
NEUROANATOMY
HYPOTHESIS ANDTHEORY ARTICLE

published: 26 December 2011
doi: 10.3389/fnana.2011.00066

Laws of conservation as related to brain growth, aging,
and evolution: symmetry of the minicolumn
Manuel F. Casanova1*, Ayman El-Baz 2 and Andrew Switala1

1 Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, KY, USA
2 Department of Bioengineering, University of Louisville, Louisville, KY, USA

Edited by:

Patrick R. Hof, Mount Sinai School of
Medicine, USA

Reviewed by:

Efrain Azmitia, New York University,
USA
Christoph Schmitz,
Ludwig-Maximilians-University of
Munich, Germany

*Correspondence:

Manuel F. Casanova, University of
Louisville, 500 S Preston Street
Building 55A Ste 217, Louisville, KY
40292, USA
e-mail: m0casa02@louisville.edu

Development, aging, and evolution offer different time scales regarding possible anatom-
ical transformations of the brain. This article expands on the perspective that the cerebral
cortex exhibits a modular architecture with invariant properties in regards to these time
scales.These properties arise from morphometric relations of the ontogenetic minicolumn
as expressed in Noether’s first theorem, i.e., that for each continuous symmetry there is
a conserved quantity. Whenever minicolumnar symmetry is disturbed by either develop-
mental or aging processes the principle of least action limits the scope of morphometric
alterations. Alternatively, local and global divergences from these laws apply to acquired
processes when the system is no longer isolated from its environment. The underlying
precepts to these physical laws can be expressed in terms of mathematical equations that
are conservative of quantity. Invariant properties of the brain include the rotational symme-
try of minicolumns, a scaling proportion or “even expansion” between pyramidal cells and
core minicolumnar size, and the translation of neuronal elements from the main axis of the
minicolumn. It is our belief that a significant portion of the architectural complexity of the
cerebral cortex, its response to injury, and its evolutionary transformation, can all be cap-
tured by a small set of basic physical laws dictated by the symmetry of minicolumns. The
putative preservations of parameters related to the symmetry of the minicolumn suggest
that the development and final organization of the cortex follows a deterministic process.
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INTRODUCTION
It is increasingly clear that the symmetry group of nature is
the deepest thing that we can understand about nature today.
(Feynman and Weinberg, 1987, p. 73)

The numerical values that nature has assigned to the fun-
damental constants [ . . .] may be mysterious, but they are
crucially relevant to the structure of the universe that we
perceive. As more and more physical systems, from nuclei
to galaxies, have become better understood, scientists have
begun to realize that many characteristics of these systems are
remarkably sensitive to the precise values of the fundamental
constants. (Davies, 1982, p. vii)

As genetic variations accumulate through sexual reproduction suc-
cessive generations provide the substrate for evolutionary change.
The possible number of combinations for the segregation of
homologous genes during meiosis is 223. Although the total num-
ber of permutations is great, it pales in comparison to the archi-
tectural complexity of the brain: an organ with 1010 neurons each
one making 104 connections with a variety of cells that exhibit any
1 of 50 or so different neurotransmitters. Furthermore, the total
number of glial cells exceeds that of neurons by 2–10 times depend-
ing on location. It is therefore of interest that despite the genetic
drive toward evolutionary variability the final outcome of brain
development is an organ that exhibits a fairly uniform shape and
parcelation scheme, be it in cytoarchitecture, myeloarchitecture,

pigmentoarchitecture, or chemoarchitecture. This overpowering
sense of constancy has been variously expressed in the literature,
e.g., “In spite of the enormous variations in cortical surface area,
and in the sulci and gyri, the basic cortical circuitry is similar. The
laminar allocation of cells connecting to the thalamus, spinal cord,
or intracortical areas is remarkably conserved among all mammals
studied”(Molnár et al., 2006). This cytoarchitectural commonality
may stem from the fact that gliophilic migration and its engen-
dered structure (i.e., the minicolumn) is a conserved motif readily
evidenced in all mammalian species thus far studied (Gressens and
Evrard, 1993; Buxhoeveden and Casanova, 2005).

