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that are also present in the SC. Ascending auditory input to the SC 
comes from the inferior colliculus (IC), particularly the external 
cortex and the nucleus of the brachium (King et al., 1998; Nodal 
et al., 2005), where coarse topographic representations of sound 
azimuth have been described (Binns et al., 1992; Schnupp and 
King, 1997).

It is well established that the cortex can modulate signal 
processing in the SC via descending corticofugal connections (e.g. 
Diamond et al., 1969; Wallace et al., 1993). Early work in the cat 
suggested that cortical infl uences have a much greater infl uence 
on the visual responses of SC neurons than on their responses to 
other sensory modalities (Stein, 1978). However, subsequent studies 
showed that cortical deactivation can greatly reduce the responses 
of SC neurons to both somatosensory (Clemo and Stein, 1986) 
and auditory stimulation (Meredith and Clemo, 1989) too. The 
cortical areas in the cat that have been the focus of these studies are 
the anterior ectosylvian sulcus (AES) and the rostral aspect of the 
lateral suprasylvian sulcus (rLS), which both contain a mixture of 
visual, somatosensory, and auditory neurons. Deactivation of either 
of these cortical areas also compromises multisensory interactions 
at both single SC neuron (Jiang et al., 2001; Alvarado et al., 2007) 
and behavioral (Jiang et al., 2002) levels, even when responses to 
modality-specifi c stimuli are only slightly altered. These fi ndings 
therefore suggest that the major role of descending cortical inputs 
to the SC is to enable different modality stimuli to be combined 
and integrated in a behaviorally-relevant fashion.

INTRODUCTION
The superior colliculus (SC) is a multisensory integration center 
located in the midbrain (reviewed in Stein, 1998; King, 2004), 
which is responsible for directing behavioral responses toward 
specifi c points in space (Sprague and Meikle, 1965). The SC is the 
only structure in the mammalian brain where a two-dimensional 
auditory spatial map has been described (Palmer and King, 1982; 
Middlebrooks and Knudsen, 1984; King and Hutchings, 1987). 
This auditory spatial representation, found in the deeper layers, is 
topographically aligned with the visual and somatosensory maps 
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Damage or deactivation of the SC in the cat impairs both 
modality-specifi c (Lomber et al., 2001) and multisensory (Burnett 
et al., 2004) orientation behavior. Similar defi cits in auditory spa-
tial orienting in this species have been described after cooling 
several different cortical fi elds, including not only AES, but also 
the primary auditory cortex (A1), dorsal zone (DZ), and posterior 
auditory fi eld (PAF) (Malhotra and Lomber, 2007; Lomber and 
Malhotra, 2008). This raises the possibility that auditory cor-
tical areas other than AES might contribute to the orientation 
responses mediated by the SC. However, Meredith and Clemo 
(1989) showed that the auditory subregion of AES (referred to 
as FAES) provides the only robust projection to the SC and that 
activation of this cortical area can drive auditory SC neurons, 
whereas this is not the case for other parts of auditory cortex. 
Although there is also anatomical evidence in cats for sparser 
inputs to the SC from several other parts of non-primary auditory 
cortex (Meredith and Clemo, 1989; Winer et al., 1998), including 
the secondary auditory cortex (A2) and areas of multisensory 
affi liation, it is unknown what role these descending projections 
have in SC function. The sources and terminal distribution of 
descending auditory cortical inputs to the SC in other species have 
not so far been investigated, so it is presently unclear whether an 
area equivalent to AES dominates corticotectal infl uences in the 
same way as it does in the cat.

In this study, we used a combination of retrograde and anter-
ograde tracing techniques to investigate auditory corticotectal 
projections in the ferret, a species that is becoming increasingly 
popular for investigations of sensory processing and, in particular, 
the neural basis of hearing. Ferrets are naturally curious, intel-
ligent animals that are well suited for behavioral and physiologi-
cal studies (e.g., Fritz et al., 2003; Kacelnik et al., 2006; Allman 
et al., 2009; Bajo et al., 2010). However, very limited information 
is available on the organization of the auditory cortex (Kelly et al., 
1986; Kowalski et al., 1995; Wallace et al., 1997), and only recently 
have auditory cortical fi elds outside the primary areas have been 
described (Nelken et al., 2004; Bizley et al., 2005). Therefore, a 
description of the corticotectal projection in the ferret will con-
tribute to our understanding of the organization and functions of 
the different auditory cortical fi elds in this species. Additionally, 
this will facilitate comparison with existing data from the cat, an 
animal model in which the different auditory cortical fi elds and 
their connections are well established.

MATERIALS AND METHODS
Sixteen adult ferrets (Mustela putorius furo) of both sexes were used 
in this study. The experiments were approved by a local Ethical 
Review Committee at the University of Oxford, and performed 
under license from the UK Home Offi ce in accordance with the 
Animal (Scientifi c Procedures) Act 1986.

Four animals received neuronal tracer injections in the SC and 
twelve animals at different locations within the auditory cortex. A 
summary of neuronal tracers and injection locations in each animal 
is provided in Table 1. To minimize the number of animals used, 
many of the cases with injections in the cortex were also used for 
studying other descending corticofugal connections (Bajo et al., 
2007) and the connectivity between the auditory and visual cortices 
(Bizley et al., 2007).

The tracers used were dextran amine conjugated with biotin 
(dextran biotin fi xable, BDA, 10,000 MW; Molecular Probes Inc, 
Eugene, OR, USA) or rhodamine (dextran tetramethylrhodamine 
lysine fi xable, 3,000 and 10,000 MW Fluororuby, FR; Molecular 
Probes). Both tracer solutions (diluted 10% in 0.9% saline) 
were injected by iontophoresis (5 µA of positive current in 7 s 
pulses for 15 min) through a glass micropipette with a 15–30 µm 
tip diameter.

SURGICAL PROTOCOL
All animals were examined otoscopically to ensure that both ears 
were clean and disease-free. After sedation with Domitor (0.1 mg/
kg body weight i.m. medetomidine hydrochloride; Pfi zer Ltd, Kent, 
UK), anesthesia was induced with Saffan (2 ml/kg body weight 
i.m. alfaxalone/alfadolone acetate; Schering-Plough Animal Health, 
Welwyn Garden City, UK) and maintained with an intravenous 
infusion of a mixture of Domitor (0.022 mg/kg/h) and Ketaset 
(5 mg/kg/h ketamine hydrochloride; Fort Dodge Animal Health, 
Southampton, UK) in saline solution. Dexadreson (0.5 mg/kg/h 
dexamethasone; Intervet UK Ltd, Milton Keynes, UK) and Atrocare 
(0.006 mg/kg/h atropine sulfate; Animalcare Ltd, York, UK) were 
added to the infusate to avoid cerebral edema and minimize pul-
monary secretions, respectively. In each case, the animals received 
perioperative analgesia with Vetergesic (0.15 ml i.m. buprenorphine 

Table 1 | Tracer injections in each animal used in this study.

