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Striatal medium-sized spiny neurons (MSNs) receive massive glutamate inputs from the
cerebral cortex and thalamus and are a major target of dopamine projections. Interaction
between glutamate and dopamine signaling is crucial for the control of movement and
reward-driven learning, and its alterations are implicated in several neuropsychiatric dis-
orders including Parkinson’s disease and drug addiction. Long-lasting forms of synaptic
plasticity are thought to depend on transcription of gene products that alter the struc-
ture and/or function of neurons. Although multiple signal transduction pathways regulate
transcription, little is known about signal transmission between the cytoplasm and the
nucleus of striatal neurons and its regulation. Here we review the current knowledge of
the signaling cascades that target the nucleus of MSNs, most of which are activated by
cAMP and/or Ca2+. We outline the mechanisms by which signals originating at the plasma
membrane and amplified in the cytoplasm are relayed to the nucleus, through the regula-
tion of several protein kinases and phosphatases and transport through the nuclear pore.
We also summarize the identified mechanisms of transcription regulation and chromatin
remodeling in MSNs that appear to be important for behavioral adaptations, and discuss
their relationships with epigenetic regulation.
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WHY IS CYTONUCLEAR SIGNALING IMPORTANT IN
NEURONS?
In interphasic eukaryotic cells the genetic material, the DNA, is
segregated from the rest of the cell by the double membrane of the
nuclear envelope which separates the nucleus from the cytoplasm.
Communication between the two compartments is tightly regu-
lated and essentially restricted to highly organized nuclear pores
(Hoelz et al., 2011). The cytoplasm is the site of housekeeping
functions common to all cell types, as well as highly specialized
activities, such as those characteristic of synapses. Thus, the reg-
ulation of gene expression is under two opposite constraints. On
the one hand the pattern of gene expression characteristic of the
differentiated state of the cell must be very stable. On the other
hand, fine tuning of gene expression is constantly required for the
cell to adapt to its environment and respond to new demands.

In neurons gene transcription and protein synthesis have been
known for many years to be necessary for the long-lasting changes
that underlie learning and memory (Goelet et al., 1986; Black et al.,
1987). The pattern of gene transcription depends on the dynamic
interplay of numerous transcription factors, binding to promoter,
enhancer, and silencer regions. It also depends on the organization
of the chromatin, including covalent modification of nucleotides,
such as cytidine methylation, and post-translational modifications
of histones, which form the core of nucleosomes around which
DNA is wrapped. These modifications control the accessibility

of DNA and the recruitment of transcription factors and other
proteins through their specialized targeting domains. The result-
ing chromatin remodeling may provide the basis for “epigenetic”
control of long-lasting neuronal adaptations (see Levenson and
Sweatt, 2005; Borrelli et al., 2008; Day and Sweatt, 2010; Riccio,
2010, for reviews). The use of the word epigenetic has been the
source of debates however. As originally defined, and recently
reasserted, “An epigenetic trait is a stably heritable phenotype
resulting from changes in a chromosome without alterations in the
DNA sequence” (Berger et al., 2009). According to this stringent
definition neurons, like other post-mitotic cells, could not undergo
new epigenetic alterations (except perhaps by erasing existing epi-
genetic marks. . .). The word is often used in a less strict sense to
designate long-lasting chromatin covalent modifications, a trend
that has raised some criticisms as it may have misleading implica-
tions in terms of underlying mechanisms (Ptashne, 2007). At any
rate a wealth of recent findings summarized in this review under-
lines the importance of the regulation of covalent modifications
of histones and DNA by cytonuclear signaling pathways in striatal
neurons.

A striking feature of most chromatin modifications is that they
are highly dynamic, implying efficient regulatory mechanisms and
active control mechanisms if they are to be maintained for long
periods of time (Henikoff, 2008). In addition, the chromatin is
topographically organized due to a highly complex network of
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long range interactions, which are only starting to be deciphered
in non-neuronal cells (Fraser and Bickmore, 2007). This higher
level of chromatin organization is still largely a terra incognita
in neurons. Interestingly, the patterns of heterochromatin stain-
ing, which result from the organization of the nuclear material,
differ widely between neurons and other cell types and between
different neuronal populations (Ramon y Cajal, 1899) but their
significance and regulation have received little attention so far.
In the striatum, this pattern allows to differentiate medium-sized
spiny neurons (MSNs) from other cells (Matamales et al., 2009)
and recent work suggests that the geometry and organization of the
nucleus can undergo rapid and dramatic alterations in response to
synaptic activity (Wittmann et al., 2009; Maze et al., 2011). There-
fore deciphering the control of nuclear functions and organization
in neurons represents a major challenge for understanding the
neurobiology of learning and memory and brain plasticity.

An important issue to be addressed is how synaptic activity
modifies gene transcription and chromatin remodeling. It has
been proposed that information transmitted from synapses can
alter nuclear function through at least two different pathways (see
Deisseroth and Tsien, 2002; Adams and Dudek, 2005; Cohen and
Greenberg, 2008; Jordan and Kreutz, 2009, for reviews and discus-
sion): (i) a “synapse-to-nucleus” pathway in which proteins can
move from activated synapses to the nucleus and control nuclear
events such as transcription; (ii) a “soma-to-nucleus” pathway
without direct transport of macromolecules from the synapses,
but in which action potentials and second messengers such as
Ca2+ or cAMP generated in the perikaryon control nuclear sig-
naling. In the context of learning, it has been contended that the
“soma-to-nucleus” model might be the most relevant mechanism
because it is faster and may involve a cell-type specific threshold
of activation, preventing the activation of other irrelevant genes
(Adams and Dudek, 2005). However, it is likely that the two types
of pathways act in combination over different time scales to achieve
a precise tuning of nuclear function.

In this review we focus on MSNs, which are the most prevalent
cell type of the striatum, comprising about 95% of striatal neurons
in rodents (Tepper and Bolam, 2004). Since these neurons play an
essential role in the circuits of the basal ganglia and are thought to
undergo enduring adaptations important for procedural memory
(Kreitzer, 2009), it is important to decipher the cytonuclear sig-
naling pathways that trigger long-lasting changes in MSNs. Such
changes are also likely to underlie some of the dysfunctions of
the basal ganglia, in conditions such as drug addiction, L-DOPA-
induced dyskinesia in Parkinson’s disease, and, presumably, several
other neuropsychiatric disorders.