The preservation of brain parameters across countless individ-
uals bears analogy to the many examples of convergent evolu-
tionary themes in the history of species (Carroll, 2001; Willmer,
2003). Accordingly, the last common ancestor between octopuses
and humans lived well over half a billion years ago (Ramachan-
dran, 2011). Yet, when observing similarities between the eyes of
vertebrates and octopuses it is easily concluded that some type
of design rule for eyes should exist (Striedter, 2007). This has led
numerous scientists to suggest that the course of evolution has
been channeled according to undisclosed developmental and/or
physical constraints (Amundson, 1994). The putative existence of
these constraints therefore stands as the null hypothesis to the
adaptationist paradigm (i.e., arguments in favor of the power of
natural selection in shaping the brain toward its evolutionary opti-
mum; Gould and Lewontin, 1979; Antonovics and Van Tienderen,
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1991). However, as animals randomly generate genetic variations
that become adaptations of particular populations, the less need
the environment has to act through natural selection. In the end,
there would be no need for natural selection at all. Kirschner and
Gerhart have expressed this reservation as follows: “Widespread
conservation must reflect some limit on the organism’s freedom
to generate viable variation in all directions under the impact of
mutation” (Kirschner and Gerhart, 2005, p. 68).

Even if mutations are random at the genetic level they are
channeled through developmental mechanisms that favor cer-
tain phenotypes (Striedter, 2007). This means that adaptations
are not optimal by design; rather, they represent compromises
between costs and benefits. It is now readily accepted that Neo-
Darwinian competition is only one of several principles molding
evolution. Neo-Darwinism (sometimes called the Modern Synthe-
sis) is the merger of Darwin’s theory of evolution and genetics. It
postulates that gene mutations and other rearrangements under-
lie the variations needed for natural selection to occur. Besides
Neo-Darwinism, the endosymbiotic theory that formulated the
interdependence and cooperative existence of microorganisms is
another principle of evolution (Margulis, 1970). The expressed
reservations are important because they emphasize developmental
constrains on the ability of natural selection to dictate evolutionary
change.

The emphasis of this article will be on how laws of physics,
defined by symmetry operations, may help explain various aspects
of brain growth and organization. More specifically, these laws
provide a reasonable explanation to some cases of convergent
evolution without invoking the necessity of adaptation to sim-
ilar environments. In evolutionary terms these laws (contrary
to the organisms that they apply to) imply descent without
modifications. In effect, these measurable properties of the iso-
lated brain do not change as the organ itself evolves. Ulti-
mately we aim to prove that some of the complexity ingrained
within the cerebral cortex can be defined in terms of “laws of
conservation.”

A review of the literature indicates that scaling rules, explain-
ing brain size as a function of neuronal cell number or size, differ
among species (e.g., rodents vs. primates; Herculano-Houzel et al.,
2006, 2007). Evolutionary and developmental constraints imposed
by cellular elements seem undercut by their flailing generalizabil-
ity. It therefore seems possible that constraints are a property of
modules rather than their individual cellular elements. In the next
section we summarize some of the basic knowledge available in
the scientific literature regarding the anatomical basis of corti-
cal modularity. For a historical review on the physiology of the
minicolumn see Trippe and Casanova (2005) and for a review of
cortical organization from the perspective of systems theory see
Casanova (2010).

CORTICAL ORGANIZATION AND MINICOLUMNS
The isocortex is an autopoietic (Gk. αυτóς, self + πoíησις, pro-
duction; Maturana and Varela, 1973) system composed of canon-
ical circuits where the flow of information maintains the stability
of the system. In other words, the “modular architectonics may be
seen as a pattern resulting from the dynamics of self-organization
rather than being completely laid down in the genome” (Arbib

and Érdi, 2000). The genesis of this system resides in the recur-
sive migration of cells along a radial glial cell scaffolding. The end
result is a receptive scenario to Hebbian reciprocity: the close appo-
sition of neurons along a columnar arrangement propitiates their
interconnectivity. In effect, as precursors of pyramidal neurons
migrate during corticogenesis they are connected to each other by
gap junctions (Peinado et al., 1993). It is thus unsurprising that
axonal density studies suggest that the majority of cortical pro-
jections are local (intracolumnar) in nature (Douglas and Martin,
1998). Recent studies using enhanced green fluorescent protein
(EGFP)-expressing retroviruses and multiple electrode whole-cell
recordings clearly illustrate the propensity for developing connec-
tions among sister cells (i.e., stemming from the same mother
cell) rather than with neighboring non-siblings. The authors of
one such labeling study concluded, “These results indicate that
specific microcircuits develop preferentially within ontogenetic
radial clones of excitatory neurons in the developing neocortex and
contribute to the emergence of functional columnar microarchi-
tecture in the mature cortex”(Yu et al., 2009). In analogous fashion
evidence obtained with two-photon imaging of calcium fluxes
in cat and rodent visual cortex show that orientation-response
fields are comprised of columns 1–2 cells wide with organization
and response properties capable of differentiating between areas
V1 and V2 (Ohki et al., 2005). The anatomical counterparts to
these experiments comes from computerized image analysis using
a step-wise algorithm involving region growing and recursive line
tracing suggesting that minicolumns in supragranular layers are
one cell wide (Casanova et al., 2009a). The staggered arrangements
of cells in infragranular layers provide for wider minicolumnar
cores.

