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Presbycusis (age-related hearing loss) is a potential risk factor for tinnitus and
cognitive deterioration, which result in poor life quality. Presbycusis-related tinnitus
with cognitive impairment is a common phenotype in the elderly population. In
these individuals, the central auditory system shows similar pathophysiological
alterations as those observed in Alzheimer’s disease (AD), including cholinergic
hypofunction, epileptiform-like network synchronization, chronic inflammation, and
reduced GABAergic inhibition and neural plasticity. Observations from experimental
rodent models indicate that recovery of cholinergic function can improve memory and
other cognitive functions via acetylcholine-mediated GABAergic inhibition enhancement,
nicotinic acetylcholine receptor (nAChR)-mediated anti-inflammation, glial activation
inhibition and neurovascular protection. The loss of cholinergic innervation of various
brain structures may provide a common link between tinnitus seen in presbycusis-
related tinnitus and age-related cognitive impairment. We hypothesize a key component
of the condition is the withdrawal of cholinergic input to a subtype of GABAergic
inhibitory interneuron, neuropeptide Y (NPY) neurogliaform cells. Cholinergic denervation
might not only cause the degeneration of NPY neurogliaform cells, but may also
result in decreased AChR activation in GABAergic inhibitory interneurons. This, in turn,
would lead to reduced GABA release and inhibitory regulation of neural networks.
Reduced nAChR-mediated anti-inflammation due to the loss of nicotinic innervation
might lead to the transformation of glial cells and release of inflammatory mediators,
lowering the buffering of extracellular potassium and glutamate metabolism. Further
research will provide evidence for the recovery of cholinergic function with the use
of cholinergic input enhancement alone or in combination with other rehabilitative
interventions to reestablish inhibitory regulation mechanisms of involved neural networks
for presbycusis-related tinnitus with cognitive impairment.
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INTRODUCTION

Subjective tinnitus, mainly induced by hearing loss and
emotional states, is heterogeneous, affecting the development of
effective intervention strategies. Presbycusis, commonly referred
to as age-related hearing impairment, is a potential risk factor
for tinnitus (Shargorodsky et al., 2010; Knipper et al., 2013)
and cognitive impairment, including Alzheimer’s disease (AD)
and non-AD dementia (Lin et al., 2011, 2013; Bakhos et al.,
2015; Panza et al., 2015a,b; Taljaard et al., 2016; Thomson
et al., 2017). Thus, presbycusis-related tinnitus and cognitive
impairment often appear stimulaneously within a subset of the
elderly population.

Epidemiological studies have shown that the prevalence
of both presbycusis and dementia increases with age.
Approximately one-third of individuals over 65 years of
age experience hearing loss greater than 40 dB (averaged across
0.5–4 kHz), more than 10% experience dementia, and more than
90% of individuals with dementia have hearing abnormalities
(Marti et al., 2014). Presbycusis is associated with cognitive
decline and late-life cognitive disorders due to peripheral
hearing impairment (Gates and Mills, 2005; Wallhagen et al.,
2008; Gallacher et al., 2012; Lin et al., 2013; Behrman et al.,
2014; Deal et al., 2017; Loughrey et al., 2018) or central auditory
processing dysfunction (Gennis et al., 1991; Gates et al., 2002,
2011). A prospective epidemiological cohort study showed
that observed hearing loss was associated with a greater risk
of incident dementia in a multiethnic population (n = 1881)
followed up over a mean of 7.3 ± 4.4 years (Golub et al.,
2017). Moreover, case-control and population-based studies
have shown that patients with mild cognitive impairment
(MCI), dementia, and AD also have central auditory processing
dysfunction and topographically specific neurodegeneration
resulting from amyloid senile plaques (SP) and neurofibrillary
tangles (NFTs; Sinha et al., 1993; reviewed by Panza et al.,
2015a,b).

It is difficult to establish a causal relationship between
presbycusis and age-related cognitive decline. Nonetheless,
hearing loss could be an early symptom of cognitive decline
in elderly individuals, and therefore an appropriate component
of screening tools for preclinical diagnosis (Wong et al., 2014).
Presbycusis also could be seen as a modifiable factor for
preventing cognitive impairment (Lin, 2011; Lin et al., 2011;
Gurgel et al., 2014; Marti et al., 2014; Panza et al., 2015a,b).
Indeed, timely hearing rehabilitation at the preclinical stage
of cognitive decline, including hearing aids and/or cochlear
implants, may act to suppress tinnitus and protect cognition by
reducing social isolation and depression, reversing maladaptive
neuronal plasticity, and improving neurotrophic support and
working memory (Acar et al., 2011; Langguth et al., 2013; Marti
et al., 2014; Panza et al., 2015a,b; Shore et al., 2016). A whole
body of literature indicates that there is no causal relationship
between hearing loss and general cognitive loss. Presentation of
two age-related disorders together could purely reflect the fact
that both conditions are more common in elderly individuals.