Animal Location BF Tracer Size (mm3)  Cutting plane

  (kHz)  center (Halo) (Cortex/SC)

*F0033 SC – FR 0.06 (0.75) F/C

F0034 SC – FR 0.04 (0.62) F/C

F9921 SC – FR 0.52 (3.68) C

F9806 SC – BDA 0.13 (1.52) C

F0252 A1 15 FR 0.07 (1.02) F/C

  1 BDA 0.18 (1.39) 

F0268 A1 7 FR 0.04 (1.2) F/C

 AAF 7 BDA 0.05 (0.22) 

F0404 A1 7 FR 0.04 (0.2) F/C

 AAF 7 BDA 0.037 (0.69) 

F0522 A1 (MEG) – FR 0.46 (22.02) C

F0532 A1 20 FR 0.22 (3.09) C

 AAF 20 BDA 0.04 

*F0505 AVF – BDA 1.31 (7.13) F/C

*F0523 AVF/ADF – FR 0.71 (1.68) C

 ADF  BDA 0.03 (0.39) 

*F0535 ADF 10 BDA 0.01 C

 *AVF Noise FR 0.14 (7.2) 

*F0504 PPF/PSF – BDA 0.54 (6.09) F/C

F0533 VP Broad BDA 0.01 (0.13) C

  low

*F0536 PSF 2 BDA 0.05 (0.39) C

 A1 19 FR 0.12 (0.84) 

*F0717 PSF – BDA 0.36 (1.2) C

Cases in bold are those illustrated in the fi gures and the asterisks label the cases 
used for 3D reconstruction and stereological quantifi cation of corticotectal axon 
terminals.
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In fi ve cases with injections in the auditory cortex and two cases 
with injections in the SC, both hemispheres were dissected and gently 
fl attened between two glass slides. In those cases, the cortex was later 
sectioned in a fl at tangential plane and the rest of the brain cut in the 
coronal plane. The other brains were sectioned in the standard coro-
nal plane (Table 1); 50 µm sections were cut on a freezing microtome 
and six sets of serial sections were collected, with one section in every 
three (1/150 µm) being used to analyze the tracer labeling.

Fluororuby was visualized immunocytochemically (primary 
anti-tetramethylrhodamine, rabbit IgG, dilution 1:6000; Molecular 
Probes; followed by secondary biotinylated anti-rabbit IgG H + L, 
made in goat, dilution 1:200; Vector Laboratories), whereas BDA 
was incubated in ABC (avidin biotin peroxidase, Vectastain Elite 
ABC Kit; Vector Laboratories, Burlingame, CA, USA) only. After 
washing the sections several times in 10 mM phosphate buffer 
saline (PBS) with 0.1% Triton X

100
 (PBS-Tx), they were incubated 

under gentle agitation overnight at +5°C in the primary antibody. 
The sections were again rinsed several times in PBS-Tx and then 
incubated in the biotinylated secondary antibody for 2 h. After 
further rinsing, the sections were incubated for 90 min in avidin 
biotin peroxidase (Vectastain Elite ABC kit; Vector Laboratories). 
Rinsing in PBS was followed by incubation in the chromogen solu-
tion with 3,3′-Diaminobenzidine (DAB; Sigma-Aldrich Company 
Ltd, Dorset, UK). Sections were incubated in 0.4 mM DAB and 
9.14 mM H

2
O

2
 in 0.1 M PB until the reaction product could be seen. 

When BDA and FR were present in the same tissue, the BDA was 
fi rst visualized using ABC followed by DAB enhanced with 2.53 mM 
Nickel ammonium sulfate. Immunocytochemistry to reveal FR was 
then performed, as described above but without nickel enhance-
ment of the DAB. Reactions were stopped by rinsing the sections 
several times in 0.1 M PB. Sections were mounted on gelatinized 
glass slides, air dried, dehydrated, and coverslipped.

To identify the different subdivisions of SC and auditory cortex 
(Bajo et al., 2007), one set of serial sections (1 every 300 µm) was 
counterstained with 0.2% cresyl violet, another set was selected to 
visualize cytochrome oxidase (CO) activity, and a third set was used 
to stain the non-phosphorylated form of neurofi lament H protein 
SMI

32
. Other sections from our archive stained with AChEase and 

Gallyas were also used for cytoarchitectonic purposes. CO stain-
ing was obtained after 12 h incubation with 4% sucrose, 0.025% 
Cytochrome C (Sigma-Aldrich) and 0.05% DAB in 0.1 M PB at 
+37°C. Monoclonal mouse anti-SMI

32
 (Covance Research Products 

Inc., Emeryville, CA, USA) was used at a dilution of 1:4000. After 
immersion for 60 min in a blocking serum solution with 5% normal 
horse serum, the sections were incubated overnight at +5°C with the 
mouse antibody and 2% normal horse serum in 10 mM PBS. Anti-
mouse biotinylated secondary antibody (mouse ABC kit, dilution 
1:200 in PBS with 2% normal horse serum; Vector Laboratories) 
was used after brief washings in 10 mM PBS. Immunoreaction was 
followed by several more washings in PBS, incubation in ABC, and 
visualization using DAB with nickel–cobalt intensifi cation (Adams, 
1981; J. A. Winer, personal communication).

DATA ANALYSIS
Histological analysis was carried out and photomicrographs 
were taken with a Leica DMR microscope (Leica Microsystems, 
Heerbrugg, Switzerland) and a digital camera (Microfi re™, 

hydrochloride; Alstoe Animal Health, Melton Mowbray, UK) and 
Metacam (0.05 ml oral meloxicam; Boehringer Ingelheim, Rhein, 
Germany). The animals were intubated and artifi cially ventilated 
with oxygen. End-tidal CO

2
, the electrocardiogram and body tem-

perature were monitored throughout the duration of the surgery. 
Temperature was maintained at 38°C using a rectal probe coupled 
to a heating blanket and by covering the animal with drapes dur-
ing surgery.