The mammalian iso-/neocortex is remarkable for the periodic
spacing of stereotypical, radially oriented cellular features that are
common to all of its distinct cytoarchitectural areas. Chords of
pyramidal cells spanning multiple neocortical layers were first
observed by the pioneering neuroanatomists of the late Nine-
teenth Century (DeFelipe, 2005). Von Economo and Koskinas
(1925) devoted one section of their book on the cytoarchitec-
tonics of the human cortex to the anatomical motif provided by
the vertical arrangements of cells. Since the anatomical motif rep-
resented the direction of the white matter fibers of the cortex, the
so-called Radii, they named the structure “radial arrangements.”
Later investigators identified columns of Nissl-stained pyramidal
cells distributed with a tangential periodicity of between 30 and
80 μm according to neocortical area and species (Table 1). Peters
et al. (1991) showed that the apical dendrites of pyramidal neu-
rons form bundles aligned with the cell-column radial axis and
oriented towards the pial surface. As demonstrated in visual and
temporal cortex of rodents and monkeys, these apical dendritic
bundles are tangentially spaced at regular intervals in register with
the cell columns giving rise to them (Peters and Sethares, 1991,
1996; del Río and DeFelipe, 1997). Likewise, in double-labeled
rat visual cortex, myelinated axon bundles extending perpendic-
ularly through the cortical plate into white matter were shown
to have tangential spacing comparable to that of apical dendritic
bundles in the same area (Lohmann and Köppen, 1995). More
recently, our group used a novel recursive trace line method in
serial sections to demonstrate a high degree of positive correlation
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Table 1 | Estimates of minicolumar size among various species

reported in the literature*.

Cortical areas
†

Measurement

technique
‡

Minicolumn size

(μm)§

MUS MUSCULUS

BC AD 20–40

3, 1, 2 PCA 35.1

17 PCA 26.3

RATTUS NORVEGICUS

3 AD 50

32 AD 44.2

SM PCA 30–60

17 AB 50.1

17 AD 30–60

ECHINOPSTELFAIRI

All cortex AD 32

FELIS CATUS

3 PCA 28.6–55.6

3 SC 40–50

17 AD 56

41 AD 50–70

ORYCTOLAGUS CUNICULUS

17 AD 40–50

MACACA FUSCATA

1, 3, 4, 17, 18 DB 15–30

MACACA MULATTA

1, 3, 4, 17, 18 DB 15–30

17 AD 23–30

17 DB 23

17 MB 23

18 MB 21

22 PCA 36

PFC AD 80

MACACA NEMESTRINA

1, 3, 4, 17, 18 DB 15–30

17 DB 23

MACACA FASCICULARIS

1, 3, 4, 17, 18 DB 15–30

3 PCA 28.6–55.6

AOTUSTRIVIRGATUS

1, 3 SC 40–60

SAIMIRI SCIUREUS

1, 3 SC 40–60

PANTROGLODYTES

22 PCA 36.5

PAN PANISCUS

22 PCA 35

PONGO PYGMAEUS

22 PCA 31.4

GORILLA GORILLA

22 PCA 33

HOMO SAPIENS

4, 9, 17, 21, 22, 40, 41, 46 PCA 38.5–52.4

7, 19, 23b, 24b, 31 PCA 41.7

22 PCA 46.7–51

(continued)

41 PCA 46.1

42 PCA 44.8

STS PCA 50–80

TL DB 29.8

VA AB 35

17 PCA 16–31.6

STENELLA COERULEOALBA

17 PCA 19.9

TURSIOPSTRUNCATUS

17 PCA 19.9

∗Abstracted from Buxhoeveden and Casanova (2005), q.v. for references to the

original sources.
† AB, axon bundles; AD, apical dendrites; DB, double-bouquet cell axons; MB,

myelinated axon bundles; PCA, pyramidal cell arrays; SC, single cell recording.
‡ BC, barrel field; Cx, all cortex; SM, sensory–motor; STS, superior temporal sul-

cus; TL, temporal lobe; VA, visual association areas. Numbers correspond to

Brodmann areas and their homologs.
§Provided as either a mean value or a range.

between width estimates for pyramidal cell arrays and myelinated
bundles (Casanova et al., 2008).