MAJOR SIGNALING PATHWAYS IN MSNs
The striatum is the main entry station of the basal ganglia and
MSNs are its sole output neurons. MSNs utilize GABA as their
major neurotransmitter, making the striatum a large inhibitory
structure (Yoshida and Precht, 1971). MSNs receive excitatory glu-
tamatergic inputs from the cortex and the thalamus, which contact
dendritic spines and are modulated by dopamine (DA) released
from the terminals of midbrain DA neurons (Bennett and Wil-
son, 2000). They also receive various other types of afferences
including inhibitory synapses originating from other MSNs and

GABAergic interneurons, cholinergic inputs from large choliner-
gic interneurons,and several others such as serotonine,and various
neuropeptides. Most of the present knowledge of gene regulation
in the striatum results however from the study of dopamine and
glutamate signaling, for which we provide a brief overview.

DOPAMINE RECEPTORS SIGNALING
The actions of dopamine in the striatum are mediated mainly by
the D1 and D2 types of DA receptors (D1R and D2R) that are
coupled to different G proteins having opposite effects on the pro-
duction of cAMP (Kebabian and Calne, 1979). D2Rs have a high
affinity for DA and are tonically activated by low basal concentra-
tions of DA in the extracellular space, whereas D1Rs are thought
to be stimulated following burst firing of DA neurons which is
more efficient to release DA (Creese et al., 1983; Grace, 1991).
D1Rs are coupled to the striatal-enriched Gαolf that stimulates
adenylyl cyclase activity, thus increasing intracellular cAMP levels
(Herve et al., 1993; Corvol et al., 2001; Figure 1). The princi-
pal target of cAMP is the cAMP-dependent protein kinase (PKA;
Miyamoto et al., 1968) and D1R-induced PKA activation mod-
ulates multiple voltage- and ligand-gated ion channels, thereby
modifying the effectiveness of synaptic inputs (Greengard et al.,
1999; Nicola et al., 2000). In contrast to the phasic stimulation of
D1Rs, D2Rs exert a tonic inhibitory effect on membrane potential
and adenylyl cyclase, thereby opposing other receptors expressed
in the same neurons such A2a adenosine receptors. There is also
a biphasic coupling of D2R with the Akt/GSK3 pathway, which
includes an early activation (Brami-Cherrier et al., 2002) and
a delayed inhibition linked to protein phosphatase 2A (PP2A)
recruitment (Beaulieu et al., 2005). Although the Akt/GSK3 path-
way is known to exert important effects on nuclear functions in
other cell types (Hur and Zhou, 2010), little is known about such
effects in the striatum. As initially proposed more than 20 years ago
(Gerfen et al., 1990), D1Rs and D2Rs are remarkably segregated
in striatonigral and striatopallidal neurons, respectively, with little
overlap (see Valjent et al., 2009; Bertran-Gonzalez et al., 2010, for
recent reviews). Interestingly, it has been shown that D1R–D2R
heteromers can generate a specific Gq/Ca2+-mediated signaling
resulting in brain-derived neurotrophic factor (BDNF) induction
(Hasbi et al., 2009). The physiological importance of this effect,
which is expected to take place in the small proportion of MSNs
coexpressing both receptors, remains to be fully evaluated. D3Rs
are predominantly expressed in the ventral striatum (Diaz et al.,
1995).

THE ERK PATHWAY AND SYNERGISM BETWEEN D1R AND GLUTAMATE
RECEPTORS
Glutamate released by corticostriatal or corticothalamic neurons
can act on several types of ionotropic and metabotropic receptors.
One of their major effects is to induce an increase in cytoso-
lic Ca2+ which triggers the rapid activation of the extracellular
signal-regulated kinase (ERK; Sgambato et al., 1998; Vanhoutte
et al., 1999; Pascoli et al., 2011). ERK is part of a signal transduc-
tion module highly conserved among eukaryotes that is involved
in the control of many cellular processes including cell growth,
differentiation and neuronal plasticity (Thomas and Huganir,
2004). This module comprises three enzymes acting in a cascade
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FIGURE 1 | Cytonuclear signaling pathways in MSNs. The indicated
pathways have mostly been identified in D1R-expressing MSNs, although
similar cascades exist in D2-expressing cells with some differences
(Bertran-Gonzalez et al., 2009). The precise location of involved receptors (i.e.,
perikaryon vs dendrites and spines) is not indicated because it has not been
determined experimentally in most cases. Activation of ERK by glutamate
involves increases in cytosolic Ca2+ which stimulates Ras-GRF1 and possibly
other guanine nucleotide exchange factors. A major source of Ca2+ is the
activation of NMDAR by glutamate. This effect is strongly potentiated by
stimulation of D1R by dopamine through (i) a cAMP-independent pathway
involving Src-family tyrosine kinases (SFK); (ii) an amplification loop with
inhibition of PP1 by phospho-Thr-34-DARPP-32. PP1 acts both upstream of
ERK (e.g., by dephosphorylating NR1 subunits of NMDAR) and by activating
the tyrosine phosphatase STEP which dephosphorylates the regulatory
tyrosine of ERK (not shown). In striatal neurons in culture, active ERK
associates with endocytosed AMPA-R through adaptor protein 2 (AP2)
together with the transcription factor Elk1 and this complex appears to be
important for nuclear import of activated ERK and Elk1. D1R activates adenylyl

cyclase (mostly AC5 isoform) through the stimulatory heterotrimeric Golf

protein containing the αolf and γ7 subunits. The inactive PKA heterotetramer is
usually anchored through AKAPs, yet to be characterized in MSNs. cAMP
binds to the regulatory subunits (R) and releases the catalytic
subunits (C). C subunits phosphorylate numerous substrates in the
cytoplasm and diffuse to the nucleus where they can phosphorylate
proteins such as CREB or histone H3. In MSNs however, a nuclear resident
protein kinase, ERK-activated MSK1, plays a major role in CREB and H3
phosphorylation. CREB recruits CBP which has histone acetyltransferase
activity. PKA phosphorylates DARPP-32 on Thr-34, turning it into a potent
inhibitor of PP1 catalytic subunit (PP1c). DARPP-32 continuously cycles
between the cytoplasm and the nucleus and its nuclear export is facilitated by
phosphorylation of Ser-97 by CK2, which is present in the cytoplasm and
nucleus of MSNs. PKA increases nuclear DARPP-32 by inducing the
dephosphorylation of Ser-97 by PP2A. Dotted arrows indicate influences
or catalysis, solid arrows displacement. Red arrows with a round end
indicate inhibition. NPC, nuclear pore complex. See text for
references.

