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Learning and memory is commonly attributed to the modification of synaptic strengths

in neuronal networks. More recent experiments have also revealed a major role of

structural plasticity including elimination and regeneration of synapses, growth and

retraction of dendritic spines, and remodeling of axons and dendrites. Here we work

out the idea that one likely function of structural plasticity is to increase “effectual

connectivity” in order to improve the capacity of sparsely connected networks to store

Hebbian cell assemblies that are supposed to represent memories. For this we define

effectual connectivity as the fraction of synaptically linked neuron pairs within a cell

assembly representing a memory. We show by theory and numerical simulation the

close links between effectual connectivity and both information storage capacity of neural

networks and effective connectivity as commonly employed in functional brain imaging

and connectome analysis. Then, by applying our model to a recently proposed memory

model, we can give improved estimates on the number of cell assemblies that can

be stored in a cortical macrocolumn assuming realistic connectivity. Finally, we derive

a simplified model of structural plasticity to enable large scale simulation of memory

phenomena, and apply our model to link ongoing adult structural plasticity to recent

behavioral data on the spacing effect of learning.

Keywords: synaptic plasticity, effective connectivity, transfer entropy, learning, potential synapse, memory

consolidation, storage capacity, spacing effect

1. INTRODUCTION

Traditional theories attribute adult learning and memory to Hebbian modification of synaptic
weights (Hebb, 1949; Bliss and Collingridge, 1993; Paulsen and Sejnowski, 2000; Song et al., 2000),
whereas recent evidence suggests also a role for network rewiring by structural plasticity including
generation of synapses, growth and retraction of spines, and remodeling of dendritic and axonal
branches, both during development and adulthood (Raisman, 1969; Witte et al., 1996; Engert
and Bonhoeffer, 1999; Chklovskii et al., 2004; Butz et al., 2009; Holtmaat and Svoboda, 2009; Xu
et al., 2009; Yang et al., 2009; Fu and Zuo, 2011; Yu and Zuo, 2011). One possible function of
structural plasticity is effective information storage, both in terms of space and energy requirements
(Poirazi and Mel, 2001; Chklovskii et al., 2004; Knoblauch et al., 2010). Indeed, due to space and
energy limitations, neural networks in the brain are only sparsely connected, even on a local
scale (Abeles, 1991; Braitenberg and Schüz, 1991; Hellwig, 2000). Moreover, it is believed that
the energy consumption of the brain is dominated by the number of postsynaptic potentials or,
equivalently, the number of functional non-silent synapses (Attwell and Laughlin, 2001; Laughlin
and Sejnowski, 2003; Lennie, 2003). Together this implies a pressure to minimize the number
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and density of functional (non-silent) synapses. It has therefore
been suggested that the function of structural plasticity “moves”
the rare expensive synapses to the most useful locations, while
keeping the mean number of synapses on a constant low
level (Knoblauch et al., 2014). By this, sparsely connected
networks can have computational abilities that are equivalent
to densely connected networks. For example, it is known that
memory storage capacity of neural associative networks scales
with the synaptic density, such that networks with a high
connectivity can store many more memories than networks with
a low connectivity (Buckingham and Willshaw, 1993; Bosch
and Kurfess, 1998; Knoblauch, 2011). For modeling structural
plasticity it is therefore necessary to define different types of
“connectivity,” for example, to be able to distinguish between
the actual number of anatomical synapses per neuron and
the “potential” or “effectual” synapse number in an equivalent
network with a fixed structure (Stepanyants et al., 2002;
Knoblauch et al., 2014).