Various species of inhibitory interneurons, classified accord-
ing to morphology, calcium-binding protein, and neuropeptide
content, are located in a pericolumnar zone termed peripheral
neuropil space. This zone, or minicolumnar compartment, con-
tains collateral processes, synapses, glia, and other supporting
elements. These GABAergic interneurons vary with layer, area, and
observed species (DeFelipe, 2005). Double-bouquet interneurons
are a characteristic cell-type of primate neocortex. Subsets of this
cell class are typically immunoreactive for the calcium-binding
proteins calbindin or calretinin and the neuropeptide somato-
statin and feature axon bundles, or “horsetails,” which extend from
each cell body through several layers of peripheral neuropil. The
“horsetails” of double-bouquet interneurons are spaced at regular
intervals and have shown one-to-one alignment with myelinated
axon bundles in both monkey visual cortex and human temporal
cortex (DeFelipe et al., 1990; Peters and Sethares, 1997; Ballesteros
Yáñez et al., 2005). Accordingly, double-bouquet neurons may rep-
resent an adaptation of this radial motif in primate neocortex
which provides enhanced inhibitory modulation and isolation of
fluxes of excitatory activity through vertical chains of pyramidal
neurons (DeFelipe, 2005).

Recent studies have used various biased and unbiased quanti-
tative methods to assess the spatial organization of minicolumns
and their components. These methods employ parameters related
to mean cell spacing, verticality, component compartment, and
overall minicolumnar width, gray level index (proportion of neo-
cortical image area covered by Nissl-stained cell bodies), and
cellular compactness (Schlaug et al., 1995; Buldyrev et al., 2000;
Buxhoeveden et al., 2000; Skoglund et al., 2004; Vercelli et al.,
2004; Casanova et al., 2007). Results obtained with such meth-
ods show that measures of center-to-center spacing and other
parameters provide redundant and complementary information
regarding overall minicolumnar measurements (Casanova, 2008).
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Morphometric relations between component compartments are
transitive and are conserved during fetal and postnatal develop-
ment and in neuropathological conditions (Buldyrev et al., 2000;
Casanova et al., 2007).

The juxtaposition of these cellular features at regular inter-
vals suggests that together they contribute to a canonical cortical
microcircuit. Termed the cortical cell minicolumn by Mountcas-
tle (1978, 1997), this putative microcircuit incorporates radially
arranged pyramidal neurons linked by re-iterative translaminar
connections extending through all cortical layers, whose activ-
ity is modulated by inhibitory interneurons in the minicolumn’s
peripheral neuropil. The minicolumn constitutes a radial histo-
genetic domain easily defined by studies of fate maps of different
brain fields (Medina, 2007). The existence of such radial divisions
makes them the natural unit for comparing cortical homologies
(Casanova et al., 2009b).

The minicolumn has been proposed to serve as the elemen-
tal functional module of neocortex (Mountcastle, 1997; Buxho-
eveden and Casanova, 2002; DeFelipe, 2005). According to this
model, each minicolumn implements a stereotypical information-
processing operation which is executed in parallel arrays through-
out the neocortex. This common minicolumnar algorithm is mod-
ified by specific patterns of cell morphology and transcortical,
subcortical, and local connections to suit the specific require-
ments of each neocortical area (Creutzfeldt, 1977). Minicolumnar
variability, prominent in humans as compared to other species, is
most salient within the peripheral neuropil space (Casanova et al.,
2009b). These differences in minicolumnar morphology among
species may be directly related to various interneuron subtypes
located within the peripheral space of minicolumns (Casanova
et al., 2009b; Raghanti et al., 2010). Together, these findings sup-
port the hypothesis that variations in component features and
measures may be imposed upon a stereotypical and stable modular
microstructure of the neocortex (Casanova, 2008).

Circuits resulting from the stereotypical positioning of neurob-
lasts along the radial glial scaffolding should work in similar and
parallel fashion. Minicolumns are in this way analogous to logic
gates (e.g., NOR) in the sense that varying combinations of these
elements provide for higher-level functions (Casanova et al., 2003).
Alternatively, different properties of a canonical circuit can man-
ifest non-linear behaviors. According to neurophysiological data
modeling these circuits within a hierarchical organization leads to
neural representations capable of object recognition (Kouh and
Poggio, 2008). The existence of a canonical circuit provides the
basis for symmetry operations discussed in the following section
(for a review on the canonical circuit see Douglas and Martin,
2004).