Once these measures were stable, the animal was placed in a 
stereotaxic frame. A midline incision was then made in the scalp, 
the left temporal muscle retracted to expose the skull and the 
surgical wound infused with Marcain (bupivacaine hydrochlo-
ride, Astra Pharmaceuticals Ltd, Kings Langley, UK). In the cases 
of injections in the SC, the left occipital cortex was exposed by a 
craniotomy. The dura mater was removed, and the most posterior 
corner of the occipital cortex was carefully aspirated until the SC 
was visible. For injections in the auditory cortex, a craniotomy 
was made over the left ectosylvian gyrus, exposing the suprasyl-
vian, and pseudosylvian sulci to provide landmarks. The animal 
was then transferred to a small table inside an anechoic cham-
ber (IAC Ltd, Winchester, UK). We recorded multi-unit activity 
with a glass pipette in response to contralateral ear stimulation 
before placing tracer injections. Acoustic stimuli were gener-
ated using TDT system 3 hardware (Tucker-Davis Technologies, 
Alachua, FL, USA) and were presented via a closed-fi eld elec-
trostatic speaker (EC1, Tucker-Davis Technologies) with a fl at 
frequency output (±5dB) to ≤30 kHz. Closed-fi eld calibrations 
of the sound-delivery system were performed using a 1/8th-inch 
condenser microphone (Brüel and Kjær, Naerum, Denmark) 
placed at the end of a model ferret ear canal. Frequency-response 
areas of cortical neurons were constructed from the responses 
to pure-tone stimuli presented pseudorandomly at frequencies 
from 500 Hz to 30 kHz, in one-third octave steps. Tones were 
100 ms in duration (5 ms cosine ramped) and intensity levels 
were varied between 10 and 80 dB SPL in 10 dB increments. 
Broadband noise bursts (40 Hz–30 kHz bandwidth and cosine 
ramped with a 10-ms rise/fall time, 100 ms duration from 30 to 
80 dB SPL) were also used as a search stimulus.

All the animals with SC injections (n = 4) and some of those 
with cortical injections (n = 5) received a single injection of either 
BDA or FR. In addition, a further seven cases received injections of 
both tracers at different locations in the auditory cortex (Table 1). 
In each case, after the injection was complete, the dura mater was 
replaced and small pieces of Surgicel were used to cover the exposed 
brain before the piece of cranium was put back in its previous 
position and the temporal muscles and the skin were sutured 
independently.

HISTOLOGICAL PROCEDURES
The animals were perfused transcardially 2–5 weeks after the initial 
surgery under terminal anesthesia with Euthatal (2 ml of 200 mg/
ml of pentobarbital sodium; Merial Animal Health Ltd, Harlow, 
UK). The blood vessels were fl ushed with 300 ml of 0.9% saline 
followed by 1 l of fresh 4% paraformaldehyde in 0.1 M phosphate 
buffer (PB), pH 7.4. Each brain was dissected from the skull, main-
tained in the same fi xative for several hours, and immersed in a 
30% sucrose solution in 0.1 M PB for 3 days.
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the SC was calculated by dividing the total number of terminals 
(estimated using the fractionator after counting one in every six 
sections without employing counting frames) by the volume of 
each layer. The volumes of the SGI and SGP were calculated by 
the Cavalieri method (Gundersen, 1988). This involved multiply-
ing the area of one in every six sections along the anteroposterior 
axis of the SC by the distance between them. The small size of the 
terminals relative to the thickness of the sections prevented any 
possible double counting.

Analysis of the morphological features of the labeled terminals 
was performed using optical microscopy. We considered every 
swelling in a labeled fi ber as an “en passant” bouton and every 
swelling at the end of a labeled fi ber as an end-terminal bouton. 
Terminals were classifi ed according to their morphology follow-
ing the same criteria used by Fuentes-Santamaria et al. (2009) in 
the cat SC.

NOMENCLATURE AND CRITERIA FOR SUBDIVISIONS IN THE SUPERIOR 
COLLICULUS AND IN THE AUDITORY CORTEX
The nomenclature and limits used for the different areas in the 
auditory cortex or layers in the SC are shown in Figure 1. The 
different layers of the SC were defi ned as in previous studies in 
the ferret (King and Hutchings, 1987; Meredith et al., 2001; Nodal 
et al., 2005), which are based on an earlier description of the SC in 
the cat (Kanaseki and Sprague, 1974). Briefl y, the SC has a laminar 
structure with alternating gray and white layers formed predomi-
nantly of cells or fi bers, respectively (Figures 1C,D). Superfi cial 
SC is primarily involved in visual functions (reviewed by Stein and 
Meredith, 1991), and comprises the three most superfi cial layers: 
the stratum zonale (SZ), the stratum griseum superfi ciale (SGS), 
and the stratum opticum (SO). The deeper SC layers comprise 
the intermediate layers, the stratum griseum intermediale (SGI) 
and the stratum album intermediale (SAI), and the deep layers, 
the stratum griseum profundum (SGP) and the stratum album 
profundum (SAP) (Figure 1D). This region is involved primarily 
in multisensory integration and in generating premotor commands 
for orientation behavior (reviewed by King, 1993).

Ferret auditory cortex is located in the ectosylvian gyrus (EG) 
and its middle, anterior and posterior regions (MEG, AEG, and 
PEG, respectively) can be distinguished according to the distribu-
tion pattern of SMI

32
 immunostaining (Figure 1B, dashed lines) 

and also by Nissl and CO staining patterns (Bajo et al., 2007). 
Four tonotopic areas have been described electrophysiologically 
(Kowalski et al., 1995; Bizley et al., 2005): A1 and the anterior audi-
tory fi eld (AAF) in the MEG, and the posterior suprasylvian fi eld 
(PSF) and posterior pseudosylvian fi eld (PPF) in the PEG. The 
tonotopic axes in A1 and AAF have a dorso-ventral orientation with 
low frequency areas in the most ventral part of MEG. A reversal 
in the tonotopic organization occurs between PPF and PSF, which 
share a region of low frequency sensitivity that extends up to the low 
frequency border of A1. High frequencies are represented in PPF 
and PSF close to the pss and sss, respectively. In addition, a third 
ventroposterior area (VP) has been described anatomically in the 
PEG (Pallas and Sur, 1993; Bajo et al., 2007). In the AEG, at least 
two non-tonotopic areas have been characterized, the anterodorsal 
fi eld (ADF) and, ventral to it, the anteroventral fi eld (AVF) (Bizley 
et al., 2005). AVF is the most ventral and anterior area in AEG 

Olympus America Inc, Center Valley, PA, USA). Histological recon-
structions and unbiased stereological estimates were performed 
using Neurolucida and StereoInvestigator software (version 8, 
MBF Bioscience, MicroBrightField Inc., Williston, VT, USA). Three 
dimensional reconstructions from the sections were performed 
using the 3D module in Neuroexplorer (MBF Neuroscience). One 
set of serial sections (1 every 300 µm) at the level of the SC or at 
the level of the auditory cortex was plotted in StereoInvestigator 
using a Cartesian coordinate system. The sections were aligned 
using blood vessels and outlines of adjacent sections. Statistical 
analysis was carried out using SPSS software (SPSS Inc., Chicago, 
IL, USA).