Epidemiological studies have also reported that the prevalence
of tinnitus increases with age and is highest in elderly individuals

aged 60 and 69 years (Adams et al., 1999; Ahmad and
Seidman, 2004). The most common symptom of tinnitus is
cognitive deficits (Andersson et al., 1999; Hallam et al., 2004;
Andersson and McKenna, 2006; Pierce et al., 2012), including
working memory and processing speeds on neurocognitive
testing (Rossiter et al., 2006), cognitive efficiency (Hallam et al.,
2004) and attention control (Stevens et al., 2007). The prevalence
of cognitive deficits in patients with tinnitus is higher than would
be expected by chance. Approximately 70% of patients with
tinnitus had self-reported difficulty concentrating (Andersson
et al., 1999). Compared with healthy controls and those with
acquired hearing loss, patients with tinnitus also report a greater
number of cognitive impairments (Hallam et al., 2004). However,
individuals with normal-hearing and tinnitus report similar
cognitive performance with individuals with normal hearing
without tinnitus (Waechter and Brännström, 2015).

Presbycusis-related tinnitus and cognitive impairment
are associated with aging. The former may reflect an
independent pathological process that shares some etiologies
and pathophysiological alterations with cognitive decline
(Marti et al., 2014). The ApoE ε4 allele is a genetic risk factor
for both age-related hearing loss (Kurniawan et al., 2012)
and AD (Hollands et al., 2017). Cholinergic hypofunction,
chronic inflammation and vascular factors are probably linked
to the pathogenesis of both presbycusis-related tinnitus and
age-related cognitive impairment (Benzing et al., 1993; Emre
et al., 1993; Shulman et al., 2008; Daulatzai, 2010; Haase et al.,
2011; Fortunato et al., 2016; Wu and Chiu, 2016; Panza et al.,
2017). Particularly, cholinergic hypofunction related to aging
can aggravate functional deficits of GABAergic interneurons,
NFTs, chronic systemic inflammation, age-related blood-brain
barrier dysfunction and maladaptive plasticity resulting in an
increased spontaneous firing rate, synchronized epileptic-like
neuronal activity and excitotoxicity (Knipper et al., 2013; Shore
et al., 2016).

While the majority of studies that we refer to are based on
animal models, age-related degeneration of synapses and neural
anatomy in the peripheral and central nervous system (CNS)may
represent a common neurophysiological basis of presbycusis-
related tinnitus and age-related cognitive impairment. We
hypothesize that age-related loss of cholinergic innervation of
various brain structures may be a common link between tinnitus
seen in presbycusis-related tinnitus and age-related cognitive
impairment. Recovery of cholinergic function may be useful to
treat presbycusis-related tinnitus with cognitive impairment by
affecting multiple shared pathophysiological targets.

Declining Cholinergic Function in Humans
With Presbycusis-Related Tinnitus and
Age-Related Cognitive Impairment
Aging and neurodegenerative diseases are the major causes
of declining cholinergic function. Aging leads to cholinergic
hypofunction of the basal forebrain cholinergic complex, which
is the main cholinergic projection to the cerebral cortex
and hippocampus. Gradual age-related loss of cholinergic
function results from decreased trophic support from nerve
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growth factor (NGF) and degeneration of dendritic, axonal
and synaptic structures, which cause brain function decline,
including cognitive impairment (Daulatzai, 2010; Schliebs and
Arendt, 2011).

As in normal aging, patients with MCI and early-stage AD
only exhibit declining cholinergic function without cholinergic
neurodegeneration. Such changes include an imbalance in the
expression of NGF, pro-NGF, the high NGF receptor, trkA
and low NGF neurotrophin p75 receptor, as well as changes
in acetylcholine release and choline uptake (Cohen et al., 1995;
Schliebs and Arendt, 2011). The advanced stages of early-onset
and late-onset AD and psychiatric disorders (e.g., Parkinson’s
disease and Lewy body dementia) are characterized by a severe
loss of NGF receptor positive cholinergic cells in the basal
forebrain (Mufson and Kordower, 1989; Perry, 1990). NGF
receptors play a role in cholinergic neuron death. Decreased
expression of NGF receptors was also observed on among
striatal cholinergic neurons in the AD brain (Boissière et al.,
1996). Furthermore, encapsulated cell implants releasing NGF
bilaterally to the basal forebrain of patients with AD across
12months significantly enhanced cerebrospinal fluid levels of the
cholinergic biomarker choline acetyltransferase (ChAT; Karami
et al., 2015). Age-related loss of the calcium-binding protein,
calbindin-D28K, in basal forebrain cholinergic neurons has been
related to the full range of tau pathology of AD (Ahmadian et al.,
2015).

