (Quirk
and Gehlert, 2003; Olson et al., 2007). Likewise affected by AD
(Chu et al., 1997; Tekin et al., 2001), the vmPFC is involved
in implicit contextual appraisal of affective stimuli, based on
long-term memory (Roy et al., 2012). The vmPFC utilizes
this appraisal mechanism to regulate both pain and general
affect through inhibition of the amgydala via dense medial
temporal projections (Quirk and Gehlert, 2003; Ghashghaei
et al., 2007; Bingel et al., 2008; Kunz et al., 2011; Shackman
et al., 2011; Lee et al., 2012; Etkin et al., 2015; Motzkin et al.,
2015). In healthy individuals amygdala activity is associated with
increased facial expression during negative affect while vmPFC
activity is associated with the opposite (Lanteaume et al., 2007;
Kunz et al., 2011; Heller et al., 2014). However, in AD the
relationship between these structures changes, potentially as a
part of a general limbic and prefrontal mediated mechanism of
functional reallocation to compensate for impaired cognition,
including memory-dependent appraisal processes (Grady et al.,
2001; Benedetti et al., 2006; Rosenbaum et al., 2010). This
may partly explain why there is increased connectivity between
the vmPFC and TLN in behaviorally over-responsive AD
patients. In one study, damage to the vmPFC was associated
with greater connectivity of the amygdala to temporal pole
(Motzkin et al., 2015), consistent with increased pain behavioral
reactivity in AD patients. This suggests AD-mediated vmPFC
dysfunction may enhance TLN (likely amygdala) mediated
aversion processing and associated behavioral output. These
findings may extend to affective displays beyond pain; studies
have found increased negative emotional responses to threat,
particularly with respect to facial expression, in AD patients
(Smith, 1995; Burton and Kaszniak, 2006; Henry et al.,
2009a,b; Seidl et al., 2012). Important to this discussion,
greater emotional reactivity by AD patients is associated
with atrophy or dysfunction in affect-associated structures
(Starkstein et al., 1995; Lyketsos et al., 2002; Bruen et al., 2008;
Sturm et al., 2013). For example, greater neurofibrillary tangle
burden in the vmPFC is associated with increased agitation
and aberrant motor behaviors in AD patients (Tekin et al.,
2001).

Second, greater PAINAD slope of change in patients
was associated with reduced connectivity between posterior
and ventral DMN subcomponents. Subdivisions of the
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FIGURE 4 | Group level behavioral pain responses (Pain Assessment in Advanced Dementia, PAINAD scale). (A) Average PAINAD scores for each pressure intensity
(kilograms, kg) among HS and full AD groups; mild/moderate and severe (mAD and sAD) subgroups are also included. Associated linear regression lines are
superimposed for HS and AD groups, allowing for visualization of slope of change and intercept across stimulus levels. (B) All PAINAD summary measures visualized
as group averages, including slope of change, intercept and mean response. Asterisk indicates significant group difference at p ≤ 0.05 between HS and AD groups.
Error bars represent standard error of the mean (SEM).

FIGURE 5 | Group level autonomic pain responses (HR in beats per minute, bpm). (A) Average HR changes from baseline (bpm) for each pressure intensity
(kilograms, kg) among mild Alzheimer’s (mAD; black circles) and severe Alzheimer’s (sAD; gray triangles) patient sub-groups. Associated linear regression lines are
superimposed, allowing for visualization of slope of change and intercept across stimulus levels. (B) HR response summary measures across pressure levels,
including slope of change, intercept and mean response. Asterisk (∗) indicates significant group difference at p ≤ 0.05. Plus (+) indicates marginal significance
(p < 0.06). Error bars represent SEM.