To estimate the relationship between the labeled terminals and 
the different layers of the SC, we reconstructed the position of 
the terminals and of the intermediate and deep gray layers in this 
nucleus using the center of the fourth ventricle at the most posterior 
section in which the SC is present as a reference point, i.e., the point 
that marks the 0,0,0 origin of our Cartesian coordinate system. We 
used three independent metrics to compare the distribution of the 
terminals in the deep SC cellular layers across animals. The fi rst 
metric compared the dispersion and the clustering indexes. The 
dispersion index was calculated as the ratio of the area of labeling 
in the SC layers normalized by the area of the injection site in the 
cortex. Those areas (A in the following equation) were calculated 
by drawing a polygon around the labeled terminals, within the 
limits of the SGI and SGP, and around the limits of the injection 
sites (x, y, and z represent the three spatial coordinates):

( ) ( )
1

0 0 1 1
1

1

2

n

n n i i i i
i

A x y x y x y x y
−

+ +
=

= − + −∑

The clustering index (CI) is the mean distance between a ter-
minal and its closest neighbor in the same layer 

( ) ( ) ( )2 2 2

0 1 0 1 0 1CI ,where nd
d x x y y z z

n

Σ⎛ ⎞= = − + − + −⎜ ⎟⎝ ⎠

Therefore, larger values in the dispersion and clustering indexes 
indicate greater divergence in the projection and vice versa.

The second metric relates the distribution of the terminals to 
the spatial extent of each SC layer by comparing the locations of 
the centroids (C

x
 and C

y
) for each in every section examined. The 

centroids were defi ned by the intersection of all the hyperplanes of 
symmetry of each terminal distribution or SC layer according to the 
following equations. This comparison provides a measure of how 
homogenous the terminal labeling is within each layer.

( )( )
1

1 1 1
0

1

6

n

x i i i i i i
i

C x x x y x y
A

−

+ + +
=

= + −∑

( )( )
1

1 1 1
0

1

6

n

y i i i i i i
i

C y y x y x y
A

−

+ + +
=

= + −∑

To further analyze the distribution of the cortical terminals 
within the SC, the intermediate and deep layers were divided into 
four equal quadrants based on their centroid coordinates and 
the anteroposterior axis. The number of terminals in each quad-
rant was compared across animals. The density of terminals in 
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of the periaqueductal gray (PAG, Figure 2A). Retrogradely labeled 
neurons were numerous in the ipsilateral EG (Figures 2B,C). 
However, the labeling was not uniformly distributed across the 
gyrus. Labeling was most prominent in the AEG, particularly in the 
AVF and non-auditory areas located more anterior to the AVF, but 
was also present on the posterior EG (PEG), especially in its most 
posterior and dorsal part, where PSF is located. Labeled neurons 
in the MEG, where the primary areas A1 and AAF are located, 
were relatively scarce (Figures 2B,C). Moreover, where labeling 
was present in this region, it was found in peripheral locations 
consistent with these cells being located within the sulci. Such labe-
ling is evident when the cortex was cut in the coronal plane (e.g., 
in Figure 3). Labeled cells were found deep in the dorsal part of 
suprasylvian sulcus (sss, Figure 3C) and also in the dorsal wall of 
the suprasylvian gyrus (Figure 3C).

The cortical cells that were labeled after tracer injections in the 
SC were large pyramidal neurons in layer V. Labeled neurons were 
always located in the ventral half of the layer V, and were often 
observed in clustered groups of two to three neurons (Figure 3B, 

defi ned as part of the auditory cortex on the basis of the vigorous 
responses of the neurons found there to broadband noise (Bizley 
et al., 2005). Anatomically, at the anterior limit of AVF a change in 
SMI

32
 pattern is observed (arrow in Figure 1B), with more intense 

staining found in layer II/III outside the auditory cortex.

RESULTS
In initial experiments, tracer injections were placed in the SC to 
label neurons retrogradely in the auditory cortex. The distribu-
tion of labeled cortical neurons in the EG was then used to guide 
tracer injections into different areas of the auditory cortex, in 
order to study the pattern of organization of their terminal fi elds 
in the SC.

RETROGRADE LABELING AFTER TRACER INJECTIONS IN THE SUPERIOR 
COLLICULUS IS FOUND IN SPECIFIC CORTICAL AREAS
Figure 2 shows an example of an injection of FR into the SC; the 
injection site was centered in the SGP, although its halo extended 
dorsally into the SGI and medially so that it just included the edge 

FIGURE 1 | The experimental design. Neural tracer injections in the superior 
colliculus (SC) and in the auditory cortex were made to label corticotectal cells 
retrogradely and their terminals in the SC anterogradely. (A) Dorsal view of 
the SC after the cortical hemispheres have been removed, showing the 
location of the tracer injections. Dotted lines and small C and D letters 
indicate the anteroposterior level of the coronal sections shown in panels 
(C) and (D), respectively, in which the laminar organization of the SC can be 

observed. (B) Lateral view at the level of the ectosylvian gyrus taken from a 
fl attened, tangential section stained with SMI32 monoclonal antibody. Tracer 
injections were placed in the different auditory fi elds (see Table 1), as 
indicated. The limits between the different layers in the SC were identifi ed 
primarily on the basis of acetycholinesterase staining (C) and SMI32 
immunocytochemistry (D). Calibration bars are 2 mm in (A) and (B) and 
0.5 mm in (C) and (D).
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were 64.8 ± 6.1 µm for neurons located in PEG, 67.3 ± 11.2 µm for 
neurons in MEG and 75.5 ± 16.6 µm for neurons in AEG, with 
form factors of 0.79 ± 0.07, 0.84 ± 0.05, and 0.78 ± 0.06, respectively 
(mean ± standard deviation). No signifi cant differences were found 
either in neuronal size or shape across the different cortical regions 
(ANOVA, F

(3,63)
 = 2.7, p = 0.053) suggesting that, irrespective of cortical 

location, a common neuronal subtype of layer V neurons forms the 
corticotectal projection.

THE DISTRIBUTION OF LABELED TERMINALS WITHIN THE SUPERIOR 
COLLICULUS VARIES WITH INJECTION SITE LOCATION 
IN THE AUDITORY CORTEX
As expected from the analysis of retrogradely labeled cells in the EG 
after injections in the SC, the largest number of labeled terminals 
were found in the SC after injections of neuronal tracer into AVF in 

asterisks). Labeled neurons had a characteristic triangular cell body, 
a thick apical dendrite oriented toward the pial surface and perpen-
dicular to the cortical layers, and several basal dendrites oriented 
parallel to the cortical lamination (Figure 3D).