Cholinergic hypofunction also involves changes in the
presynaptic synthetic enzyme, ChAT and acetylcholine receptor
(AChR) expression. In patients with AD compared with
age-matched healthy controls, there is a 50%–90% decline
in activity of presynaptic ChAT (Perry et al., 1978; Davies,
1979). Moreover, significant declines in enzyme activity that
result in cholinergic dysfunction do not occur until a relatively
late stage (Davies et al., 1999; Tiraboschi et al., 2000).
In contrast, loss of ChAT activity in patients with Lewy
bodies was present in the earliest stage (Tiraboschi et al.,
2002). In the frontal cortex of individuals with AD, different
alterations have been observed in muscarinic (M) subtypes, with
diminished M1 and M2 but increased M4 immunoreactivity,
and normal M1, decreased M2 and increased M4 numbers
of binding sites (Flynn et al., 1995). Cholinergic deficits are
associated with the loss or derangement of nicotinic acetylcholine
receptors (nAChRs) in the brains of those with AD and
Down syndrome (Engidawork et al., 2001), with significantly
decreased alpha 7 and significantly increased alpha 3 receptors
in the frontal cortex in AD. Autopsy brain tissue (Guan et al.,
2000; Lee et al., 2000) and in vivo evaluations (Nordberg
et al., 1997) of patients with AD have consistently shown
decreased nAChR levels. Moreover, after blockade of muscarinic
receptors with scopolamine, young healthy individuals have
a similar pattern of memory and cognitive decline as aged
individuals with cholinergic dysfunction (Drachman et al., 1980).
Nicotinic cholinergic blockade with mecamylamine in elderly
healthy individuals resulted in AD-like cognitive deficits and
specific blood flow abnormalities in the parieto-temporal cortex
(Gitelman and Prohovnik, 1992). Therefore, tacrine and nicotine,
which stimulate the cholinergic system, could significantly

improve attentional function associated with basal forebrain
cholinergic innervation of the cortex and other brain regions in
patients with AD (Lawrence and Sahakian, 1995).

Degeneration of the basal forebrain cholinergic system
due to aging and AD causes impairment of thalamo-cortical
function, reduced connectivity between the thalamo-cortical
system, hippocampus, and other key brain regions, and decreased
cerebral blood flow (CBF), which has been associated with
cognitive disturbances and age-related sensory loss (Daulatzai,
2010). The amygdala is a component of the limbic system
involved in emotion, attention and memory. Differences have
also been observed between the aging human brain and AD in
the loss of cholinergic innervation of the amygdaloid complex
(Benzing et al., 1993; Emre et al., 1993). Compared with
middle-aged controls, no decline in cholinergic input of the
amygdale was observed in immunohistological specimens from
aging participants (Emre et al., 1993). Another study reported
that individuals without dementia but with high rates of SP
showed highly dystrophic neurites, but no significant loss of
fiber innervations (Benzing et al., 1993). However, there does
appear to be a severe and regionally selective loss of cholinergic
innervations in the amygdaloid complex of patients with AD.

Cholinergic hypofunction results in impairments of
the auditory pathway, as well as impaired cortico-cortical
interactions between auditory and other sensory regions. In
patients with mild to moderate AD, dysfunction is observed
in the primary auditory pathway and ascending reticular
activating system, which have cortical cholinergic innervation.
Furthermore, significant delays in I∼V interpeak latency
of brain auditory evoked responses and dysfunction in the
generation of primary auditory cortex evoked potentials, as
well as reduced neuronal activity in the ascending reticular
activating system are observed in AD (O’Mahony et al., 1994).
There is a progressive decline in the attenuation of subsequent
auditory evoked potentials by a visual stimulus from the young
to the healthy elderly to individuals with MCI and AD (Golob
et al., 2015). However, in the human cochlear nucleus, nAchR
beta 2 immunostaining was unchanged from birth to 90 years
(Sharma et al., 2014). Based on observations from human studies,
the loss of cholinergic innervation to various brain structures
may provide a link between tinnitus seen in presbycusis-related
tinnitus and age-related cognitive impairment. Recovery of
cholinergic function during an optimal time window before
the loss of cholinergic neurons may therefore lead to better
outcomes.

Declining Cholinergic Function May
Contribute to the Accumulation of
Beta-Amyloid Oligomers and NFTs in
Age-Related Cognitive and Hearing
Impairments
The neuropathological hallmarks of AD, including amyloid
deposits and tau-immunoreactive NFTs, are also present in
the healthy aging brain. An immunohistological study of serial
sections from 105 autopsy brains of cognitively normal patients
(age range: 40–104 years) showed that NFTs appear earlier than
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amyloid plaques during normal aging. All cases from people
over 48 years old displayed at least a few NFTs (more frequently
in the entorhinal than in the transentorhinal cortex), which
was preceded by tau pathology in these areas rather than in
the brainstem (Tsartsalis et al., 2018). In the auditory system
of individuals with AD, the ventral nucleus of the medial
geniculate body and central nucleus of the inferior colliculus
show SP and NFT distributions with a topographically specific
and consistent pattern of degeneration (Sinha et al., 1993).
Significant age-related reductions in calcium binding proteins
has been observed in later decades in the ventral cochlear
nucleus, which is similar to results for cholinergic neurons
of the basal forebrain in patients with AD, and might be
related to tau pathology (Sharma et al., 2014; Ahmadian et al.,
2015).