In this work we develop substantial new analytical results and
insights focusing on the relation between network connectivity,
structural plasticity, and memory. First, we work out the relation
between “effectual connectivity” in structurally plastic networks
and functional measures of brain connectivity such as “effective
connectivity” and “transfer entropy.” Assuming a simple model
of activity propagation between two cortical columns or areas,
we argue that effectual connectivity is basically equivalent to
the functional measures, while maintaining a precise anatomical
interpretation. Second, we give improved estimates on the
information storage capacity of a cortical macrocolumn as
a function of effectual connectivity (cf., Stepanyants et al.,
2002; Knoblauch et al., 2010, 2014). For this we develop exact
methods (Knoblauch, 2008) to analyze associative memory in
sparsely connected cortical networks storing random activity
patterns by structural plasticity. Moreover, we generalize our
analyses that are reasonable only for very sparse neural activity,
to a recently proposed model of associative memory with
structural plasticity (Knoblauch, 2009b, 2016) that is much more
appropriate for moderately sparse activity deemed necessary to
stabilize cell assemblies or synfire chains in networks with sparse
connectivity (Latham and Nirenberg, 2004; Aviel et al., 2005).
Third, we point out in more detail how effectual connectivity
may relate to cognitive phenomena such as the spacing effect
that learning improves if rehearsal is distributed to multiple
sessions (Ebbinghaus, 1885; Crowder, 1976; Greene, 1989). For
this, we analyze the temporal evolution of effectual connectivity
and optimize the time gap between learning sessions to compare
the results to recent behavioral data on the spacing effect (Cepeda
et al., 2008).

2. MODELING

2.1. Memory, Cell Assemblies and Synapse
Ensembles
Memories are commonly identified with patterns of neural
activity that can be revisited, evoked and/or stabilized by
appropriately modified synaptic connections (Hebb, 1949; Bliss

and Collingridge, 1993; Martin et al., 2000; Paulsen and
Sejnowski, 2000; for alternative views see Arshavsky, 2006). In
the simplest case such a memory corresponds to a group of
neurons that fire at the same time and, according to the Hebbian
hypothesis that “what fires together wires together” (Hebb, 1949)
develop strong mutual synaptic connections (Caporale and Dan,
2008; Clopath et al., 2010; Knoblauch et al., 2012). Such groups
of strongly connected neurons are called cell assemblies (Hebb,
1949; Palm et al., 2014) and have a number of properties that
suggest a function for associative memory (Willshaw et al., 1969;
Marr, 1971; Palm, 1980; Hopfield, 1982; Knoblauch, 2011): For
example, if a stimulus activates a subset of the cells, the mutual
synaptic connections will quickly activate the whole cell assembly
which is thought to correspond to the retrieval or completion of
a memory. In a similar way, a cell assembly in one brain area u
can activate an associated cell assembly in another brain area v.
We call the set of synapses that supports retrieval of a given set
of memories their synapse ensemble S. Memory consolidation is
then the process of consolidating the synapses S.

Formally, networks of cell assemblies can be modeled as
associative networks, that is, single layer neural networks
employing Hebbian-type learning. Figure 1 illustrates a simple
associative network with clipped Hebbian learning (Willshaw
et al., 1969; Palm, 1980; Knoblauch et al., 2010; Knoblauch, 2016)
that associates binary activity patterns u1, u2, . . . and v1, v2, . . .
within neuron populations u and v having size m = 7 and
n = 8, respectively: Here synapses are binary, where a weight
Wij may increase from 0 to 1 if both presynaptic neuron ui and
postsynaptic neuron vj have been synchronously activated for at
least θij times,

Wij =

{

1 , ωij :=
∑M

µ=1 R(u
µ
i , vµ

j ) ≥ θij

0 , otherwise
. (1)

where M is the number of stored memories, ωij is called the
synaptic potential, R defines a local learning rule, and θij is the
threshold of the synapse. In the following we will consider the
special case of Equation (1) with Hebbian learning, R(uµ

i , vµ
j ) =

uµ
i · vµ

j , and minimal synaptic thresholds θij = 1, which

corresponds to the well-known Steinbuch or Willshaw model
(Figure 1; cf., Steinbuch, 1961; Willshaw et al., 1969). Further,
we will also investigate the recently proposed general “zip net”
model, where both the learning rule R and synaptic thresholds θij
may be optimized for memory performance (Knoblauch, 2016):
For R we assume the optimal homosynaptic or covariance rules,
whereas synaptic thresholds θij are chosen large enough such
that the chance p1 := pr[Wij = 1] of potentiating a given
synapse is 0.5 to maximize entropy of synaptic weights (see
Appendix A.3 for further details). In general, we can identify the
synapse ensemble S that supports storage of a memory set M by
those neuron pairs ij with a sufficiently large synaptic potential
ωij ≥ θij where θij may depend on M. For convenience we may
represent S as a binary matrix (with Sij = 1 if ij ∈ S and Sij = 0 if
ij 6∈ S) similar as the weight matrixWij.