DMN are each associated with distinct cognitive functions
(Uddin et al., 2009; Andrews-Hanna et al., 2010; Kim,
2012): aDMN, comprised primarily of dorsomedial PFC
(dmPFC), with self-referential processing; pDMN, primarily

posterior cingulate/precuneus and lateral parietal cortex, with
internally directed thought and autobiographical memory;
and the vDMN, containing retrosplenial, parahippocampal
and various associative cortices, with episodic-memory based
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TABLE 2 | Connectivity between cluster-resting state networks or between networks significantly correlated with Pain Assessment in Advanced Dementia (PAINAD)
score differences between healthy seniors (HS) and Alzheimer’s disease (AD) and heart rate (HR) changes within AD subjects.

IC # RSN Statistical connectivity contrast PFWE #Vox MNI coord. Hemi Cluster location

X Y Z

PAINAD slope
IC 2 MesTemp Interaction HS < AD 0.04 18 50 2 −32 R Temporal pole

Interaction HS < AD 0.04 12 −6 42 −8 L vmPFC
ICs 1 and 8 pDMN—vDMN Interaction HS > AD 0.03 - - - - - Between ICs
Mean PAINAD
ICs 4 and 6 aDMN—vSN Interaction HS < AD 0.03 - - - - - Between ICs
HR change intercept
IC 1 pDMN Pos HR 0.002 270 2 −66 36 R Precuneus
Mean HR change
IC 1 pDMN Pos HR 0.005 166 2 −66 32 R Precuneus
IC14 vSN2 Neg HR 0.021 58 −2 42 −16 L vACC/vmPFC

IC, independent component; RSN, resting state network; PFWE, p-value of cluster after family-wise error correction; #Vox, number of voxels within the cluster; MNI

coordinate, cluster maximum in mm; Hemi, hemisphere (L, Left vs. R, Right); MesTemp, Mesial Temporal component; pDMN, posterior default mode network component;

vSN2, #2 ventral salience network component; Interaction, continuous covariate interaction effect between groups; Neg/Pos HR, negative or positive statistical heart rate

correlation with connectivity; vmPFC, ventromedial prefrontal cortex.

future decision making. In turn, the connectivity of each
DMN subdivision is affected by AD (Damoiseaux et al.,
2012). Reduced connectivity between pDMN and vDMN
in AD patients could contribute to greater pain reactivity
(i.e., PAINAD slope of change) by impairing pain-related
working memory during internally directed attention;
appropriate contextual appraisal of acute pain by the vmPFC
could thus be undermined.

Next, greater mean PAINAD scores in patients, compared to
controls, were associated with reduced anti-correlation between
aDMN and vSN. In contrast to the DMN, the SN is implicated
in emotional reactivity, and is described as directing attention
to important internal or external events, e.g., pain (Critchley,
2005; Seeley et al., 2007; Hänsel and von Känel, 2008; Rolls and
Grabenhorst, 2008; Etkin et al., 2015). Often the SN and DMN
are segregated into opposing ‘‘task positive’’ and ‘‘task negative’’
networks, which subserve recurrent switching between externally
and internally directed attention, respectively (Fox et al., 2005;
Fransson, 2005). Even in resting conditions the DMN and SN
are typically anti-correlated (Fox et al., 2005; Seeley et al., 2007).
However, in the context of pain their relationship becomes more
complex. For example, the DMN remains active during periods
of high pain, compared to low pain or tactile somatosensation
(Mantini et al., 2009; Kong et al., 2010; Ter Minassian et al.,
2013); this has been proposed to represent internal mentation
directed toward threatening (painful) stimuli (Kong et al., 2010;
Ter Minassian et al., 2013). In AD the relationship between
the DMN and other RSNs becomes increasingly dysfunctional.
Especially pertinent to our results are prior findings of reduced
resting anti-correlation between the DMN and SN as well as
greater DMN-related activity during task conditions in AD
patients, compared to controls (Lustig et al., 2003; Cole et al.,
2006; Wang et al., 2007; Brier et al., 2012). Interestingly, reduced
functional segregation between the DMN and SN is hypothesized
to partly account for the attentional deficits and distractibility
seen early on in AD (Perry and Hodges, 1999; Perry et al., 2000).
Thus, our aDMN-vSN related results suggest a propensity of AD
patients, compared with HS, to attend to and inwardly evaluate