Noise exposure is a common cause of tinnitus and hearing
impairment. Animal research shows that exposure to moderate
intensity white noise (80 dB SPL, 2 h/day) can impair
learning and memory in mice (Cheng et al., 2011). Moreover,
it has been demonstrated that the hippocampus is more
susceptible to noise than is the auditory cortex (Cheng et al.,
2016). Indeed, significant increases in peroxidation and tau
hyperphosphorylation in the hippocampus have been observed
after a week of noise exposure, but there were no increases
in the auditory cortex 3 weeks after exposure. Chronic white
noise (100 dB SPL, 4 h/day × 14 day) persistently increased
tau hyperphosphorylation at the same sites that are typically
phosphorylated in the AD brain and glycogen synthase kinase
3β (GSK3β), as well as increased the formation of pathological
NFT tau in the hippocampus and prefrontal cortex (Cui
et al., 2012). Such changes in the frontal cortex also play
an important role in the pathogenesis of frontal dementia,
while changes in the frontal acoustic cortex are seen in the
early onset of communication deficiency (Baloyannis et al.,
2001).

Tau hyperphosphorylation sequesters normal tau and
microtubule-associated proteins into insoluble NFTs and
inhibits microtubule assembly (Iqbal et al., 2013). Tau reduction
prevents cognitive decline, synaptic transmission and plasticity,
and spontaneous epileptiform activity in AD model mice
that overexpress Aβ, without changing the expression of Aβ

(Ittner et al., 2010). Furthermore, tau-deficient AD models
have demonstrated a reversal in the Aβ induced imbalance
of excitation/inhibition, NMDA receptor dysfunction, and
excitotoxicity in both transgenic and wild type mice (Roberson
et al., 2007, 2011).

Loss of cholinergic innervations may play important roles
in both AD and hearing impairment during aging. The
AChE inhibitor donepezil can protect against Aβ induced
neurotoxicity by enhancing protein phosphatase 2A (PP2A)
activity and inhibiting GSK3β activity via the activation of
nAChRs, which reduces tau-induced neuronal toxicity and
neurodegeneration (Bitner et al., 2009; Noh et al., 2009).
In the brain, mAChRs may mediate cognitive function and
neuropsychiatric symptoms and they are also considered
potential targets in AD and schizophrenia (Clader and Wang,
2005; Poulin et al., 2010; Foster et al., 2014). M1 type mAChRs,

mainly present in the striatum, hippocampus and neocortex,
are activated by M1 specific agonists doses without adverse
effects. Such activation could improve learning, memory,
synaptic plasticity, and cognitive functions via the activation
of extracellular signal-regulated kinases (Berkeley et al., 2001;
Ragozzino et al., 2012). In A7KO-APP AD transgenic mice,
the absence of alpha-7 nAChRs leads to Aβ accumulation
and oligomerization, exacerbating early-stage cognitive
decline and septohippocampal pathology (Hernandez et al.,
2010).

Cholinergic Denervation of NPY
Neurogliaform Cells May Be Involved in
Presbycusis-Related Tinnitus With
Cognitive Impairment
Reduced functional connectivity in the brains of patients with
AD or MCI, as well as the elderly with cognitive complaints
or cognitively normal ApoEε4 carriers, reflects activity changes
within the default-mode network, which is most active at rest and
deactivated during cognitive tasks (Ruan et al., 2016). The loss
of cholinergic innervations and reduced GABAergic inhibition
might play important roles in such changes.

Distinct GABAergic cell types project to the surface of
pyramidal cells in the cortex and hippocampus, forming neural
circuits for inhibitory control of brain function and plasticity.
Functional remodeling of GABAergic neurotransmission has
been observed in the human brain with AD (Limon et al., 2012).
Moreover, GABA currents in the temporal cortex of the AD brain
show age-related reductions, which were associated with reduced
mRNA and protein for the main GABA receptor subunits. In the
ADbrain compared with controls, α1 and γ2 transcription shows
down-regulation, while but α2, β1 and γ1 transcription shows
up-regulation. In patients with AD and/or epilepsy, deficits of
GABAergic interneurons are associated with aberrant network
activity, including hyperexcitability, clusters of hyperactive and
hypoactive neurons, and network/spontaneous epileptiform
activity (Olney, 1995; Nägerl et al., 2000; Snider et al., 2005; Palop
and Mucke, 2009).

Patients with tinnitus show alterations in global brain
networks, including decreased default-mode network activity,
and increased activation of the auditory cortex and amygdala
(Schlee et al., 2009; Elgoyhen et al., 2015). These alterations
may result from decreased fuctional connectivity from
peripheral and other brain regions. Tinnitus may be a
consequence of maladaptive plasticity-induced disturbances
of excitation-inhibition homeostasis with net down-regulation
of inhibitory neurotransmission in the central auditory pathway.
Subsequently, the central auditory system compensates for
decreased input by up-regulating network activity among
central circuits (Salvi et al., 2000; Knipper et al., 2013; Shore
et al., 2016). Decreased peripheral input induced by auditory
trauma and aging leads to altered cortical activity patterns,
including increased spontaneous firing rates, synchronized
epileptic-like neuronal activity, and basal excitatory postsynaptic
potentials (for a review, see Knipper et al., 2013). Plastic
tinnitus-related changes include loss of glycinergic inhibition in
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the adult dorsal cochlear nucleus and/or loss of GABAergic
inhibition in the inferior colliculus and higher centers,
resulting in aberrant cortical activity patterns (Wang et al.,
2011).