of sequential activatory phosphorylation: the upstream kinases
(MAPK/ERK-kinase-kinases, MEKKs) phosphorylate and acti-
vate the MAPK/ERK-kinases (MEKs). MEKs are dual specificity
kinases that trigger the activation of MAPKs by phosphorylating
a threonine (Thr) and a tyrosine (Tyr) residue in their activa-
tion loop. In the striatum, it is well documented that drugs of

abuse that share the capacity to increase extracellular DA lev-
els (Di Chiara et al., 1998), induce a robust increase in ERK
phosphorylation in MSNs (Valjent et al., 2000, 2004). Activa-
tion of the ERK pathway requires D1R (Valjent et al., 2000, 2004,
2005) and is antagonized by D3R in regions where this recep-
tor is expressed (Zhang et al., 2004). Interestingly, ERK activation
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appears to be also dependent on glutamate N -methyl-d-aspartate
receptors (NMDARs) since antagonists for these receptors block
ERK phosphorylation in MSNs (Valjent et al., 2000, 2001, 2005).
This provides the basis for coincidence detection between the DA
and glutamate pathways, which is predicted to specifically iden-
tify neurons activated in relation to rewarding stimuli (Girault
et al., 2007). Several molecular mechanisms of interaction between
D1R and NMDAR converge for this effect (Figure 1): (i) a PKA-
independent pathway involving Src-family non-receptor tyrosine
kinases (Pascoli et al., 2011); (ii) a cAMP-PKA mediated effect
through inhibition of the serine/threonine phosphatase PP1 (see
below) and of the striatal-enriched tyrosine phosphatase STEP
(Valjent et al., 2005). Activation of the ERK pathway in response to
Ca2+ influx in MSNs results to a large extent from the activation of
a Ca2+/calmodulin-regulated guanine nucleotide exchange factor
(GEF) termed Ras-guanine nucleotide releasing factor 1 (Ras-
GRF1; Fasano et al., 2009). In addition, two other GEFs, stimulated
by calcium and diacylglycerol, CalDAG-GEFI and CalDAG-GEFII
(also known as RasGRP1/2) are expressed in MSNs and likely to
be involved in the control of the ERK pathway (Toki et al., 2001).

Besides the PKA and ERK pathways, other signaling cascades
are likely to be involved in the regulation of nuclear functions but
have received comparatively less attention so far in striatal neu-
rons. They include the Ca2+/calmodulin-activated protein kinases
(CaMKs) which play a key role in the regulation of gene expres-
sion in other neuronal types (Deisseroth and Tsien, 2002; Cohen
and Greenberg, 2008). CaMKII is implicated in the activation of
ERK (see Wang et al., 2007 for a review) and CaMKIV, which is
predominantly nuclear, negatively regulates responses to cocaine
in the MSNs (Bilbao et al., 2008).

THE ROLE OF PROTEIN PHOSPHATASES IN SIGNALING IN MSNs
The phosphorylation state of PKA and ERK substrates also
depends on the activity of serine/threonine protein phosphatases.
Well-characterized protein phosphatases in the striatum include
protein phosphatase 1 (PP1 or PPP1), 2A (PP2A or PPP2) and
2B (PP2B or calcineurin or PPP3). PP1 catalytic subunit (PP1c)
is a ∼36 kDa globular protein highly conserved in eukaryotes.
Among the four PP1c isoforms (α, β/δ, γ1, and γ2) expressed
in the mammalian brain, PP1α and PP1γ1 are highly expressed
in the striatum, whereas PP1β/δ is less abundant (Da Cruz e
Silva et al., 1995). PP1c subcellular localization and substrate
specificity are controlled by multiple targeting subunits, which
regulate its activity in combination with endogenous inhibitors
(Bollen et al., 2010). DA- and cAMP-regulated phosphoprotein Mr
∼32,000 (DARPP-32 or PPP1 regulatory subunit 1B – PPP1R1B)
is an endogenous inhibitor of PP1 particularly enriched in striatal
MSNs (Walaas et al., 1983; Hemmings et al., 1984; Ouimet et al.,
1984). DARPP-32 activity is modulated by multiple neurotrans-
mitters and is involved in the response to many neurotransmitters
and psychoactive drugs (Svenningsson et al., 2004). Phosphoryla-
tion of specific Thr and serine (Ser) residues determines DARPP-
32 overall function. For instance, phosphorylation of Thr-34 by
PKA or cGMP-dependent protein kinase turns DARPP-32 into a
very potent inhibitor of PP1c (Hemmings et al., 1984). Inhibi-
tion of PP1c by DARPP-32 amplifies PKA signaling by enhancing
the phosphorylation of those of its targets that are substrates of

PP1, constituting a positive feed-forward mechanism by which the
D1R DA signal is amplified (Svenningsson et al., 2004). DARPP-
32 is also involved in cross-talks between signaling pathways and
appears to be essential for ERK activation in response to drugs of
abuse, as this activation is prevented in DARPP-32 knockout and in
knockin Thr-34-Ala point mutant mice (Valjent et al., 2005). Alto-
gether, the dopamine-dependent activation of the phosphatase
inhibitor DARPP-32, directly or indirectly amplifies both PKA and
ERK signaling cascades in MSNs.