We performed a morphometric analysis in order to explore 
whether labeled cells in different areas of the EG share a common 
morphology. To avoid bias due to the cutting plane, only the two 
cases with injections in the SC and cut in the coronal plane (F9921 
and F9806) were analyzed. Cells were only considered if the whole 
cell body, as judged by the presence of the beginning of the apical 
dendrite or the beginning of at least two basal dendrites, was present 
in the same section. This selection criterion was imposed in order to 
avoid any bias that might result from sectioning artifacts. The size 
and shape of the selected cell bodies were analyzed by measuring the 
perimeter and form factor (4 Area/Perimeter)π . The mean  perimeters 

FIGURE 2 | Distribution of retrogradely labeled cells in the auditory cortex 

after rhodamine (FR) injection in the superior colliculus. (A) Coronal section 
at the level of the left SC showing the injection site in the deep SC (SGP). (B) 3D 
reconstruction of auditory cortex showing the location of retrogradely labeled 

neurons. (C) Photomicrograph of a fl attened, tangential section at the level of 
the ipsilateral auditory cortex. The retrogradely labeled cells are numerous, 
especially in the anterior part of the ectosylvian gyrus (AEG). Calibration bars are 
1 mm in (A) and 2 mm in (B) and (C).
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FIGURE 3 | Morphology of retrogradely labeled corticotectal neurons in 

layer V after rhodamine (FR) injection in the superior colliculus. 

(A,C) Coronal sections at the level of the anterior and middle part of the 
ectosylvian gyrus, respectively, showing labeled neurons that were mainly 
located in the AEG (A), the deep part of the suprasylvian sulcus and the dorsal 
part of the PEG (arrows) (C). (B) Higher-magnifi cation photomicrograph of a 

Nissl-counter-stained section at the level of the AEG; sets of two to three 
labeled neurons can be observed in layer V (asterisks). (D) Higher-magnifi cation 
photomicrograph showing the pyramidal morphology of a labeled neuron in layer 
V, whose thick apical dendrite runs orthogonal to the cortical layers. This 
photomicrograph was taken at the location shown by the frame in (C). 
Calibration bars are 1 mm in (A) and (C), 0.5 mm in (B) and 0.1 mm in (D).
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the AEG and into PSF in the PEG. Figure 4 shows a typical example 
of labeling following injections into each of these two locations 
(Cases F0505 and F0536, Table 1).

Injections placed in either cortical fi eld result in a similar pat-
tern of labeling (Figures 4 and 5). Terminals were located mostly 
ipsilateral to the injection sites in both the intermediate and deep 
layers and were most numerous in the posterior-medial quadrant 
of the SC (Figures 4 and 6). Moreover, both injection locations 
labeled single en passant and terminal boutons in the SC as well 
as more complicated arrangements of terminals (Figure 7). There 
are, however, differences between the projections originating from 
these cortical fi elds; the density of terminals in the SC was larger 
and the pattern of terminals in the ipsilateral SGI was more patchy 
after injections in the AVF, whereas the SGI projection appears to be 
more targeted when the tracer was placed in the PSF (Figure 4).

To quantify any differences in the projections from these two 
cortical regions, we measured the density, clustering index and 
dispersion of the labeled terminals in the SC in three animals where 
the injection sites were located in the AEG and in three animals 
where injections were located in the PEG (Table 1, asterisks). We 
conservatively refer to injections centered in the AVF and PSF as 
being located in the AEG and PEG, respectively, because, as indi-
cated in Table 1, the size of the injection sites varied and, in some 
cases (for example F0523 and F0504), they were not restricted to 
those fi elds. However, if the tracer injection was centered in ADF 
(as in animal F0535 with BDA), very little labeling was found in 
the SC, while injection sites centered in the VP (animal F0533) 
resulted in virtually no SC terminal labeling. Consequently, these 
data indicate that AVF and PSF are the primary sources of input 
to the SC from ferret auditory cortex.

The density of terminals in the SC varied with the location and 
the size of the injection sites in the cortex (Figure 5A). After nor-
malizing for the size of the cortical injection site, there appeared 
to be clear differences in the terminal fi eld labeling in the SC after 
injections into the AEG and PEG, with labeling being far denser 
in the former case (Figure 5A). Whilst there appears to be a clear 
trend in the data, as indicated by the relative height of the histogram 
bars, these differences were not statistically signifi cant (ANOVA, 
F

(7,23)
 = 1.01, p = 0.46). Terminals from AEG tended to be more 

clustered and less dispersed than terminals from PEG, especially 
those ending in the SGI (Figures 5B,C). However, only differences 
in clustering were signifi cant (ANOVA, F

(2,7)
 = 5.25, p = 0.04), with 

mean distances between terminals in the SGP being 18.5 ± 4.8 µm 
and 24.9 ± 9.2 µm after injections in the AEG and PEG, respectively. 
In the SGI distances between terminals were 15.9 ± 4.1 µm for AEG 
injections and 28.63 ± 12.8 µm for injections in PEG.

CORTICOTECTAL TERMINAL DISTRIBUTIONS 
IN THE SUPERIOR COLLICULUS
Consistent with the region-specifi c pattern of retrograde labeling 
in the auditory cortex after SC tracer injections (Figures 2B,C), 
the distribution of terminal fi eld labeling in the SC varied with 
injection site location in the cortex (Figure 4). To quantify the 
distribution of terminals observed within the SC, we subdivided 
the SGI and SGP into four quadrants (Figure 6). To account for 
the mediolateral curvature of the SC, we determined the borders 
of the quadrants from the position of the centroids for each layer 

FIGURE 4 | Examples of two cases with BDA tracer injections in the auditory 

cortex. (A,B) Photomicrographs showing the location of the injection sites in AVF 
(A, fl attened tangential section) and PEG (B, coronal section). (C,D) Drawings of 
coronal sections at the level of the SC with each dot representing a terminal. Gray 
and white layers were combined for the intermediate (stratum intermediale, SI) 
and deep (stratum profundum, SP) SC. The number of the section in each drawing 
indicates its anteroposterior position, with zero indicating the most posterior 
corner of the SC. Calibration bars are 2 mm for (A) and 1 mm for (B–D).

in each section, while the anteroposterior border was defi ned by 
dividing in two the number of coronal sections that spanned the 
full length of the SC.
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The quantity of labeled terminals in each quadrant was  compared 
across animals and quadrant locations. Examination of the labeling 
in Figure 4 suggests that the terminals were not uniformly dis-
tributed along the mediolateral and anteroposterior dimensions 
of the SC. This is confi rmed by the differences in the percentage of 
labeled terminals in each quadrant (Figure 6). The proportion of 
terminals was higher in the posterior half of the SC, and especially 
in the medial quadrant (ANOVA, F

(3,3)
 = 9.865, p = 0.001). This 

difference was observed irrespective of the injection site location 
in the auditory cortex (ANOVA, F

(1,3)
 = 0.008, p = 0.93).