Although cholinergic drugs can temporarily suppress tinnitus
in some patients, these interventions cannot eliminate the
pathological neural activity. Mounting evidence from clinical
trials suggests that vagus nerve stimulation (VNS)-based targeted
plasticity therapies are effective in patients with neurological
diseases (Hays, 2016). VNS in combination with auditory
stimulation can reverse pathological neuroplastic changes of
the auditory cortex toward physiological neural activity and
synchronicity via M cholinergic neuromodulation (Engineer
et al., 2013; Boji ć et al., 2017; Tyler et al., 2017). Based on
these studies in humans, GABAergic interneuron deficits in
the auditory cortex and limbic system may play a key role in
presbycusis-related tinnitus with cognitive impairment.

Loss of Cholinergic Innervation and Reduced
Inhibition of NPY Neurogliaform Cells in Age-Related
Cognitive Impairment
Animals studies have shown that GABAergic interneuron
deficits result in aberrant excitatory neuronal activity in
mouse AD models (Palop et al., 2007; Roberson et al.,
2007, 2011; Verret et al., 2012; Iaccarino et al., 2016). Both
nAChRs (Buhler and Dunwiddie, 2002; Maloku et al., 2011;
Zappettini et al., 2011) and mAChRs (Pitler and Alger,
1992; Zhong et al., 2003; González et al., 2011; Yi et al.,
2014) are expressed in GABAergic interneurons and mediate
GABA release from these neurons. Neuropeptide Y (NPY)-
neurogliaform (Faust et al., 2015), somatostatin (Faust et al.,
2015; Muñoz et al., 2017) and parvalbumin (Yi et al., 2014)
subtype interneurons express AChRs and receive cholinergic
excitatory input. NPY-neurogliaform cells primarily reside
within both the stratum radiatum and lacunosum-moleculare
of the hippocampus, as well as the superficial and deep
layers of the neocortex, which are significantly decreased in
the hippocampus of animal models with AD or seizures
(Mazarati and Wasterlain, 2002; Faust et al., 2015). However,
optogenetic stimulation of cholinergic fibers in transgenic mice
expressing the human ApoE ε4 allele has been shown to
abolish partial neuronal loss in the entorhinal cortex induced
by abnormal hyperactivity in dentate networks (Bott et al.,
2016).

The activation of both the α(7) nAChR and α4β2 nAChR
subtypes could enhance GABA release in hippocampal
synaptosomes (Zappettini et al., 2011). Furthermore,
α(4)β(2) nAChR agonists may control epigenetic alterations
induced by glutamic acid decarboxylase 67 (GAD 67) increases in
GABAergic neurons better in schizophrenia than do α(7) nAChR
agonists (Maloku et al., 2011). M1 mAChRs in parvalbumin
interneurons could improve GABAergic transmission in
hippocampal and prefrontal cortical pyramidal neurons
(Yi et al., 2014). Moreover, activation of M1–M5 mAChRs
in rat hippocampal neurons in vitro increases GABAergic
inhibitory transmission (González et al., 2011). Treatment
with Huperzine A leads to robust and sustained seizure

resistance in genetic epilepsy models with voltage-gated sodium
channel mutation via the activation of mAChRs and GABAA
receptors (Wong et al., 2014). However, nAChR-mediated
GABAergic cortical inhibition in rats, related to increased
high gamma frequency visible on electroencephalogram,
might also be involved in the Huperzine A anticonvulsant
mechanisms (Gersner et al., 2015). Thus, solely based on
the animal models, the loss of cholinergic innervation of
NPY-neurogliaform cells in various brain structures contributes
to aberrant excitatory neuronal activity in age-related cognitive
impairment.

Cholinergic Denervation of NPY Neurogliaform Cells
in the Central Auditory System in Presbycusis With
Tinnitus
In animal studies, changes in inhibitory properties that are
induced by aging and acoustic trauma, similar to deafferentation
plasticity changes in other mammalian sensory systems, have
been observed from the cochlear nuclei to the auditory system.
The cochlear nuclei of aged rats have lower glycine levels and
altered glycine receptor subunit compositions compared with
young rats (Banay-Schwartz et al., 1989). However, in the inferior
colliculus of rats, age-related loss of GABAergic inhibition
caused by the loss of the biosynthetic enzyme GAD, as well as
reduced GABA levels and GABA release, may be involved in the
abnormal perception of signals in noise and the deterioration of
speech discrimination (Milbrandt et al., 1994, 2000; Raza et al.,
1994).

Age-related decreases in GAD have been observed in the
primary auditory cortex, parietal cortex and hippocampus,
with more significant reductions observed in the auditory
cortex of rats (Stanley and Shetty, 2004; Ling et al., 2005).
Age-related alterations in GABA receptor subunit composition
have also been observed in the inferior colliculus and
primary auditory cortex of aged rats, such that there are
changes to the wild-type receptor proportions (Caspary et al.,
2013). These presynaptic and postsynaptic changes may
contribute to increased spontaneous activity in neurons of
the inferior colliculus and layer-specific increases in the
spontaneous activity of the primary auditory cortex (Ling
et al., 2005). Following sound exposure in rats with tinnitus,
single units within the medial geniculate body of rats
exhibited enhanced spontaneous firing, altered burst properties,
and increased rate-level function slopes, which acts to alter
sensory gating and enhance the gain of neuronal networks
in the auditory cortex and limbic centers (Kalappa et al.,
2014).