BASIC MECHANISMS OF PROTEIN TRAFFIC BETWEEN THE
CYTOPLASM AND THE NUCLEUS
Stimuli-triggered signaling cascades can promote the relocaliza-
tion of effector molecules from the cytoplasm to the nucleus
where they exert direct or indirect effects on the expression of
specific target genes. Conversely, termination of nuclear signaling
can be facilitated by an efficient export of nuclear factors out of
the nucleus. Thus, nuclear traffic provides a means of temporal
and spatial control of signaling cascades and is tightly regulated
by numerous mechanisms and at multiple levels (see Kaffman and
O’Shea, 1999; Poon and Jans, 2005; Terry et al., 2007, for reviews).
Because it is central for understanding cytonuclear signaling, we
briefly overview the basic principles of nuclear import and export
mechanisms, although this knowledge has been acquired in other
cell types and little is known about the possible specificities of
striatal neurons in this matter.

THE NUCLEAR PORE COMPLEX
Cytonuclear traffic takes place through the nuclear pore complex
(NPC) that mediates bidirectional transport between the cyto-
plasm and the nucleus (Hoelz et al., 2011). The nuclear pore
complex is a huge macromolecular assembly (diameter ∼100 nm)
that penetrates the double lipid bilayer of the nuclear envelope
and is constructed by multiple copies of ∼30 different proteins
called nucleoporins, functionally conserved from yeast to mam-
mals. Interestingly, a point mutation of nucleoporin-62 (Nup62) is
responsible for a rare autosomal recessive infantile bilateral striatal
necrosis (Basel-Vanagaite et al.,2006),although the mechanisms of
the lesions and the basis for their striatal specificity are not known.
Diffusion channels through the NPC have a calculated diameter
of ∼9–10 nm and allow the free passage of macromolecules of
up to ∼40 kDa (Hoelz et al., 2011). A diffusion barrier is formed
by extended natively unfolded nucleoporin segments that contain
numerous Phe-Gly repeats (Patel et al.,2007). This barrier prevents
free diffusion of molecules larger than 40 kDa through the NPC.
Translocation of such molecules is an energy-dependent process
mediated by soluble transport receptors belonging to the family of
the karyopherins, which interact with the Phe-Gly repeats through
poorly understood mechanisms, and with specific sequences on
their cargoes (see Mosammaparast and Pemberton, 2004; Hoelz
et al., 2011, for reviews). Members of the karyopherin-β (Kapβ)
family, which share some sequence and structure homologies,
are also termed importins and exportins depending on whether
they mediate import into or export out of the nucleus, respec-
tively. Kapβ proteins bind to their cargoes via specific recognition
of amino acid targeting sequences termed nuclear localization
signal (NLS) for nuclear import and nuclear export signal (NES)
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for export (Xu et al., 2010; Figure 2). Both importins and exportins
interact with the small G-protein Ran, which, in its intranuclear
GTP-bound form, induces dissociation of importin complexes
and association of cargoes with exportin (Pemberton and Paschal,
2005).

NUCLEAR IMPORT AND EXPORT
The nuclear import cycle is mostly driven by a heterodimeric car-
rier composed by importin-β (Impβ) and its adaptor importin-α
(Impα, a member of karyopherin-α family). Impα interact with
their cargo through classical NLSs which contain one (monopar-
tite) or two (bipartite) clusters of basic residues separated by 10–12
variable residues (Xu et al., 2010). Impβ can also bind directly some
cargoes (Pemberton and Paschal, 2005). In the cytoplasm, Impα

binds the cargo and forms a heterodimeric complex with Impβ.
The carrier-cargo complex then docks on the near cytoplasmic
side of the NPC and exchanges sequential, low-affinity interactions
with nucleoporins that allow the complex to advance through the
NPC to the nucleoplasm by a mechanism still poorly understood.
In the nucleus, Impα/β-cargo complex dissociates when RanGTP
binds Impβ, releasing the cargo from the transport complex (Lee

et al., 2005). Multiple mechanisms for regulation of nuclear import
have been described (see Poon and Jans, 2005; Nardozzi et al., 2010,
for reviews). Interestingly, importins have been localized to distal
axons and dendrites in several types of neurons, including Aplysia
sensory motor neurons, and rodent hippocampal and sensory neu-
rons (Hanz et al., 2003; Thompson et al., 2004). Moreover, recent
work has indicated that importin-mediated transport plays a spe-
cialized role in neurons in which it not only translocates proteins
from the cell soma to the nucleus, but also carries signals from dis-
tal compartments to the nucleus during development, as well as in
the adult nervous system (Jordan and Kreutz, 2009). Several stud-
ies have shown how signals such as Impβ:cargo complexes, kinases
and transcription factors move to the nucleus upon synaptic acti-
vation (Martin et al., 1997; Meffert et al., 2003). In the striatum
the levels of Impα-1 are increased following lesion of DA neurons
(Wang et al., 2004), but the significance of this observation is not
known.

The best-characterized nuclear export pathway is mediated by
the chromosome region maintenance 1 protein (CRM1; also known
as exportin-1), although CRM1-independent pathways have been
identified for various cargoes (Lischka et al.,2001; Chen et al.,2004;

FIGURE 2 | Mechanisms for import and export of proteins to and

from the nucleus. The major identified cytonuclear traffic pathways
have been characterized in non-neuronal cells and their specifics in
MSNs are not known. Transport is mediated by karyopherins which are
also known as importins (Imp) and exportins, depending on their function.
Proteins are imported by binding to Impα through a basic nuclear localization
sequence (NLS). Some others bind directly to Impβ. For example, proteins
with nuclear translocation sequence (NTS Ser/Thr-Pro-Ser/Thr), which is
activated by phosphorylation, bind to Imp7 (Chuderland et al., 2008). The
complex moves through the nuclear pore complex (NPC) to the nucleoplasm
where its dissociation is induced by RanGTP. The best-characterized nuclear
export pathway is mediated by the exportin CRM1. Proteins containing a