After learning a memory association uµ → vµ, a noisy
input ũ can retrieve an associated memory content v̂ in a single
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FIGURE 1 | Willshaw model for associative memory. Panels show learning of two associations between activity patterns uµ and vµ (A), retrieval of the first

association (B), pruning of irrelevant silent synapses (C), and the asymptotic storage capacity in bit/synapse as a function of the fraction p1 of potentiated synapses

(D) for networks with and without structural plasticity (Ctot vs. Cwp; computed from Equations (49, 50, 47) for Peff = 1; subscripts ǫ refer to maximized values at

output noise level ǫ). Note that networks with structural plasticity can have a much higher storage capacity in sparsely potentiated networks with small fractions

p1 ≪ 1 of potentiated synapses.

processing step by

v̂j =

{

1 , xj =
(
∑m

i=1 ũiWij +Nj
)

≥ 2j

0 , otherwise
(2)

for appropriately chosen neural firing thresholds 2j. The model
may include random variables Nj to account for additional
synaptic inputs and further noise sources, but for most analyses
and simulations (except Section 3.1) we assumeNj = 0 such that

retrieval depends deterministically on the input ũ. In Figure 1B,
stimulating with a noisy input pattern ũ ≈ u1 perfectly retrieves
the corresponding output pattern v̂ = v1 for thresholds 2j =

2. In the literature, input and output patterns are also called
address and content patterns, and the (noisy) input pattern
used for retrieval is called query pattern. In the illustrated
completely connected network, the thresholds can simply be
chosen according to the number of active units in the query
pattern, whereas in biologically more realistic models, firing
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thresholds are thought to be controlled by recurrent inhibition,
for example, regulating the number of active units to a desired
level l being the mean activity of a content pattern (Knoblauch
and Palm, 2001). Thus, a common threshold strategy in the more
abstract models is to simply select the l most activated “winner”
neurons having the largest dendritic potentials xj. In general, the
retrieval outputs may have errors and the retrieval quality can
then be judged by the output noise

ǫ̂ =

∑n
j=1 |v̂j − vµ

j |

l
(3)

defined as theHamming distance between v̂ and vµ normalized to
the mean number l of active units in an output pattern. Similarly,
we can define input noise ǫ̃ as the Hamming distance between ũ
and uµ normalized to the mean number k of active units in an
input pattern.

In the illustrated network u and v are different neuron
populations corresponding to hetero-association. However, all
arguments will also apply to auto-association when u and v are
identical (with m = n, k = l), and cell assemblies correspond
to cliques of interconnected neurons. In that case output activity
can be fed back to the input layer iteratively to improve retrieval
results (Schwenker et al., 1996). Stable activation of a cell
assembly can then expected if output noise ǫ̂ after the first
retrieval step is lower than input noise ǫ̃.

Capacity analyses show that each synapse can store a large
amount of information. For example, even without any structural
plasticity, the Willshaw model can store Cwp = 0.69 bit per
synapse by weight plasticity (wp) corresponding to a large
number of about n2/ log2 n small cell assemblies, quite close to
the theoretical maximum of binary synapses (Willshaw et al.,
1969; Palm, 1980). However, unlike in the illustration, real
networks will not be fully connected, but, on a local scale of
macrocolumns, the chance that two neurons are connected is
only about 10% (Braitenberg and Schüz, 1991; Hellwig, 2000).
In this case it is still possible to store a considerable number
of memories, although maximal M scales with the number of
synapses per neuron, and cell assemblies need to be relatively
large in this case (Buckingham and Willshaw, 1993; Bosch and
Kurfess, 1998; Knoblauch, 2011).

By including structural plasticity, for example, through
pruning the unused silent synapses after learning in a network
with high connectivity (Figure 1C), the total synaptic capacity
of the Willshaw model can even increase to Ctot ∼ log n ≫ 1
bit per (non-silent) synapse, depending on the fraction p1 of
potentiated synapses (Figure 1D; see Knoblauch et al., 2010).
Moreover, the same high capacity can be achieved for networks
that are sparsely connected at any time, if the model includes
ongoing structural plasticity and repeated memory rehearsal or
additional consolidation mechanisms involving memory replay
(Knoblauch et al., 2014).