potentially noxious stimuli more than HS. Further, the dmPFC
(the primary anatomical site of the aDMN), is implicated in
automatic and voluntary affect regulation (Padberg et al., 2001;
Lee et al., 2012; Ray and Zald, 2012; Buhle et al., 2014) and
inhibition of pain-related facial expression (Kunz et al., 2011;
Karmann et al., 2016). Increased pain behaviors in AD patients
may thus also be related to dysfunctional prefrontal affective and
salience mechanisms (Kunz et al., 2007, 2009; Beach et al., 2015,
2016).

Taken together our results suggest that increased pain
behavior responsiveness in AD patients involves dysfunctional
prefrontal and temporal limbic affective-behavioral regulation,
reduced memory-based contextual appraisal, and increased
pain-related internal mentation. This putative mechanism is
supported by studies by Cole et al. (2006, 2011), who found that
AD patients, compared to HS, exhibited greater pain-induced
activity and functional connectivity, particularly with respect
to the dorsolateral PFC (dlPFC). The dlPFC is part of both
the SN and frontal executive networks and engages in explicit,
or cognitive based, affective regulation and goal-based decision
making (Lorenz et al., 2003; Ridderinkhof et al., 2004; Etkin
et al., 2015). The dlPFC and vmPFC are both functionally
and anatomically connected, such that the former modulates
the activity of the latter (Hare et al., 2009). Because of poor
executive function and altered executive RSN connectivity in
AD, particularly with respect to the dlPFC (Seeley et al.,
2007; Kaufman et al., 2010; Agosta et al., 2012), emotional
display, as governed by the vmPFC, may increase via impaired
dlPFC-mediated inhibitory control (Hare et al., 2009; Mograbi
et al., 2012). Here we found no results directly tied to dlPFC
connectivity. This may pertain to our use of rs-fMRI, rather
than an activation-based paradigm such as that used by Cole
et al. (2006) which could induce pain evaluative processing by
this region. Future work could involve investigating seed-based
connectivity measures between prefrontal cortical regions and
their associations with pain-related measures (e.g., behavior,
pain report). In sum, altered resting connectivity of vmPFC
to limbic regions and functional desegregation of prefrontal
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FIGURE 6 | Differential resting state network (RSN) functional connectivity (from GICA1) associated with greater PAINAD slope of change and mean PAINAD scores
in AD patients vs. HS. RSNs are presented in blue, while clusters are red-yellow (encircled in green). (A) Top, significant interaction effects for group (HS vs.
AD) × PAINAD slope of change; top—greater connectivity in AD vs. HS between right (R) temporal pole and ventromedial prefrontal cortex (vmPFC) clusters to a
temporal limbic network (TLN, IC3; clusters thresholded at p < 0.10 for visualization purposes); the interaction is visualized on the right with connectivity (beta values)
plotted against PAINAD slope with superimposed linear regression lines; bottom—reduced connectivity in AD vs. HS between posterior and ventral components of
the DMN (pDMN and vDMN, ICs 1 and 8, left); group connectivity strength differences (Z-transformed partial correlations) visualized on the right.
(B) Right—significant interaction effect for group × mean PAINAD score with greater connectivity in AD vs. HS for an anterior DMN (aDMN, IC 6) component and
ventral SN (vSN, IC 4) component; left—group connectivity strength differences visualized (Z-transformed partial correlations). Coordinates are MNI space.

default mode to salience/medial pain networks may preclude
normal regulation of pain behaviors in AD patients posited
to occur during active pain processing (Kunz et al., 2011,
2015; Karmann et al., 2016). Impaired pain behavior inhibitory
mechanisms may also contribute to prior findings of AD
patients showing increased subjective pain ratings and reduced
pain tolerance (Cole et al., 2006; Oosterman et al., 2009;
Jensen-Dahm et al., 2014; Beach et al., 2015; Karmann et al.,
2016).