SYMMETRY OF THE MINICOLUMN
Minicolumns are the result of germinal cell proliferation within
the ventricular zone early in gestation. A series of symmetrical
divisions define the total number of minicolumns. A later series
of asymmetrical divisions provides for progenitor and daughter
cells that will eventually become neurons. Following the asym-
metric cell division daughter cells migrate along a glial/stem cell
scaffolding in a process often denoted as radial migration. The
layer to which a neuron will migrate is largely defined by when it

is born. Layers of the cortex are thus formed in an inside-out fash-
ion, the exception being the first layer which always remains as the
superficial marginal zone. A tangential mode of migration which
is independent of glial processes provides for the cortical place-
ment of a significant portion of inhibitory neurons. The cortex
is therefore primarily formed by a recursive process that embeds
cell after cell within a hierarchical structure. Without this recursive
process there is no “discrete infinity.” This is Nature’s way of mak-
ing unbound diversity or“infinite use of finite means”(Humboldt,
1999, p. 91) by taking discrete elements from a finite set and com-
bining them to provide larger units having a more diverse structure
than their individual constituents (Studdert-Kennedy and Gold-
stein, 2003). The end result of the recursive positioning of cells is
a multistep optimization process similar to the one observed in
dynamic programming. Recursion is therefore a way of providing
an optimal solution to cortical architecture while working with a
suboptimal structure (Linden, 2007).

A cursory microscopic examination of the minicolumn dur-
ing cortical embryogenesis suggests their isotropy in space, i.e.,
identical in all directions. Our laboratory found this to be true
for minicolumns of the striate cortex when probed in the sagittal,
coronal, and transverse planes (Figure 1). This rotational sym-
metry (an isometry preserving orientation) indicates that there
are no preferred minicolumnar orientations in regards to these
reference planes. The symmetry is such that rotation of the coor-
dinate system used to describe the phenomena, by any amount,
does not affect the laws of nature/physics governing the system. In
the present article we hypothesize that these minicolumnar para-
meters which are “unchanged in value by an arbitrary continuous
deformation is (are) a fortiori unchanged in value by the passage
of time” (Finkelstein and Misner, 1959). In our biological system
time is defined in terms of brain development,aging,and evolution
(encephalization).

The cortex, or more specifically its neuropil space (the space
between neuronal bodies including, among others, axons, den-
drites, and glial cell processes), is a homogenous space that acts
in a permissive way to conserve the geometry of the minicolumn.
This property of the neuropil is seen in all brain regions that we
have examined following a continuum from brain development
to advanced aging (Figure 2). The permissive nature of the neu-
ropil applies when examining either fragments or whole lengths
of minicolumns. The significance of the finding is that we can
perform transformative operations to the space coordinates of
minicolumns (e.g., rotation, vide supra) and the final result(s) will
be independent on the amount of translation, rotation, or combi-
nation of both. The minicolumn therefore conforms to Feynman’s
definition of symmetry which states that an object is symmetrical
if it looks the same after applying a particular operation (Feynman
et al., 1963).

Similar arguments apply to the translation of pyramidal cells
around the central axis of the cell minicolumn. The central axis
is an imaginary line through the minicolumn that serves as a ref-
erence point when making measurements of symmetry. Although
early in development pyramidal cells lay in a rectilinear pattern,
development, and aging disturb their placement making their uni-
tary composition less noticeable. Still, the vectorial sum of discrete
or contiguous pyramidal cell translations around the central axis
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FIGURE 1 | Box plots of minicolumar width measurements in

Brodmann area 17 (human). Width was estimated using a single section
of Nissl-stained tissue cut along one of the three principal axes. Materials
for this study included 8 brains cut in the transverse plane (4 male, 4
female, age 40–72 years), 15 brains cut in the coronal plane (10 male, 5
female, age 1–94 years), and 11 brains cut in the sagittal plane (5 male, 6
female, age 4–87 years). Minicolumnar width was estimated using
computerized image analysis of micrographs of these regions of interest
(Casanova and Switala, 2005). There was one possible outlier at 33.3 μm in
the sagittal plane. There is no significant dependence of width estimates on
the plane of section (F 2,8 = 1.05; p = 0.410).

of the minicolumn is zero regardless of brain parcelation or age
(Figure 3). The resultant arrangement therefore links symmetry
in space (i.e., translation of cells in different brain regions) with
time (i.e., aging).