Whilst the proportion of terminal labeling in the contralateral 
SC was much smaller, constituting only 6% of the total projection, 
the distribution of terminals was similar to that of the uncrossed 
projection, with the highest density also found in the posteromedial 
quadrant (Figure 6).

PREDOMINANCE OF EN PASSANT TERMINALS 
IN THE CORTICOTECTAL PROJECTION
The proportions of different terminal morphologies in the SC 
were measured in a single coronal section for each animal at the 
level where the densest terminal fi elds were observed. In all cases, 
the selected sections were located in the posterior half of the SC. 
Labeled terminals were classifi ed as either en passant or end-ter-
minal boutons, with the latter also including those described as 
“on short stalks” by Fuentes-Santamaria et al. (2009). Examples of 
labeled fi bers and terminals are shown in Figure 7, with arrows and 
asterisks indicating en passant and end-terminal boutons, respec-
tively (Figures 7A,B,D,E). We also use the term complex terminals 
to differentiate those terminals with a more intricate morphology, 
although in our material the number of such terminals was very 
small (data not shown).

No differences between AEG and PEG tracer injection groups 
were found in the proportion of different terminal morphologies 
in the SC (ANOVA, F

(1,11)
 = 0.063, p = 0.0809). In all cases, the great 

majority of the terminals were small en passant or end-terminal 
boutons (93–99%), with large or complex terminals representing 
only a small percentage of the total. En passant boutons were con-
siderably more common than end-terminals, with the proportion 
of small boutons classifi ed as en passant being 75.1 ± 6.7% and 
66.8 ± 8.5% after injections in AEG and PEG, respectively (ANOVA 
F

(1,11)
 = 75.162, p < 0.001, Figure 7C). Both types of terminals were 

found along the length of the fi bers running in the SC (Figure 7B). 
En passant terminals were observed as round thickenings along the 
axons, whereas end-terminals were typically found at the end of 
short thin stalks that branched out from the parent axon at small 
intervals (Figure 7B). The distribution of terminals along the axons 
did not result in a continuous and homogeneous terminal fi eld 
within the SC layers. Rather, terminals appeared in clusters along 
the length of the axons in which both types of terminals were found 
(Figures 7D,E). Additionally, orthogonal branches were observed 
at such terminal clusters.

DISCUSSION
We have shown that inputs from non-primary and higher associa-
tive cortical areas, which form part of the non-lemniscal auditory 
cortex, converge in the intermediate and deep layers of the ferret 
SC. The cortical areas that contribute most to the corticotectal 

FIGURE 5 | Quantifi cation of the corticotectal inputs to the SC. Six cases 
with injection sites in the AEG (n = 3) and PEG (n = 3) were used for 
quantifi cation. (A) The normalized density of terminals (see Materials and 
Methods for details) is plotted in different layers of the left and right SC. The 
projection is predominantly uncrossed with a very minor contralateral 
component. No differences between the intermediate and deep layers of the 
SC (SGI and SGP) were found. The density of terminals was higher when input 
came from the AEG than from the PEG, but this difference was not signifi cant 
(ANOVA, F(7,23) = 1.01, p = 0.46). For each individual case, the clustering index is 
plotted against dispersion (measured as the ratio between the area of labeling 
in the SC and the area of the injection site in the cortex). These measures 
show that terminals from AEG (B) tend to be more clustered and less 
dispersed than terminals from PEG (C). Dotted lines in (B) and (C) represent 
the mean and the squares represent three times the standard deviation of the 
mean; terminals in SGI are shown in blue and terminals in SGP in green.
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Cat AES is an area of association cortex that has been shown to 
project heavily to the SC and to play a particularly important role 
in multisensory integration (reviewed by Stein, 1998). It is divided 
into three largely unisensory regions, the anterior ectosylvian vis-
ual region (AEV) (Mucke et al., 1982; Olson and Graybiel, 1987; 
Scannell et al., 1996), the fourth somatosensory cortex (S4, Clemo 
and Stein, 1982, 1983), and an auditory fi eld (FAES) (Clarey and 
Irvine, 1986; Meredith and Clemo, 1989). Although multisensory 
neurons are found in cat AES, mainly at the borders of each of 
these areas, inputs to the SC originate from the unisensory regions 
(Wallace et al., 1993; Alvarado et al., 2009).

Anatomically, the ferret does not have an AES, but Ramsay and 
Meredith (2004) suggested that the region surrounding the pseudosyl-
vian sulcus (pss), and named by them as pseudosylvian sulcal cortex 
(PSSC), might be the functional homolog of cat AES. Their proposal 
is based on the organization of visual and somatosensory cortical 
projections to the PSSC, with visual terminals being restricted to its 
posterior dorsal bank and somatosensory terminals having a more 
extensive distribution that included anterior regions of the PSSC. 
Ramsay and Meredith (2004) also noted that neurons responsive to 
auditory stimuli are found in the most posterior corner of the pss, 
highlighting the multisensory character of the PSSC. Manger et al. 
(2005) described a visually responsive area running parallel to the pss 

input are AVF, together with the tonotopically organized PSF. Large 
pyramidal cells located in the lower part of layer V in each of these 
regions are responsible for the projections to the SC. Terminals in 
the SC are arranged in clusters with a high number of en passant 
boutons. Corticotectal inputs from both AVF and PSF are most 
extensive in the posteromedial quadrant of the SC, where lateral 
and posterior stimulus locations are represented.

CORTICOTECTAL PROJECTIONS IN DIFFERENT SPECIES
Previous studies of corticofugal input to the SC in different species 
have focused mainly on inputs from different parts of the visual cortex 
(e.g., Swadlow and Weyand, 1981; Tigges and Tigges, 1981; Harting 
et al., 1992; Serizawa et al., 1994). The organization of corticotectal 
inputs has been studied most extensively in the cat (e.g., Harting et al., 
1992; Fuentes-Santamaria et al., 2008), where their functions have also 
been examined at both physiological and behavioral levels by revers-
ible inactivation (Stein, 1978; Clemo and Stein, 1986; Meredith and 
Clemo, 1989; Wallace et al., 1993; Jiang et al., 2002; Alvarado et al., 
2007). The presence of robust inputs from AES and rLS in this species 
suggests that auditory, as well as other sensory, signals can reach the 
SC from multisensory cortical areas. In addition, there is evidence in 
cats for inputs to the SC from A2 as well as from multisensory areas 
that are designated as part of auditory cortex (Winer et al., 1998).