Inhibitory transmission and survival of NPY-neurogliaform
cells in the hippocampus and prefrontal cortex is mainly
under cholinergic regulation in experimental rodents
(Mazarati and Wasterlain, 2002; Faust et al., 2015; Overstreet-
Wadiche and McBain, 2015; Bott et al., 2016). Therefore,
we hypothesized that withdrawal of nicotinic cholinergic
input to NPY neurogliaform cells is a key component of the
pathological mechanism underlying presbycusis with tinnitus
and cognitive impairment, solely based on animal models.
The enhancement of GABA release from NPY-neurogliaform
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cells and the reversal of the imbalance between excitation
and inhibition in the central auditory system following the
recovery of cholinergic function may provide an important
target for interventions to treat presbycusis with tinnitus
(Figure 1).

Beyond the central auditory system, axosomatic synapses
between the medial olivocochlear efferent system and outer
hair cells are cholinergic. A feedback system eliciting efferent
suppression via alpha-9/alpha-10 nAChRs can improve the
detection of signals in background noise, enable selective
attention to particular signals, and protect the periphery from
damage caused by overly loud sounds (Maison et al., 2002;
Elgoyhen et al., 2009). Our previous animal studies have shown
that aging and ototoxic drugs exacerbate the degeneration of
the mouse medial olivocochlear efferent system (Ruan et al.,
2014a,b,c). Furthermore, histopathological studies of the human
cochlear have shown that those with presbycusis and tinnitus had
a significantly greater loss of outer hair cells in the basal and
upper middle turns, and greater atrophy of the stria vascularis
in the basal turn compared with those with presbycusis without
tinnitus (Terao et al., 2011). Therefore, nAChR activation in the
peripheral medial olivocochlear efferent system may also play a
role in the suppression of presbycusis with tinnitus.

Nicotinic Denervation Induced
Immuno-Dysregulation May Involved in
Presbycusis-Related Tinnitus With
Cognitive Impairment
Observations from clinical studies indicate that, glial cell
activation and chronic systemic inflammation during normal
and pathologic brain aging are related to poor cognitive
performance and a risk of cognitive decline in dementia, vascular
dementia, and AD (Schmidt et al., 2002; Weaver et al., 2002;
Engelhart et al., 2004; Yaffe et al., 2004). Inflammation plays a
critical role in the fluctuation of non-cognitive neuropsychiatric
symptoms (Kat et al., 2008; van Gool et al., 2010). Indeed,
free radical-induced oxidative damage and chronic inflammation
play important roles in the development of dysfunctional
connections between the central cortex and the inner ear in
hearing disorders (Haase et al., 2011).

Age-related increase in GFAP positive glial cells have been
observed in the cochlear nucleus (Sharma et al., 2014). In a cross-
sectional cohort of 360 community-dwelling individuals aged
60 years and over, increased inflammatory markers and white
blood cell count were associated with worsening presbycusis,
with the strongest positive correlation seen in those over 75 years
(Verschuur et al., 2014). Furthermore, the inflammatory cytokine
TNF-α (rs1800630) and the TNF receptor superfamily 1B
(rs1061624) have been related to an increased risk of hearing
damage in a population-based cohort study of elderly Japanese
individuals (Uchida et al., 2014).

Chronic inflammation also leads to blood brain barrier
(BBB) vulnerability and brain hypoperfusion. Increased release
of neurotoxic and inflammatory mediators has been observed
in the brain microvessels of patients with AD (Grammas,
2011). Further, chronic inflammation causes BBB dysfunction

and increased vascular permeability during aging, as well as
in AD and other neurodegenerative disorders (Farrall and
Wardlaw, 2009; Erd"o et al., 2017). Moreover, the loss of
cholinergic innervation to the basal forebrain results in decreased
CBF (Martin et al., 1991; Daulatzai, 2010). Compared with
neurologically healthy individuals without the ApoE ε4 allele,
those with the ApoE ε4 allele show greater regional CBF
reductions in the brain, making it vulnerable to pathological
alterations in AD (Thambisetty et al., 2010; Hollands et al., 2017)
and presbycusis (Kurniawan et al., 2012).

These results suggest that chronic inflammation and
hypoperfusion play important roles in the pathogenesis
of presbucusis-related tinnitus with cognitive impairment.
Recovery of cholinergic function with AChE inhibitors,
including donepezil, tacrine, pyridostigmine, galantamine,
rivastigmine and Huperzine A shows potential disease-
modifying benefits in the treatment of neuropsychiatric
symptoms in patients with AD (Linton, 2005; Rafii et al., 2011)
and dementia (Freund-Levi et al., 2014), as well as for the
musical hallucinations that occur with hearing loss (Ukai et al.,
2007; Zilles et al., 2012; Blom et al., 2014, 2015) or hearing
loss with tinnitus (Strauss and Gertz, 2009). However, there
is no mechanistic explanation for the relationship between
cholinergic hypofunction and chronic inflammation alterations
in presbucusis-related tinnitus with cognitive impairment.