The final transformation discussed in this article is the preser-
vation of the relative size of pyramidal cells as related to mini-
columnar width (Figure 4). Resizing (also called dilation or even
expansion) is a conversion whereby objects or systems become
bigger or smaller while leaving unaltered the content and relation-
ship of its component elements. In the case of the minicolumn
the validity of such a geometric transformation lends credence
to O. D. Creutzfeldt’s early proposal of a canonical circuit patent
throughout the cortex (Creutzfeldt, 1977). This scalar relationship
is obvious and expected to those who examine the microscopy of
the cortex. Thus, V1 (BA 17) is the prototype of granular cortex
and exhibits the smallest minicolumnar widths reported for any
given isocortical area (Buxhoeveden and Casanova, 2002, 2005).
By way of contrast the largest neurons in the cortex (Betz cells) are
found in the motor cortex, site of the widest minicolumns thus far
reported (Buxhoeveden and Casanova, 2002, 2005).

During evolution the cortex has grown by adding supernu-
merary minicolumns but the relative number of cells has been
preserved. In primates, a recent study showed a linear relationship
between structure size and number of neurons (Herculano-Houzel
et al., 2007). Among the six primate species analyzed in the study
neuronal size and density did not vary significantly with brain
size. Another comparative anatomy study in primates found that
despite major changes in minicolumnar width across species, core

FIGURE 2 | Little change is seen in minicolumnar structure among 19

persons with a range of ages at death from 4 months to 98 years. The
neuropil distribution is derived from the empirical “linear contact
distribution,” the distribution of distances from points within the neuropil to
the nearest Nissl-stained object, measured along a line with fixed
orientation (Casanova et al., 2007). Taking the orientation parallel to the
minicolumar axis, the median of the distribution is termed the radial
neuropil space sR, while the same measurement in the orthogonal direction
(parallel to the laminar boundaries) provides the tangential neuropol space
sT. Mean sT/sR (solid curve) was estimated with a smoothing spline over
measurements (points) from up to 6 cortical areas in each of 19 individual
brains. The ratio of tangential neuropil space sT to radial neuropil space sR

remains nearly constant at approximately 0.8 throughout the human
lifespan.

spaces remained the same (Casanova et al., 2009b). The core com-
partment of the minicolumn is composed of pyramidal cells and
their projections. These basic constitutive elements of the mini-
column’s core appear to be to some extent irreducible (Casanova
and Tillquist, 2008). Variability is inherent in the peripheral neu-
ropil space which is comprised of non-pyramidal cellular elements
derived from assorted sources (Casanova et al., 2009b).

A conservation law is the statement that there exists a mea-
surable quantity that does not change when subject to a spec-
ified physical process. Such a physical measure is called a con-
served quantity. The fact that minicolumns exhibit scalar prop-
erties relating pyramidal cell size and minicolumnar core size,
rotational symmetry, and conservation of translational move-
ments helps to conceptually organize the cytoarchitecture of
the isocortex. In an isolated system (i.e., one where the brain
does not directly exchange energy or matter with its sur-
roundings), broken symmetry is a pre-requisite of directional-
ity wherein changes always display greater entropy. In essence,
more entropy requires that the result of different operations
have less symmetry than their predecessors. With passage of
time processes that require greater entropy seemingly dimin-
ish the hegemony of the minicolumn in cortical organization.
One could say that the significance of the minicolumn in mod-
ern studies diminishes as the module seemingly loses its rec-
tilinear orientation; however, its influence on cortical organi-
zation remains tangible as proven by the existence of laws of
conservation.
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FIGURE 3 | We identified the minicolumns in each of 192 micrographs

(the same material as was used for Figure 5, excluding individuals on

the autistic spectrum) using a line tracing method that groups cells

into minicolumns by finding the shortest cell-to-cell paths from one

end of the layer to the next (Casanova et al., 2009a). Using the clusters
so identified, cell dispersions about the minicolumnar axes were compared
to a chi-square distribution with one degree of freedom, which is what one
would expect if the neurons were located at random positions in space
under a symmetric distribution. The mean displacement of neurons from
the minicolumnar axis was very nearly zero, consistent with symmetry;
however, the empirical distribution of C2 was far from chi-square distributed
(Kuiper V = 0.932; p < 0.0001). Examination of a q–q plot confirmed that
observed C2 were smaller and under-dispersed relative to the expected χ2.
We suspect this is due to the bias inherent in image processing – as
opposed to stereology – and that accurate localization of both neurons and
the minicolumnar axis in three-dimensional space is necessary for a proper
test of the symmetry hypothesis.