FIGURE 6 | Distribution of cortical terminals in the SC. The proportion of terminals is plotted after dividing the SC into quadrants. The highest proportion was 
found in the posterior half of the SC, especially in the medial quadrant (ANOVA, F(3,3) = 9.865, p = 0.001), and no differences in this distribution were found with 
injection site location in the cortex (ANOVA, F(1,3) = 0.008, p = 0.93).
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FIGURE 7 | Morphology of terminals in the superior colliculus. Camera 
lucida drawings (A,D) and photomicrographs (B,E) of terminal fi elds in the SC 
after tracer injections in the AEG (A and B, case F0505) and in the PEG (D and 
E, case 0536). Locations of the terminal fi elds in the SC are shown in the 
lower magnifi cation drawings. Some end-terminals are labeled with asterisks 

and en passant terminals with arrows. Calibration bars are 20 µm. (C) 
Histogram showing the percentage of the different types of terminals in the 
SC. En passant  terminals were signifi cantly more numerous (**p < 0.001) 
than the end-terminals, irrespective of the location of the injection sites in 
the cortex.
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suprasylvian visual area (AMLS) in the cat (Manger et al., 2008). 
The lateral or ventral edge of this sulcus has been referred to as a 
putative anterolateral lateral suprasylvian area (ALLS; Manger et al., 
2008), but might also be equivalent to cat DZ, which projects to 
the SC (Winer et al., 1998). AMLS and the neighboring posterome-
dial suprasylvian visual area (PMLS, also termed the suprasylvian 
visual area or posterior suprasylvian area), have been implicated 
in visual motion (Cantone et al., 2006; Philipp et al., 2006; Manger 
et al., 2008), whereas DZ plays an important role in auditory spatial 
processing (Stecker et al., 2005). Although speculative at this time, 
since these sulcal areas in the ferret cortex require further ana-
tomical and physiological investigation and their auditory and/or 
multisensory properties have yet to be established, the presence of a 
descending projection to the SC implies that this part of the cortex 
participates in orienting behaviors and multisensory integration.

Together, these data indicate that there are similarities between 
cats and ferrets in the organization of their auditory corticotectal 
projections, with an anterior multisensory region dominating this 
pathway in both cases. However, the additional projection from the 
PSF, as well as the concentration of corticotectal terminals in the 
most posteromedial quadrant of the SC in the ferret compared to 
the more lateral distribution in the cat (Meredith and Clemo, 1989), 
indicate that some differences exist between these species.

ROLE OF CORTICOTECTAL INPUT IN MODULATING AUDITORY 
ORIENTING BEHAVIORS
In cats, cortical deactivation of A1 (including DZ), PAF and FAES 
all result in sound localization defi cits in the contralateral hemifi eld 
(Malhotra et al., 2004; Malhotra and Lomber, 2007). Lomber et al. 
(2007a) proposed that neurons in the superfi cial layers of A1, DZ, 
and PAF feed forward to AES and that neurons in AES are respon-
sible for transmitting spatial information to the SC. While there is 
no doubt that AVF in the ferret auditory cortex provides the largest 
corticotectal projection, our results show that PSF also projects 
directly to the SC. Thus, parallel routes may exist for conveying 
signals to the SC that are important for orientation behaviors.

Defi cits in auditory localization behavior have been observed 
following damage to or inactivation of both the auditory cortex (e.g., 
Jenkins and Merzenich, 1984; Kavanagh and Kelly, 1987; Heffner and 
Heffner, 1990; Nodal et al., 2010) and the SC (Tunkl, 1980; Lomber 
et al., 2001). However, it seems likely that different aspects of spatial 
hearing are mediated by these different brain regions. Thus, Nodal 
et al. (2010) found that bilateral lesions of A1 impair the localization 
of brief sounds in ferrets when the animals have to approach the 
sound source in order to receive a reward, whereas their ability to ori-
ent toward the appropriate region of space is unaffected. Defi cits in 
acoustic orientation behavior were observed, however, if the lesions 
covered a more extensive region of auditory cortex, including the 
areas shown here to project to the SC. In keeping with this, it has 
been proposed that the head orienting defi cits produced by cortical 
lesions in cats might refl ect a loss of descending corticofugal neurons 
(Thompson and Masterton, 1978; Beitel and Kaas, 1993). Further 
evidence for a complex relationship between the cortex and the SC 
in the control of auditory localization behavior has been provided 
by the “auditory Sprague effect,” whereby the contralateral defi cits 
produced in cats by unilateral ablation of the auditory cortex dis-
appear if the contralesional SC is then deactivated (Lomber et al., 

on the postero-lateral half of the ferret AEG, which also  contained 
bisensory neurons that were segregated according to whether they 
responded to both visual and tactile stimulation or to visual and audi-
tory stimulation. They called this area AEV following the terminology 
used for the visual part of the cat’s AES. The location of this region 
overlaps with the two regions on the AEG, the ADF, and AVF, which 
we have distinguished on the basis of the neurons’ auditory response 
properties (Bizley et al., 2005) and sensitivity to visual stimulation 
(Bizley et al., 2007; Bizley and King, 2009), and now in terms of their 
relative contributions to the corticotectal projection.

The presence of multisensory inputs to different parts of the 
AEG is consistent with the possibility that this part of ferret cortex 
includes a region homologous to cat AES. Further evidence for this 
possibility is provided by our fi nding in the present study that the 
AEG is the source of a robust projection to the SC. The heaviest 
retrograde labeling was located in the ventral and anterior part of 
the AEG, which includes AVF, where many neurons respond to 
both auditory and visual stimulation (Bizley et al., 2007; Bizley and 
King, 2009), as well as non-auditory areas located anterior to the 
AVF. Accordingly, relative to other parts of auditory cortex, tracer 
injections centered in the AVF resulted in the heaviest labeling in 
the SC. AVF receives inputs from the dorsal division of the medial 
geniculate body and the suprageniculate nucleus (F. R. Nodal, V. 
M. Bajo, J. K. Bizley, and A. J. King, unpublished observation), 
and we have shown that about two-thirds of the neurons recorded 
there respond to broadband auditory stimuli, half of which were 
also visually responsive (Bizley et al., 2007). We have not, however, 
found any evidence for segregation of neurons according to their 
modality sensitivity within the area in which retrograde labeling 
was found in the present study. Cat AES is organized into three 
distinct unisensory regions, and whilst our recordings on the gyrus 
of the anterior bank show intermingled modality sensitivity, further 
mapping within the pss, along the dorsal lip and fundus, with dif-
ferent sensory stimuli is required to unequivocally defi ne in ferret 
an area equivalent to the cat auditory region FAES.