hydrophobic nuclear export sequence (NES) bind to CRM1 in the presence
of RanGTP. Following translocation the complex is dissociated through
hydrolysis of GTP by Ran GTPase-activating proteins (Ran GAPs) enriched
on the cytoplasmic side of the NPC. Leptomycin B (LMB) prevents binding
of NES to CRM1. CRM1-independent export pathways are poorly
characterized. RanGDP is imported from the cytoplasm to the nucleus
where GDP is replaced by GTP by specific guanine nucleotide exchange
factors (GEFs, not shown). Following carrier-cargo dissociation, the empty
importins or exportins return to their compartment of origin through specific
pathways that are not indicated on the scheme. References can be found in
the text and in (Pemberton and Paschal, 2005; Poon and Jans, 2005; Nardozzi
et al., 2010).
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Eulalio et al., 2006; Figure 2). The majority of CRM1 export sub-
strates contain a NES that consists in a short amino acid sequence
of regularly spaced hydrophobic residues, of which leucine is the
most abundant (Xu et al., 2010). CRM1 binds cooperatively to
RanGTP and its export cargo, leading to the formation of a trimeric
transport complex in the nucleus that is translocated through
the NPC to the cytoplasm (Askjaer et al., 1998). RanGTP within
the export complex is hydrolyzed by specific nucleoporins with
GTPase-activating properties (Ran-GAPs), allowing dissociation
of the export complex on the cytoplasmic side of the NPC (Pem-
berton and Paschal, 2005). The antifungal antibiotic leptomycin B
(LMB) is a powerful tool to distinguish bona fide CRM1-exported
substrates among other leucine-rich proteins since it specifically
inhibits CRM1 nuclear export by occupation of the NES binding
site (Kudo et al., 1999). The use of LMB has thus revealed that many
proteins undergo a permanent cytonuclear trafficking and that
their apparent cytoplasmic localization results from their nuclear
export being more efficient than their import. This dynamic equi-
librium can be the target of many regulations. In the next sections
we will examine how such regulations apply to signaling proteins
important in the striatum, using mostly information obtained in
other cell types since very few studies have addressed directly these
issues in MSNs.

NUCLEAR TRANSLOCATION OF PROTEIN KINASES
IMPORTANT FOR SIGNALING IN MSNs
PKA NUCLEAR TRANSLOCATION
Inactive PKA is a tetrameric holoenzyme consisting of two regula-
tory subunits (R) that bind and inhibit two catalytic subunits (C;
Taylor et al., 1990). The interaction of R with C subunits stabilizes
both molecules against proteolysis. A family of functionally related
proteins known as A-kinase-anchoring proteins (AKAPs) plays an
essential role in the distribution of PKA in specific intracellular
domains (Wong and Scott, 2004). AKAPs are multivalent adaptor
proteins that bind the R subunit of PKA and anchor the enzyme
at distinct subcellular locations in close proximity to specific sub-
strates and other signaling enzymes. Sequential and cooperative
binding of cAMP to the two sites of each R subunit releases
monomeric C subunits (Taylor et al., 2008; Figure 1). Dissoci-
ated C subunits can then phosphorylate Ser and Thr residues in
numerous proteins containing the consensus amino acid sequence
(R/K2–x–S/T–Φ, where Φ is a hydrophobic residue). PKA can thus
exert its function via a wide range of substrates spanning multiple
neuronal compartments.

Although PKA is preferentially located in the cytoplasm in rest-
ing conditions, a significant fraction of the dissociated C subunit
of PKA localizes to the nucleus upon increase of intracellular
cAMP (Meinkoth et al., 1990). The cytoplasmic localization of
PKA holoenzyme is achieved by tethering the R subunits to cyto-
plasmic AKAPs. In addition the quaternary complex is too big
to diffuse into the nucleus and no active import mechanism
has been described for the holoenzyme. In contrast, free C sub-
units can diffuse into the nucleus since they are small enough
to pass through the NPC (Meinkoth et al., 1990; Harootun-
ian et al., 1993). A strong and delayed activation of nuclear
PKA-mediated phosphorylation is observed in neurons following

stimulation of membrane receptors that activate adenylyl cyclase
(Gervasi et al., 2007). The functional importance of nuclear
PKA was demonstrated using a specific inhibitor of this enzyme
in the nucleus, which prevented the induction of long-lasting
long-term potentiation in hippocampal slices (Matsushita et al.,
2001).

Considering the fact that specific anchoring proteins tightly
compartmentalize PKA subcellular localization, it is rather
unlikely that PKA activated at the synapse can travel from distant
processes to the nucleus. Instead, the rapid diffusion toward the
cell body of the highly hydrophilic cAMP produced at the plasma
membrane may allow the activation and translocation of PKA
located in close proximity to the nucleus (Hempel et al., 1996). In
some cell types, a pool of PKA tethered to the nuclear envelope by
specific AKAPs is able to rapidly translocate to the nucleus upon
cAMP increase (Wong and Scott, 2004). The anchoring of RIIβ to
AKAP75, two proteins abundant in specific neuronal populations,
appears to be an important factor for nuclear activation of PKA
(Paolillo et al., 1999). In addition, nuclear anchoring proteins can
retain the free C subunit of PKA and facilitate its nuclear func-
tion (Sastri et al., 2005), whereas binding to the protein kinase
inhibitor (PKI) which has a strong NES enhances its active export
by a CRM1-dependent mechanism (Fantozzi et al., 1994). How-
ever, little is known about the regulation of nuclear dynamics of
PKA in neurons, in spite of its functional importance.