PATHOLOGY
Early during gestation minicolumnar structures are readily notice-
able by their rectilinear arrangement. Later on, with aging, pyra-
midal cell translation, and neuropil growth make the patency of
these modular structures less apparent. Still, as long as the system
(i.e., brain) is isolated, the putative existence of laws of conserva-
tion requires the preservation of certain invariant quantities. In
physics, as well as in biological systems, an isolated system is one
separated from its environment so as to prevent the direct transfer
of energy and/or matter between them. Developmental condi-
tions tend to unfold within isolated systems. In contrast, traumas,
abscesses, and metastases provide venues for direct interactions
between the brain and its external environment. Once the system
is perturbed by environmental exigencies these laws of conserva-
tion are“broken”and so-called conserved parameters or invariants
no longer apply. In this regard “broken” is a technical term used
in physics to denote how a given action on a system perturbs its
initial symmetry.

Conserved quantities apply, despite broken symmetry, only
when systems are isolated. Thus, an acquired process such as
an infarct may affect the amount of pyramidal cell translation
around the central axis of a minicolumn within the ischemic and
penumbra regions. The spatial malformation may be propitiated

FIGURE 4 | Relationship between average size of minicolums and

pyramidal cells. Material included 55 micrographs of Nissl-stained human
tissue comprising Brodmann areas 4, 9, 17, 21, 22, and 40; and 19
micrographs of area 17 in the macaque. The average cross-section of
pyramidal cell somata is positively correlated with the minicolumnar width
estimated from the same set of micrographs. Minicolumnar width was
estimated using our established methodology (Casanova and Switala,
2005), while the average neuronal cross-sectional area was estimated
using the Boolean model (Casanova et al., 2006). The high degree of linear
correlation (r = 0.913; p < 0.0001) is evident.

by infiltration of hematogenous species (e.g., neutrophils), astro-
cytic proliferation, and neovascularization (Ferrer et al., 2008).
Acquired processes therefore bring to center stage the role of sup-
porting cells or glia which in the normal brain outnumber neurons
10–50 to 1, depending on brain region (Vinters and Kleinschmidt-
DeMasters, 2008). Otherwise, developmental conditions unfold
within an isolated system and any subsequent neuropathologi-
cal findings should conform to constraints imposed by laws of
conservation.

AUTISM AS AN EXAMPLE
Autism is traditionally regarded as a neurodevelopmental condi-
tion that manifests itself behaviorally within the first 3 years of
a person’s life. Postmortem studies have shown that minicolum-
nar width in these patients is significantly diminished specially
in their peripheral neuropil compartment (Casanova et al., 2002,
2006). Other studies have shown that the cell soma of cortical
and subcortical neurons in both typical and syndromic autism is
reduced (Bauman and Kemper, 1985, 1994; Raymond et al., 1995;
Casanova et al., 2006; Van Kooten et al., 2008; Wegiel et al., 2010).
Small neurons invariably suggest the presence of neuropathology.
According to the literature, small neurons provide a variety of
phenotypes spanning developmental arrest, a stage leading to cell
death, aposklesis, or abiotrophy (i.e., cell withering associated with
neurodegeneration; Gowers, 1902; Moran and Graeber, 2008),
and, in some cases, a type of non-apoptotic dark cell degeneration.

We hypothesize that the smaller cell soma in the brains of autis-
tic patients are not the result of a neuropathological processes but
a necessity imposed by laws of conservation in order to make the
system work most efficiently. Results from our group (Figure 5)
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FIGURE 5 | Relationship between average size of minicolumns and

pyramidal cells, revisited. Material included 270 micrographs of
Nissl-stained human tissue from up to 16 cortical areas in each of 8 brain
donors with autistic spectrum disorder and 10 neurotypical comparison
clients. In this instance, mean pyramidal cell cross-section was calculated
directly from the segmented neurons used to identify minicolumns.
Correcting for the effects of diagnosis, cortical area, and lamina (II–VI),
minicolumnar width varies strongly with mean cell cross-section
(F 1,1187 = 2417; p < 0.0001).

indicate that smaller pyramidal cell size in autism is related to
the “even expansion” of minicolumns. Smaller cells in this sense
are not an advantage or a disadvantage, but simply a fact that
“. . .evolution couldn’t readily build us [our brains] in any other
way” (Marcus, 2008, p. 154; see below). This finding has important
implications in regards to defining difference in brain connectivity
that may be particular to the condition.