Autonomic Pain Response Findings
HR Responsiveness to Pain in AD
Altered autonomic pain responses are also commonly seen in
AD patients, particularly with disease progression (Porter et al.,
1996; Rainero et al., 2000; Kunz et al., 2009; Beach et al., 2015). In
our scanned sample we confirmed reduced HR responses in sAD
patients (MMSE <11). Summary measures showed that reduced

autonomic responses included both threshold and mean HR
response across pressure levels; thus, a higher stimulus threshold
is required to obtain even a modest increase in HR as AD
progresses (Rainero et al., 2000). However, altered autonomic
responsiveness in AD is likely not specific to pain; a number of
studies have found evidence of general autonomic dysfunction
in patients that worsens with advancing disease and involves
impaired sympathetic responsiveness, e.g for valsalva maneuver,
isometric handgrip, sympathetic skin response, and deep breath
30:15 ratio (Algotsson et al., 1995; Zulli et al., 2005; Zakrzewska-
Pniewska et al., 2012; Jensen-Dahm et al., 2015; Nonogaki et al.,
2017). Autonomic dysfunction in AD likely stems from its
early and progressive effects on autonomic related cortex and
subcortical nuclei (Chu et al., 1997; Rüb et al., 2001). However,
few studies have investigated the functional neural correlates of
altered autonomic function in patients particularly with respect
to pain.
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FIGURE 7 | RSN connectivity significantly correlated with HR response intercept and mean HR response within AD subjects. Associated ICs are presented in blue,
clusters are red-yellow. Mean cluster beta-values, representing cluster–network connectivity strength for each subject, are plotted against HR responses
(mild/moderate AD (mAD) green circles, sAD purple circles). (A) Top—plot of positive association between precuneus—posterior DMN component (pDMN, IC 1) and
HR change intercept; bottom—visualization of the cluster. (B) Top—plots of positive and negative associations of precuneus–pDMN and vmPFC–ventral SN (vSN, IC
14) component, respectively, for mean HR change; bottom—visualization of clusters. Clusters visualized at p < 0.05, family-wise error (FWE). Coordinates are MNI
space.

rs-fMRI Correlates of Reduced Pain-Related HR
Responses in AD
Turning to our imaging results, we first found that a precuneus
cluster within the pDMN was positively correlated with HR
response intercept in AD subjects. A nearly identical result
occurred with respect to mean HR response. Because of its
putative role in passive internal and environmental monitoring
(Buckner et al., 2008; Deco et al., 2011; Babo-Rebelo et al., 2016) it
is logical that DMN function is associated with parasympathetic

TABLE 3 | Significant correlations between resting state network connectivity and
pain responses.

Summary of canonical discriminant functions

Canonical correlation Wilks’ lambda p

HR change intercept
pDMN—precuneus 0.43 0.81 0.057
Mean HR change
pDMN—precuneus 0.45 0.80 0.045∗

vSN—vmPFC 0.58 0.67 0.007∗

pDMN, posterior default mode network component; vSN, ventral salience network

component; vmPFC, ventromedial prefrontal cortex. Bold∗ considered significant

at p < 0.05.