In the cat, tracer injections in the PEG result in anterograde labe-
ling in the IC, as well as in neighboring structures, including the 
deeper layers of the SC (Winer et al., 1998). The projection from 
the PEG to the SC originates from the dorsal part of the posterior 
ectosylvian gyrus (EPD), and possibly also from the intermediate 
part (EPI), which are multisensory in nature (Bowman and Olson, 
1988a,b). We also found that the PEG projects to the SC in the ferret, 
but, in this species, PSF is the source of this pathway. PSF is a tonoto-
pically organized auditory area (Bizley et al., 2005), which, like other 
parts of auditory cortex, contains a number of visually responsive 
neurons (Bizley et al., 2007). We have previously shown that PSF 
receives inputs from visual areas 20a and 20b (Bizley et al., 2007), 
which are thought to be concerned with non-spatial visual processing 
(Manger et al., 2004). However, relative to the other auditory cortical 
fi elds, PSF contains a particularly large number of neurons in which 
the presence of a spatially-coincident visual stimulus increases the 
amount of location-related information they convey compared to 
their responses to sound alone (Bizley and King, 2009).

We also observed inputs to the SC from deep sulcal regions 
surrounding the MEG. In the ferret, the cortical region within the 
dorsal edge of the suprasylvian sulcus at the level of the primary 
auditory fi elds appears to be equivalent to the anteromedial lateral 
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to be seen whether a similar modular arrangement of inputs is 
found for inputs from auditory subcortical structures (King et al., 
1998; Nodal et al., 2005), or how this relates to the organization of 
afferent connections for other sensory modalities.

CONCLUDING REMARKS AND FUTURE DIRECTIONS
Previous work on the auditory corticotectal pathway in the cat has 
been based on the assumption that only FAES provides a direct input 
to the SC, and that any involvement of other auditory fi elds would be 
mediated through AES via cortico-cortical connections (Lomber et al., 
2007a). The present results in the ferret show the direct contribution 
not only of AVF and adjoining regions on the anterior bank of the EG, 
but also of both the PSF on the posterior bank and of sulcal regions 
surrounding the primary areas on the MEG. Thus, the corticotectal 
projection should be seen as a convergence of information from dif-
ferent cortical areas, most likely conveying multisensory rather than 
exclusively auditory information, which are all likely to be involved 
in modulating orientation behavior via their inputs to the SC. In 
accordance with this, it has been shown that inactivation of the SC or 
the combined inactivation of multiple regions of auditory cortex has 
a far more profound impairment on orienting behavior than inactiva-
tion of any individual cortical area (Malhotra et al., 2004). In order to 
distinguish the role of direct corticotectal input from cortico-cortical 
circuits, it will be necessary to test the behavioral consequences of 
selectively inactivating specifi c descending pathways, as we have done 
for the projection from A1 to the IC (Bajo et al., 2010), whilst leaving 
intact the neurons in other cortical areas.

Elimination of the descending projection from A1 to the IC impairs 
learning-induced auditory plasticity in adult ferrets, without having 
any effect on the accuracy of sound localization behavior in the pres-
ence of normal acoustic inputs (Bajo et al., 2010). On the basis of the 
present results and the orienting defi cits produced by large lesions of 
the auditory cortex (Nodal et al., 2010), we would predict that the loss 
of descending projections to the SC will disrupt acoustic orientation 
behavior. A recent study in monkeys has found that inactivation of the 
SC impairs the selection of which signals to use for a visual motion 
discrimination task, implying a role in making perceptual judgments 
(Lovejoy and Krauzlis, 2010), a function that is normally thought to 
be the preserve of the cerebral cortex. This may highlight another role 
of descending corticofugal projections to the SC. Similarly, the capac-
ity of adult SC neurons to adjust their response properties following 
repeated exposure to particular visual–auditory cue combinations (Yu 
et al., 2009) may rely on descending modulatory infl uences. In each 
case, the selective inactivation of appropriate corticofugal pathways 
will help to identify the neural circuitry involved.
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2007b). While the circuitry responsible for this recovery of function 
is unknown, it is possible that activity in the other SC is increased 
as a result of the loss of inhibition provided by the crossed nigro-
collicular connection (Wallace et al., 1990) or by the commissural 
inputs from the inactivated SC (Behan, 1985; Jiang et al., 1997). It 
is also conceivable that the small crossed component of the corti-
cotectal projection here described could be involved.

MULTISENSORY INTEGRATION IN THE SC AND CORTICOTECTAL INPUT
Inputs from the cortex are essential for multisensory integration in the 
SC of the cat (Stein, 1998). However, unisensory areas in different parts 
of AES project to the SC in this species (Wallace et al., 1993), and it is 
their convergence onto individual SC neurons that appears to syner-
gistically create multisensory enhancement or depression depending 
on the proximity of stimuli in different sensory modalities (Alvarado 
et al., 2007, 2009). Axons conveying modality-specifi c information 
have been shown to terminate on the same SMI

32
-positive SC projec-

tion neurons (Fuentes-Santamaria et al., 2009), but no differences in 
their terminal distribution across the SC have been reported.

Our results show that descending inputs from different parts of 
auditory cortex predominantly target the posterior half of the SC, 
where peripheral stimulus locations are represented. The infl uence 
of these cortical neurons on SC responses is therefore likely to be 
greatest for this region of space, where, because auditory recep-
tive fi elds tend to extend beyond visual receptive fi elds (King and 
Hutchings, 1987), acoustic cues may be more relevant in guiding 
orienting behaviors. Although we showed that acoustically respon-
sive neurons were present at each injection site in the cortex, we 
cannot, of course, rule out the possibility that the labeled axons 
convey non-auditory signals as well. This applies particularly to 
AVF, where the neurons recorded by Bizley et al. (2007) were equally 
likely to be unisensory visual, unisensory auditory or sensitive to 
both modalities. Identifying the modality specifi city of individual 
corticotectal neurons would require the use of intracellular record-
ing and tracer injection techniques. The signifi cance for multi-
sensory processing of the non-uniform innervation of the SC by 
these higher levels areas of the auditory cortex is unclear, but it is 
interesting to note that, in cats, the infl uence of a spatially discord-
ant auditory stimulus on the accuracy of visual localization varies 
with stimulus eccentricity (Jiang et al., 2002).

Multisensory integration is a particularly prominent feature of 
the intermediate layers of the SC, where a patchy or honeycomb-
like pattern of acetylcholinesterase staining aligns with some of 
the afferent and efferent connections of this region (Chevalier and 
Mana, 2000; Mana and Chevalier, 2001). We also saw some evidence 
for a patchy distribution of auditory corticotectal inputs in the 
SGI. This pattern of terminal labeling was not always observed, 
however, although that may refl ect the sectioning plane used and 
the restricted size of the tracer injections in the cortex. It remains 
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