Loss of Cholinergic Innervation and Chronic
Systemic Inflammation in Age-Related Cognitive
Impairment
Observations from experimental rodent models indicate
that anticholinergic activity might initiate and/or accelerate
AD pathology in the tauopathy mouse model by enhancing
neuroinflammation, including microglial activation. The
recovery of lost cholinergic innervation or function by the
cholinesterase inhibitor donepezil or Huperzine A could
alleviate tau pathology as well as age- and AD-related chronic
neuroinflammation (Yoshiyama et al., 2015), and D-galactose-
induced neurovascular damage (Ruan et al., 2014d). Moreover,
chronic inflammation induced cognitive decline in rats with
cerebral hypoperfusion (Wang et al., 2010).

The mechanisms underlying cholinergic anti-inflammation
were first observed in human immune cells (Wang et al.,
2003). The observations suggested that nicotinic activation of
α7nAChR in human macrophages or monocytes is necessary to
attenuate the systemic inflammatory response and inhibit the
production of proinflammatorymediators by suppression of I-κB
phosphorylation and nuclear factor-κB transcriptional activity
(Wang et al., 2003; Yoshikawa et al., 2006).

Subsequently, a similar anti-inflammatory mechanism was
also observed in rat CNS. Increased brain ACh induced by
Huperzine A activates cholinergic-mediated suppression of
nuclear translocation of NF-κB, as well as inducing oxidative
stress, glial cell activation, and neuroinflammation in rats
with ischemia (Wang et al., 2008). Huperzine A combines
tetrameric AChE (G4) and indirectly activates both muscarinic
and nicotinic types of AChRs (Wang et al., 2010). Moreover,
the obvious overlap of tetrameric AChE and α7nAChRs in
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FIGURE 1 | Increased level of Ach with HupA inhibition of AChE activation or VNS, resulting in activation of AChRs, in NPY-neurogliaform neurons.The increased
GABAergic signaling may regulate inhibitory tone and network activity by phasic or synaptic transmission, tonic activation and volume transmission. The adhesion
complex of Neuroligin-1 (NL1) and β-neurexin is involved in the maintenance of synapses. The C-terminal fragment of NL-1 and NMDA receptors interacts with the
PDZ domains of PSD-95 in the postsynaptic region of neurons, and mediates excitatory synaptic efficacy and plasticity. Transformed astrocytes contribute to neuron
hypersynchronicity and excitability, which mainly occurs by reduced expression of potassium inward-rectifying channels (Kir4.1), reduced gap junctions, impaired
glutamate metabolism and increased release of inflammatory mediators. VNS, vagus nerve stimulation; NPY, neuropeptide Y; G4-ACh, tetrameric
acetylcholinesterase; AChR, acetylcholine receptor; EAAT, glutamate transporter of astrocytes; and GAT, GABA transporter.
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the hypothalamus, hippocampus, amygdale, cerebral cortex and
midbrain of humans and rats (reviewed by Damar et al., 2017)
indicates that cholinergic anti-inflammatory effects occur mainly
via α7nAChRs in glial and neuronal cells (Pavlov and Tracey,
2006; Wang et al., 2008).

The activation of α7nAChRs in neural cells suppresses
central inflammatory responses in mice with Parkinson disease
(Stuckenholz et al., 2013), stroke (Han et al., 2014), or traumatic
brain injury (Kelso and Oestreich, 2012), and also suppresses
glutamate-induced neurotoxicity in vitro (Shimohama et al.,
1998; Iwamoto et al., 2013). Futhermore, the activation
of α7nAChRs in astrocytes down-regulates Aβ1–42-induced
increases in NF-κB in in vitro (Xie et al., 2016), and
improves neurotrophic cytokine S100B secretion, which is
decreased in the cerebrospinal fluid in rat models of dementia
(Lunardi et al., 2013). Moreover, the upregulation of α7nAChR
expression induced by neuregulin in microglial cells suppresses
neuroinflammation in vitro (Mencel et al., 2013). Based on the
above results from clinical and animal studies, loss of cholinergic
innervations results in reduced cholinergic anti-inflammatory
effects and glial activation, which further aggravates the loss
of GABAergic interneurons. Therefore, we hypothesize that
the withdrawal of nicotinic cholinergic input induces chronic
inflammation, acting as another key step in the pathological
mechanism underlying presbycusis with tinnitus and cognitive
impairment.