predominance (Nagai et al., 2004a; Wong et al., 2007; Napadow
et al., 2008; Fan et al., 2012). Cortical arousal, as indexed by alpha
EEG power, is also associated with DMN activity at rest (Knyazev
et al., 2011; Mayhew et al., 2013a,b). Together, these processes
allow for a calm, but alert brain that can perform necessary
internal monitoring and respond appropriately to physiologic
demands. In AD patients, delta and theta power, associated with
sympathetic suppression (Baharav et al., 1995; Brandenberger
et al., 2001; Yang et al., 2002; Kuo and Yang, 2004), increasingly
predominate during wakefulness as the disease progresses (Petit
et al., 2004; Tsolaki et al., 2014). There is also a well-known
degradation of DMN function as AD advances (Greicius et al.,
2004; Damoiseaux et al., 2012). Interestingly, Benedetti et al.
(2004) found the degree of resting delta power increased with AD
severity; delta power was negatively correlated with autonomic
pain responses in patients and controls. Overall, these findings
suggest that impaired resting cortical arousal, in association
with increasingly reduced DMN function, is in part associated
with reduced autonomic pain responses in AD patients. Our
finding of a positive association of within-pDMN connectivity to
both HR response intercept (threshold) and mean HR response
(magnitude) in AD patients supports this notion.
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Next, we found that network connectivity within the
vSN, specifically a cluster in the left vmPFC, was negatively
correlated with mean HR responses of patients. Discriminant
classification analysis of these connectivity results determined
that the vmPFC cluster relationship with mean HR change best
differentiated patients based on disease severity (i.e., mAD vs.
sAD), compared to within-pDMN connectivity. This vmPFC
finding is particularly compelling. The vmPFC, part of the
CAN (Critchley, 2005; Beissner et al., 2013), is associated
with modulating autonomic balance to enhance vagal output
(Hilz et al., 2006; Ziegler et al., 2009; Motzkin et al., 2014).
The vmPFC is affected early and progressively by AD (Chu
et al., 1997; Van Hoesen et al., 2000; Rüb et al., 2001)
and was hypothesized by Chu et al. (1997) to act as a key
contributor to their autonomic disturbances. Lesion studies
also provide evidence of hemispheric specialization of this
region, whereby right vmPFC inhibits sympathetic drive and left
vmPFC activates parasympathetic output (Damasio et al., 1990;
Bechara et al., 1999; Hilz et al., 2006). Progressive left-sided
vmPFC dysfunction as AD advances may thus predispose
patients toward a parasympathetic predominant autonomic
pain response. Discriminant classification results here suggest
these functional changes may be the primary driver of altered
autonomic pain responses in AD.

Pain Behavior-Autonomic Disconnect
Interactions between nociceptive and autonomic systems
are widespread, allowing for cohesive cognitive, affective,
autonomic and somatomotor responses to internal or external
environmental demands (Critchley, 2005; Benarroch, 2006).
Theories on the influence of internal bodily states on brain
and behavior describe how the vmPFC, along with several
other structures like the insula, hypothalamus, amygdala,
PAG and various brainstem nuclei perform interoceptive
functions (i.e., monitor the body’s internal physiological
condition) to bias perception, emotion and behavior (Critchley
et al., 2004; Critchley and Harrison, 2013; Damasio and
Carvalho, 2013). We found no differences in behavioral
responsiveness to pain stimuli between mAD and sAD patients
here or in prior studies (Beach et al., 2015, 2016). Thus,
the tendency for AD patients, particularly those who are
more advanced, to show blunted autonomic pain responses,
is a confounding phenomenon. Resolving this disconnect
would be advantageous to understanding pain and co-morbid
conditions in AD. For example, recent studies suggest both
pain and autonomic dysfunction contribute to neuropsychiatric
and behavioral symptoms in AD patients (Idiaquez et al.,
2002; Ballard et al., 2011). It seems plausible that the pain
behavior-autonomic disconnect in AD reflects dysfunction at
the neural intersection of affect and its expression, salience
detection, internal mentation, interoception and autonomic
regulation—i.e., the vmPFC. The vmPFC’s overlapping role
in this regard stems from its dense connections to subcortical
structures involved in affect generation (e.g., the amygdala;
Ghashghaei et al., 2007), interoception and physiologic
regulation (e.g., insula, hypothalamus, brainstem; Van Eden
and Buijs, 2000), and cognitive control (e.g., dlPFC, dorsal

anterior cingulate; Öngür and Price, 2000; Hare et al., 2009).
As such, it is implicated in a number of functional networks,
including default mode, limbic and salience (Raichle et al.,
2001; Nagai et al., 2004b; Seeley et al., 2007; Yeo et al., 2011).
Dysfunction of the vmPFC may thus lead to a host of affective,
physiologic, and cognitive effects. This is exemplified by patients
with direct vmPFC lesions, who show reduced autonomic
responses during emotional stimuli, but not neutral stimuli
or during resting conditions (Hilz et al., 2006; Motzkin et al.,
2014).