ERK NUCLEAR TRANSLOCATION
In neurons as in other cell types, in the absence of stimulation,
ERK is inactive and mostly located in the cytoplasm, in dendrites
and perikarya. Following activation of the signaling cascades that
lead to MEK and ERK activation, phosphorylated ERK accumu-
lates transiently in the nucleus, where it has important targets. This
response has been well characterized in MSNs in vivo, in response
to corticostriatal stimulation and drugs of abuse (Sgambato et al.,
1998; Valjent et al., 2000). However, the molecular mechanisms
controlling ERK localization have been mostly studied in non-
neuronal cells. The association with MEK, which bears a NES is an
important factor for maintaining ERK in the cytoplasm (Adachi
et al., 2000). Passive diffusion of the two ERK isoforms (ERK1
and ERK2) that have a molecular mass of 44 and 42 kDa, respec-
tively, is sufficient for their nuclear accumulation (Adachi et al.,
1999; Burack and Shaw, 2005). In addition, it has been proposed
that homodimerization was an important step for ERK nuclear
import (Khokhlatchev et al., 1998; Adachi et al., 1999). However,
recent studies using FRET and dimerization-deficient mutants
have ruled out this hypothesis (Burack and Shaw, 2005; Lidke
et al., 2010). ERK sequence does not contain any classical NLS,
but includes a novel nuclear translocation signal (NTS) motif,
Ser/Thr-Pro-Ser/Thr, which is active when phosphorylated by a
variety of protein kinases, and mediates interaction with importin-
7 (Chuderland et al., 2008). Interestingly, in hippocampal neurons,
ERK nuclear translocation appears to require a combination of
Ca2+ and cAMP (Impey et al., 1998) or PKA and TrkB signaling
(Patterson et al., 2001). Although the mechanism of this syner-
gism is not known, it could reflect the existence of regulatory
phosphorylation, yet to be identified.
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TARGETS OF NUCLEAR SIGNALING IN MSNs
The major nuclear target of signaling pathways in post-mitotic
cells is the transcription machinery. Since the first studies
on growth factor-regulated transcription in non-neuronal cells
(Cochran et al., 1983), it is usual to differentiate immediate-early
genes (IEGs) that are rapidly transcribed in response to stimuli
and whose transcription does not require protein synthesis. The
promoters of these genes contain specific response elements that
are targeted by transcription factors regulated by various signal-
ing pathways. Many IEGs are themselves transcription factors and
their up-regulation accounts for the induction of late genes. Late
genes are transcribed after a longer delay after the onset of the
stimulus and their transcription is prevented by protein synthesis
inhibitors that prevent IEGs translation. Thus, regulation of tran-
scription includes changes in the levels, localization, and activity
of transcription factors, as well as functionally associated alter-
ations in chromatin structure and organization, which can either
facilitate or inhibit the expression of specific genes. Some chro-
matin alterations are long-lasting and may be involved in stable
neuronal adaptations. It should be emphasized that regulation of
other types of nuclear functions may also be important in neu-
rons such as RNA processing, including mRNA splicing. However,
virtually nothing is known about the regulation of these nuclear
processes in striatal neurons.

REGULATION OF TRANSCRIPTION FACTORS IN MSNs
The accumulation of active PKA and/or P-ERK in the nucleus
leads to phosphorylation of several nuclear proteins involved
in gene transcription. In neurons the most extensively studied
transcription factor substrate of PKA is the cAMP response-
element (CRE) binding protein (CREB). CREB is a member of
the leucine-zipper transcription factors family that bind to a spe-
cific DNA sequence, CRE, found in one or several copies in the
promoters of many genes (Shaywitz and Greenberg, 1999). CREB
dimer binds constitutively to CRE sites, but is inactive. Its activ-
ity increases when it is phosphorylated on Ser-133, allowing its
interaction with the co-activator CREB binding protein (CBP) or
the related p300 (Goodman and Smolik, 2000). CBP mutations
are responsible for Rubinstein–Taybi syndrome, a rare human
genetic disorder characterized by mental retardation and physi-
cal abnormalities (Petrij et al., 1995). CBP possess a histone acetyl
transferase (HAT) activity and interacts with the basic transcrip-
tional machinery. CREB also interacts with the cAMP-regulated
transcriptional co-activators (CRTC1-3, also called transducer of
regulated CREB – ToRC – in Drosophila melanogaster ; Altare-
jos and Montminy, 2011). CRTCs are important partners of
CREB, activated in response to cAMP and Ca2+, which both
promote its nuclear accumulation. Interestingly, CRTC is upreg-
ulated in rats chronically treated with cocaine, through the up-
regulation of microRNA-212 (miR-212; Hollander et al., 2010).
In addition to PKA, Ser-133 is the target of many other pro-
tein kinases, including CaMK II/IV, p90 ribosomal S6 kinases 1/2
(RSK1/2), mitogen- and stress-activated kinases 1/2 (MSK1/2),
and PKC (Johannessen and Moens, 2007). MSK1 is a nuclear
substrate of ERK (Deak et al., 1998) enriched in the striatum
(Heffron and Mandell, 2005). The role of MSK1 in CREB reg-
ulation in MSNs seems to be prominent since in mutant mice

lacking MSK1 many biochemical nuclear responses in response
to cocaine, including CREB phosphorylation, were blocked and
locomotor sensitization was decreased (Brami-Cherrier et al.,
2005). In contrast, Zif-268 induction and cocaine conditioned
place preference were not altered. Importantly, �FosB, a cocaine-
induced transcription factor that is expressed at low levels follow-
ing a single drug administration, but accumulates after repeated
treatment due to its stability, plays a major role in morpho-
logical and behavioral responses to chronic cocaine (Nestler,
2008).

The transcription factor Elk1, a member of the Ets family,
associates with two molecules of serum response factor (SRF) to
form a ternary complex which binds to serum response elements
(SRE) found in the promoter of many genes (Besnard et al., 2010;
Figure 1). In MSNs Elk-1 is located in part in the cytoplasm and
its nuclear accumulation depends on its phosphorylation by ERK
(Vanhoutte et al., 1999). Moreover, ERK and Elk1 appear to be
recruited from neurites to cell bodies and nucleus in response to
glutamate stimulation, and to undergo retrograde trafficking with
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors, following their clathrin-dependent endocytosis (Tri-
filieff et al., 2009; Figure 1). This interesting mechanism could
provide an example of synapse-to nucleus signaling, although this
remains to be directly demonstrated.

In addition to the ERK-mediated pathways, it should be
mentioned that stimulation of D1R induces gene transcription
through activation of L-type calcium channels and recruitment
of the Ca2+/calcineurin-regulated nuclear factor of activated T-
cells (NFAT; Groth et al., 2008). A different type of cytoplasmic
transcription factor which accumulates in the nucleus upon bind-
ing of its ligand, the glucocorticoid receptor (GR), also plays an
important role in responses mediated by striatal neurons. Selective
deletion of GR in neurons expressing the D1R promoter resulted
in altered gene expression and behavioral responses induced by
cocaine but not morphine (Barik et al., 2010). Many other tran-
scription factors are likely to be important for controlling gene
expression in MSNs but have so far received less attention.