Induction of Immuno-Dysregulation by Nicotinic
Denervation in the Central Auditory System May
Contribute to Presbycusis-Related Tinnitus With
Cognitive Impairment
Animal research suggests that auditory cortical cholinergic
inputs from the basal forebrain in adult ferrets contribute to
cognitive functions related to the processing of auditory stimuli,
including normal auditory perception and adaption to changes
in spatial cues (Leach et al., 2013). Furthermore, the central
auditory pathway, including the inferior colliculus and nuclei
of the lateral lemniscus, but not the cochlear nucleus, show
significantly reduced ChAT activity in aged Fischer-344 rats
(Raza et al., 1994). A significant decrease in muscarinic receptors,
but not ChAT activity, in the dorsal hippocampi of aged rats
has also been observed (Lippa et al., 1980). Moreover, noise-
induced hyperactivity in fusiform cells of the dorsal cochlear
nucleus of adult male Syrian golden hamsters has been shown
to be inhibited by the cholinergic agonist carbachol (Manzoor
et al., 2013). There is also evidence in experimental animals that
chronic inflammation contributes to the dysfunction of auditory
pathways (Haase et al., 2011; Menardo et al., 2012; Tan et al.,
2016). Acute and chronic noise exposure in C57BL/6 mice (Tan
et al., 2016) and senescence-accelerated mouse prone 8 mice
(Menardo et al., 2012) also results in increased inflammatory
responses in the cochlea.

Chronic inflammation leads to BBB dysfunction and
increased vascular permeability during aging, as well as in AD
and other neurodegenerative disorders (Zlokovic, 2011; Takeda
et al., 2014; Erd"o et al., 2017). Increased vascular permeability
facilitates the spread of peripheral inflammation into the brain

and causes more severe non-cognitive symptoms in AD animal
models (Takeda et al., 2013), as well as brain hypoperfusion
(Zlokovic, 2011; Takeda et al., 2013). A prominent alteration
following BBB breakdown is the decrease in the levels of tight
junction proteins, which has been observed in an aging animal
model and dementia-related diseases (Zlokovic, 2008; Kalaria,
2010; Ruan et al., 2014d).

Loss of cholinergic input during aging and neurodegenerative
diseases causes decreased ACh release and brain hypoperfusion.
Reduced sensory input can also lead to decreased ACh release
in the neocortex and hippocampus (Penschuck et al., 2002),
and decreased hippocampal blood flow (Cao et al., 1992).
Hypoxia and ischemia clearly contribute to the pathogenesis
of sensorineural tinnitus, and some agents can effectively
suppress tinnitus by improving the blood supply and inhibiting
chronic inflammatory damage in the acute stage (Mazurek
et al., 2006). CBF reductions and hypoxia may not only
result in the accumulation of hyperphosphorylated tau and
filament formation in experimental animals (Gordon-Krajcer
et al., 2007), but also cause increased β-secretase transcription
(Zhang et al., 2007), decreased Aβ clearance due to loss or
oxidization of lipoprotein receptors in endothelial cells and
astrocytes (Bell et al., 2009; Owen et al., 2010), Reduced
glutamate reuptake by astrocytes (Boycott et al., 2007), and the
accumulation of oxidative damage in the vascular endothelium
and high metabolic neurons (Fernández-Checa et al., 2010;
Figure 1).

Based on animal research, we hypothesize that the cholinergic
anti-inflammation mediated by α7nAChR may be one potential
mechanism by which hearing loss occurs with tinnitus
or cognitive impairment. AChE inhibitors might suppress
presbycusis accompanied by tinnitus and may indirectly protect
auditory and cognitive function by activating α7nAChR-
mediated anti-inflammatory effects in various cells of the brain’s
neural vascular unit. This might include the suppression of
glial and endothelial activation, neuroinflammation, tau-induced
neurotoxicity and decreased gap junctions, as well as improved
glutamate and extracellular potassium reuptake by astrocytes.
These effects inhibit network hyperexcitability and excitotoxicity
in the auditory pathway (Figure 1).

CONCLUSION

Presbycusis is a risk factor for tinnitus and cognitive decline.
Cholinergic hypofunction might be a major contributor
to presbycusis-related tinnitus and age-related cognitive
impairment. Cholinergic denervation in the CNS, might lead to
the reduction of both inhibition by NPY neurogliaform cells and
cholinergic anti-inflammatory effects on the neural vascular unit
mediated by nAChRs, as well as suppression of GSK3β activity
and tau-induced neurodegeneration.

Implementing VNS and AChE inhibitors alone or in
combination with other hearing rehabilitative interventions
during the optimal time window may lead to greater disease-
modifying benefits in the treatment of presbycusis-related
tinnitus with cognitive impairment. However, in the evidence
reviewed here, data have mainly been obtained from animal
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experiments. Age-related hearing loss and AD in humans
become apparent very slowly, and are associated with a
long preclinical period. Therefore, animal models with a
life expectancy of approximately 3 years are not really
comparable to humans with these disorders. Further studies
are required to elucidate the roles played by M or N
cholinergic neuromodulation and distinct GABAergic cell types
in the pathophysiological process. Furthermore, it must be
investigated whether mechanisms underlying peripheral and
central cholinergic regulation are the same.

The potential relationship between tinnitus and depressive
systems or affective disorders, and the mechanisms underlying
this, should also be investigated in rodents. In addition,
dynamic changes in CNS-derived biomarkers of cholinergic
hypofunction and neuronal impairment in peripheral body fluids
should be investigated as possible screening tools for preclinical
or early stage disease, predictors of diagnosis, predictors of
intervention outcomes. Finally, innovative, specific and selective

neuromodulatory methods and multi-center longitudinal cohort
studies are also urgently needed.
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