We found that the vmPFC had increased connectivity to
the TLN in patients with increased pain behaviors. Further,
vSN to vmPFC connectivity in association with mean HR
pain response was best able to differentiate AD severity. In
agreement with a prior hypothesis by Chu et al. (1997), we
propose that dysfunction in the vmPFC is a likely a primary
contributor to the pain behavior-autonomic disconnect seen
as AD advances. Specifically, through mechanisms described
above, low to moderate levels of noxious stimulation may
confer greater degrees of affective-expressive and attentional
processing in patients (Cole et al., 2006, 2011); however this
processing may not be able to override the high threshold
for a sympathetic response imposed by a dysfunctional
vmPFC as AD progresses (Rainero et al., 2000; Beach et al.,
2015).

Limitations and Future Directions
A major strength of this study is its inclusion of AD patients
whose impairment ranged from mild to very severe. Also our
utilization of multiple resting-state runs provides for greater
assurance of reliable connectivity results in our AD group.
Nevertheless, the included sample of sAD patients was limited
by difficulties inherent to scanning patients with advanced
cognitive impairment. Further, while pre-stimulus or RSN
connectivity may influence pain or autonomic-related activity,
we can only make indirect inferences herein as acute pain
responses were not obtained during scanning; the latter may
have been further influenced by time between behavioral testing
and scanning timing, which was up to several days. Future
studies would thus benefit from combining acute pain and
resting-state scanning paradigms to examine the pain-related
‘‘rest-stimulus’’ interaction (Northoff et al., 2010) in AD.
Because no participants met criteria for current depression
CSDD scores were not included as a covariate of non-interest.
Nevertheless, as AD patients scored higher on the CSDD, some
aspects of depression cannot be completely ruled out as a
potential confounder. With respect to autonomic findings, it is
possible that use of alternative measures, such as sympathetic
skin response or HR variability, may have yielded different
results with respect to pain responsiveness and connectivity.
Future studies would benefit from examination of neuroimaging
correlates of multiple autonomic modalities within and outside
of the context of pain in AD. Finally, both permutation-based
testing and FWE correction methods were used to reduce risk
of Type 1 error at a voxel-wise and RSN level. Nevertheless
some caution is necessary in interpreting our results given
the number of RSNs (14 from GICA1, 9 from GICA2) whose
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connectivity was each correlated with two sets of behavioral
summary measures (PAINAD slope and mean; HR intercept and
mean).

Further experiments would greatly aid in our understanding
of neural mechanisms underpinning altered pain in AD. For
example: assessing the relationship between regional atrophy
and white matter integrity with behavioral and autonomic
differences in AD patients and controls; examining pain-related
rest-stimulus interactions as described above; a conjunctional
analysis of multiple types of behavioral (e.g., in-scanner facial
expressions) and autonomic pain responses (HR, sympathetic
skin response, HR variability) in patients and controls across
multiple pain modalities; and finally, analysis of connectivity
associations with subjective pain ratings in patients and
controls.

CONCLUSION

Examining our results as a whole we find: first, that greater
pain behavioral reactivity in AD patients, compared to
controls, is associated with altered connectivity in networks
and structures associated with affect and the regulation
of affective behavioral expression, memory, salience, and
internal mentation; second, an increased threshold for and
generally reduced sympathetic autonomic response in advancing
AD is associated with increasingly dysfunctional connectivity
within networks associated with internal mentation/cortical
arousal and autonomic regulation; thirdly, the pain behavior-
autonomic disconnect seen as AD advances may be rooted in
progressive dysfunction of the vmPFC. These findings represent
an additional step in understanding the neural mechanisms
underlying altered pain responses in AD. They also underscore
the necessity for appropriate assessment and treatment of pain in
patients with AD, regardless of severity.
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