REGULATION OF CHROMATIN REMODELING IN MSNs
Signaling in the nucleus not only controls the activity of tran-
scription factors that mediate gene expression, but also changes
chromatin structure thereby modifying the transcriptional rate of
specific genes. Histones can undergo multiple post-translational
modifications on their N-terminal tail, including phosphoryla-
tion, acetylation, methylation, ubiquitinylation, and sumoylation,
which alter their interaction with DNA, and thus the degree
of chromatin condensation (see Shilatifard, 2006 for a review).
Transition from condensed chromatin into a more relaxed state
is needed to accommodate the molecular elements required
for transcription. Chromatin remodeling is involved in many
processes in the nervous system, during development and differ-
entiation, but also learning and memory (Levenson and Sweatt,
2005). Recent research indicates that alterations of histone post-
translational modifications may also be implicated in psychiatric
disorders, including depression, schizophrenia, and drug addic-
tion (Tsankova et al., 2007; Borrelli et al., 2008; Brami-Cherrier
et al., 2009; Franklin and Mansuy, 2010).
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Phosphorylation of histone H3 on Ser-10 is the most exten-
sively studied chromatin post-translational modification in striatal
neurons. The functional significance of this modification is not
entirely clear however. It has been suggested that during the inter-
phase, phosphorylation of H3 Ser-10 promotes detachment of
specific regions from the heterochromatic scaffold to allow decon-
densation and gene expression (Johansen and Johansen, 2006).
Ser-10 phosphorylation in combination with H3 Lys-14 methyla-
tion is associated with increased c-Fos transcription in hippocam-
pal neurons in response to stimulation of various receptors includ-
ing D1R (Crosio et al.,2003). Phosphorylation of H3 is increased in
striatal neurons after acute treatment with cocaine, a response that
requires MSK1 (Brami-Cherrier et al., 2005) and occurs selectively
in striatonigral neurons (Bertran-Gonzalez et al., 2008). Impor-
tantly, chromatin immunoprecipitation (ChIP) demonstrated that
this phosphorylation occurred specifically at the promoter region
of IEGs (Kumar et al., 2005) through recruitment of CBP (Levine
et al., 2005). Similar responses were observed in striatonigral
neurons following L-DOPA treatment in dopamine-denervated
striatum (Santini et al., 2007, 2009). Conversely, in striatopalli-
dal neurons it is the blockade of D2 receptors which triggers H3
Ser-10 phosphorylation by unmasking the stimulation of the PKA
pathway by A2a adenosine receptors, normally inhibited by D2R
(Li et al., 2004; Bertran-Gonzalez et al., 2008, 2009). In this case,
phosphorylation of H3 Ser-10 is not mediated by MSK1, and may
depend directly on PKA and PP1 inhibition by DARPP-32. Addi-
tional modifications of H3 and H4 tails have been reported in
similar conditions (Li et al., 2004; Brami-Cherrier et al., 2005;
Kumar et al., 2005; Nicholas et al., 2008).

Recent work further supports the role of covalent modifica-
tions of histones in the long-lasting effect of cocaine and possibly
other addictive drugs (LaPlant and Nestler, 2011). Genome-wide
studies using ChIP with antibodies for polyacetylated H3 or H4,
or dimethylated H3 revealed changes in numerous genes includ-
ing a group of deacetylases, the sirtuins (Renthal et al., 2009).
This study emphasized the breadth of drug-induced gene reg-
ulation and the interest of genome-wide studies in this con-
text. Repeated cocaine administration reduced global levels of
H3 Lys-9 dimethylation in the nucleus accumbens, through the
repression of the G9a lysine dimethyltransferase in this brain
region by �FosB (Maze et al., 2010). Using conditional muta-
genesis and viral-mediated gene transfer, the authors found that
G9a down-regulation increased the dendritic spine plasticity
of nucleus accumbens MSNs and enhanced the preference for
cocaine. Interestingly, di- and trimethylation of H3 Lys-9 cre-
ate binding sites for chromodomain-containing proteins, includ-
ing those of the heterochromatin protein 1 (HP1) family which
promote transcriptional repression and genomic silencing (Ban-
nister et al., 2001; Lachner et al., 2001). Accordingly, altered
H3 Lys-9 trimethylation induced in the nucleus accumbens by
repeated cocaine administration was associated with changes in
heterochromatin (Maze et al., 2011). Overexpression in the ven-
tral striatum of Setdb1 (Set domain, bifurcated 1), a methyl-
transferase specific for H3 Lys-9, down-regulated the expression
of NR2B (Jiang et al., 2010). All these results identify regula-
tion of H3 Lys-9 methylation as functionally important in the
striatum.

DNA methylation on cytidine residues, preferentially located in
CpG islands, is classically considered to be a very stable mark. How-
ever, in brain neurons DNA methylation appears to be reversible
and to participate in memory formation and storage (Day and
Sweatt, 2010). A recent work provides a possible mechanism for
demethylation in this context, through a process that requires the
base excision repair pathway (Guo et al., 2011). This involves
a specific hydroxylase, TET1, which converts 5-methylcytosine
to 5-hydroxymethylcytosine, which exists at significant levels in
various brain regions (Kriaucionis and Heintz, 2009). The impor-
tance of DNA methylation in the striatum is indicated by the
role of the methylase Dnmt3 in cocaine-induced spine alter-
ations (LaPlant et al., 2010). Moreover the X-linked transcriptional
repressor methyl CpG binding protein 2 (MeCP2), known for its
role in a neurodevelopmental disorder, the Rett syndrome, reg-
ulates cocaine intake in rat (Im et al., 2010). This effect seems
to depend on regulation of striatal BDNF levels in interaction
with miR-212 (Im et al., 2010), which is itself upregulated by
chronic cocaine, as mentioned above (Hollander et al., 2010).
Moreover, amphetamine-induced spine plasticity and conditioned
place preference were altered in MeCP2-deficient mice (Deng et al.,
2010). Altogether these observations strongly support the impor-
tance of chromatin post-translational modifications and DNA
methylation in the chronic effects of drugs of abuse in striatal neu-
rons and suggest they may also be important for the long-lasting
adaptations of these neurons in physiological or other pathological
circumstances.