Individual size of cells may not decrease with increasing brain
size because this parameter is defined by the cell’s connections.
According to Vinters and Kleinschmidt-DeMasters (2008), “The
volume of the neuronal soma parallels the length of the axon
for which it is responsible: the longer the axon, the larger the
cell body must be” (p. 2). This correlation is an exigency of the
increased metabolic requirements and organelle machinery nec-
essary to sustain a longer axon. It is therefore unsurprising that
the main diameter of fibers across longer commissural connec-
tions (i.e., corpus callosum) is essentially constant across species
(Doty, 2007). This shift in cell/minicolumnar size has biased brain
connectivity so that larger brains are most efficient at develop-
ing an “intrahemispheric modus operandi” (Doty, 2007, p. 282).
Hemispheric specialization thus reflects a solution to the strug-
gle between metabolic exigencies and connectivity (Ringo et al.,
1994).

A decrease in size of pyramidal neurons would likely constrain
formation of longer-range, metabolically expensive projections
biasing the network toward establishment of local connections.
Increased numbers of smaller minicolumns, as seen in autistic
patients, would complement this trend. As numbers of mod-
ules increase, the number of potential connections required to
maintain a constant degree of connectivity among them increases
geometrically providing for deficiencies based on limitations

in space, signal timing, and metabolic constraints (Casanova,
2004). Optimization of network path length would require a
relative increase in short-range connections with selective reten-
tion of longer-range transcortical projections linking distributed
networks (Hofman, 2001).

Reductions of pyramidal neuron size corresponding to smaller
minicolumns have implications for information-processing
within a network and for the clinical features of autism. As meta-
bolic limits preferentially constrain the activity of smaller cells,
cortical adaptations emerge featuring locally linked modules with
limited information-processing operations. These are distributed
within large decentralized networks in which metabolic demands
on any cell or module are limited. Such operations, subserved
by minicolumns or small networks of minicolumns, increase effi-
ciency by preferentially processing transient changes in focal input
and integrating information with neighboring modules, thus lim-
iting activity of individual modules. Decreases in field size of small
neuron collaterals would bias cortical organization toward smaller,
more integrated minicolumnar networks, providing the basis for
increased discriminatory capacity. This sparse distributed coding
architecture (Laughlin, 2004) is especially salient in visual cortex
in which discontinuities are extracted from arrays of focal inputs
processed in parallel (Weliky et al., 2003). Pathology, as in autism,
in which cortical development is biased toward analogous con-
nectivity among smaller minicolumns may be expected to give
rise to a hyperspecific pattern of cortical information-processing
(McClelland, 2000) related to the increased discriminative percep-
tual abilities and impaired ability to integrate information among
perceptual, executive, and other cognitive domains (Baron-Cohen,
2004). The resultant “hyperconnectivity” underlies the intense
world syndrome hypothesis of autism (Markram et al., 2007)
based on the valproic acid animal model of autism (Rinaldi et al.,
2008).

CONCLUDING REMARKS
Noether’s theorem is based on the unchangeability, or invari-
ance, of the laws of physics. The theorem states that for each
continuous symmetry there is a conserved quantity (Lederman
and Hill, 2004). These invariants, or conserved properties, are the
same regardless of the perspective from which they are exam-
ined (different reference planes). In this article we have studied
how architectonic relations among select minicolumnar elements
(i.e., pyramidal cells) are conserved under spatial and tempo-
ral variation. Specifically, minicolumns are observed to exhibit
translational (across the central axis of the minicolumn) and
rotational (displacement in different planes of section) symme-
try, transitive symmetry with respect to geometric scaling of
morphometric relations in different cortical areas, and temporal
symmetry of morphometric relations during cortical develop-
ment and maturation (Casanova et al., 2007). Maintenance of
continuous symmetry with these operations is a defining char-
acteristic of physical systems in which conservation laws can be
derived from the stochastic activity of its elements (Noether,
1971).

The authors spouse symmetry as a devise or technique to bet-
ter describe changes in cortical organization. The work presented
shows that despite changes accrued to time, there is preservation
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(or conservation) of parameters related to the symmetry of the
minicolumn. In this regard measurements of symmetry for the
cell minicolumn serve as a pattern classification scheme, sug-
gest the existence of mathematical ways of describing modular
interactions, and simplify understanding the integrative function
of multiple anatomical elements of the cortex. The existence of

such conserved quantities generalizes known physical tenets to
biological systems.
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