ROLE OF PROTEIN PHOSPHATASES IN THE REGULATION OF
CHROMATIN RESPONSES IN MSNs
We have discussed above several protein kinases pathways which
converge to the nucleus of MSNs where they control transcrip-
tion factors. These pathways can also directly alter the state of
phosphorylation of histones and other nuclear proteins includ-
ing enzymes regulating the modifications of histones or DNA.
The resulting changes in transcription can in turn have conse-
quences on chromatin structure, as indicated by the effects of
chronic drug treatments on the levels of several mRNAs coding for
these enzymes (LaPlant et al., 2010; Maze et al., 2010). However
much remains to be done to better understand these regulations.
Recent work has uncovered the likely importance of the regula-
tion of nuclear protein phosphatases in striatal neurons. The role
of nuclear protein phosphatases has been extensively studied in
non-neuronal tissues where these enzymes have been implicated
in the regulation of multiple processes including gene transcrip-
tion, RNA processing, cell cycle progression or signal termination
(Bollen and Beullens, 2002; Moorhead et al., 2007). For exam-
ple, PP1 is a major P-CREB phosphatase (Hagiwara et al., 1992)
and regulates the dephosphorylation of P-Ser-10 H3 in mitotic
cells (Hsu et al., 2000). Regulation of PP1 activity in the nucleus
of hippocampal neurons alters histone post-translational mod-
ifications directly (phosphorylation) and indirectly through the
control enzymes that modify acetylation and methylation, as well
as CREB expression and phosphorylation associated with learning
and memory (Koshibu et al., 2009). PP1α appears to be the pre-
dominant PP1 isoform in the nucleus of MSNs (Ouimet et al.,
1995), where it has the potential to antagonize the action of
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dopamine and glutamate by dephosphorylating PKA and ERK
targets. Recent work shows that PP1 activity can be modulated
in the nucleus of MSNs through the regulated accumulation of
phospho-Thr-34-DARPP-32 (Stipanovich et al., 2008). This study
demonstrated that psychostimulant drugs (d-amphetamine and
cocaine) and morphine, which act by different mechanisms but
share the ability to increase extracellular dopamine in the striatum,
as well as incentive learning, increased the nuclear concentration
of DARPP-32. In vitro analysis of the mechanisms of DARPP-
32 nuclear translocation showed that this protein is constantly
shuttling between the cytoplasm and the nucleus, although it is
predominantly localized in the cytoplasm as a result of an effi-
cient CRM-1-dependent nuclear export (Stipanovich et al., 2008).
This export requires phosphorylation of Ser-97 by casein kinase 2
(CK2) present in the nucleus and cytoplasm of MSNs (Figure 1).
Upon D1R stimulation, Ser-97 is dephosphorylated, presumably
through activation of a PKA-activated form of PP2A (Ahn et al.,
2007; Stipanovich et al., 2008), causing a nuclear accumulation
of DARPP-32. Ongoing work in our laboratory has revealed that
additional mechanisms are involved in the control of DARPP-32
cytonuclear localization, providing the basis for its precise but
complex regulation by multiple extracellular signals (Matamales
and Girault, unpublished observations). It should be underlined
that the control of DARPP-32 localization by regulation of Ser-97
phosphorylation is parallel to but independent from its phospho-
rylation on Thr-34, which is responsible for PP1 inhibition activity.
When P-Thr34 DARPP-32 accumulates in the nucleus, it can facil-
itate the phosphorylation of histone H3 on Ser-10 (Stipanovich
et al., 2008). In contrast, nuclear trapping of dephospho-Thr-
34-DARPP-32 by mutation of Ser-97 to Ala decreases signaling
responses including H3 phosphorylation (ibid and our unpub-
lished observations). Thus, it is possible that in some circum-
stances nuclear accumulation of inactive DARPP-32 plays a role in
down-regulating cytoplasmic responses, a hypothesis that needs
to be explored.

The nuclear accumulation of the active form of a potent PP1
inhibitor may help to tilt the kinase and phosphatase equilibrium
in favor of phosphorylation. Given the large number of potential
substrates of PP1 in the nucleus, it is likely that the regulation of
DARPP-32 trafficking has multiple consequences that have yet to
be identified. For example, it has been shown that DARPP-32 binds
directly to the splicing factor transformer 2-beta 1 (tra2-beta1)
and changes the usage of tra2-beta1 dependent alternative exons
in heterologous systems (Benderska et al., 2010). Therefore the link

between the nuclear localization of DARPP-32 and short term and
long-term adaptations, including but not restricted to changes in
gene transcription, clearly needs to be further investigated.

CONCLUSION AND PERSPECTIVES
We have provided here an overview of some mechanisms of
cytonuclear signaling and regulation of nuclear functions and
summarized the current knowledge of glutamate and dopamine
signaling to the nucleus in MSNs (Figure 1). Much of our under-
standing of the basic mechanisms of cytonuclear signaling is
inferred from work in other cellular systems since few studies
have dissected the mechanisms and regulation of these pathways
in striatal neurons so far. As a general principle the prevention
of “background noise” kinase activity in the nucleus of unstim-
ulated neurons is likely to be important to avoid meaningless
nuclear responses. This is probably achieved through the regulated
cytoplasmic sequestration of PKA, ERK, and other signaling mol-
ecules including some transcription factors, as well as by potent
phosphatase activities in the nucleus. Upon receptor stimulation,
and resulting cAMP and Ca2+ production, protein kinases are
activated and accumulate in the nucleus, where they exert their
effects directly or indirectly through resident nuclear kinases such
as MSK1. Identified targets include transcription factors and chro-
matin components such as histones that modulate the rate of
transcription. The silencing of phosphatase activity through acti-
vation and regulated nuclear translocation of the PP1 inhibiting
form of DARPP-32 plays a complementary role in MSNs. Thus,
the precise nuclear adaptations taking place in MSNs are likely to
depend on a fine balance between multiple cytonuclear signaling
pathways. Since the nuclear responses are important for long-term
changes of behavioral responses we suggest that deciphering the
rules of cytonuclear signaling in striatal neurons will be crucial to
understand the learning mechanisms that involve the basal ganglia
and their pathological alterations. This new field is only beginning
to be explored in this context.
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