In Section 3.2 we precisely compute the maximal number of
cell assemblies that can be stored in a Willshaw-type cortical
macrocolumn. As the Willshaw model is optimal only for
extremely small cell assemblies with k ∼ log n (Knoblauch, 2011),
we will extend these results also for the general “zip model” of

Equation (1) that performs close to optimal Bayesian learning
even for much larger cell assemblies (Knoblauch, 2016).

2.2. Anatomical, Potential, and Effectual
Connectivity
As argued in the introduction, connectivity is an important
parameter to judge performance. However, network models
with structural plasticity need to consider different types
of connectivity, in particular, anatomical connectivity P,
potential connectivity Ppot, effectual connectivity Peff, and target
connectivity as measured by consolidation load P1S (see Figure 2;
cf., Krone et al., 1986; Braitenberg and Schüz, 1991; Hellwig,
2000; Stepanyants et al., 2002; Knoblauch et al., 2014),

P :=
#actual synaptic connections

mn
, (4)

Ppot :=
#potential synaptic connections

mn
, (5)

Peff :=

∑m
i=1

∑n
j=1H(WijSij)

∑m
i=1

∑n
j=1 H(S2ij)

, (6)

P1S :=

∑m
i=1

∑n
j=1H(S2ij)

mn
, (7)

where H is the Heaviside function (with H(x) = 1 if x > 0 and 0
otherwise) to include the general case of non-binary weights and
synapse ensembles (Wij, Sij ∈ R).

First, anatomical connectivity P is defined as the chance that
there is an actual synaptic connection between two randomly
chosen neurons (Figure 2A)1. However, for example in the
pruned network of Figure 1C, the anatomical connectivity P
equals the fraction p1 of potentiated synapses (before pruning)
and, thus, conveys only little information about the true (full)
connectivity within a cell assembly. Instead, it is more adequate
to consider potential and effectual connectivity (Figures 2B,C).

Second, potential connectivity Ppot is defined as the chance
that there is a potential synapse between two randomly chosen
neurons, where a potential synapse is defined as a cortical
location ij where pre- and postsynaptic fibers are close enough
such that a synapse could potentially be generated or has already
been generated (Stepanyants et al., 2002).

Third, effectual connectivity Peff defined as the fraction of
“required synapses” that have already been realized is most
interesting to judge the functional state of memories or cell
assemblies during ongoing learning or consolidation with
structural plasticity. Here we call the synapse ensemble Sij
required for stable storage of a given memory set also the
consolidation signal. If ij corresponds to an actual synapse, we

1More precisely, this means the presence of at least one synapse connecting

the first to the second neuron. This definition is motivated by simplifications

employed by many theories for judging how many memories can be stored.

These simplifications include, in particular, (1) point neurons neglecting dendritic

compartments and non-linearities, and (2) ideal weight plasticity such that any

desired synaptic strength can be realized. Then having two synapses with strength

1 would be equivalent to a single synapse with strength 2. The definition is

further justified by experimental findings that the number of actual synapses

per connection is narrowly distributed around small positive values (Fares and

Stepanyants, 2009; Deger et al., 2012).
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may identify the case Sij > 0 with tagging synapse ij for
consolidation (Frey and Morris, 1997). In case of simple binary
network models such as the Willshaw or zip net models, the Sij
simply equal the optimal synaptic weights in a fully connected
network after storing the whole memory set (Equation 1).
Intuitively, if a set of cell assemblies or memories has a certain
effectual connectivity Peff, then retrieval performance will be as
if these memories would have been stored in a structurally static
network with anatomical connectivity Peff, whereas true P in the
structurally plastic network may be much lower than Peff.

Last, target connectivity or consolidation load P1S is the
fraction of neuron pairs ij that require a consolidated synapse as
specified by Sij. This means that P1S is a measure of the learning
load of a consolidation task.

Note that our definitions of Peff and P1S apply as well to
network models with gradual synapses (Wij, Sij ∈ R). More
generally, bymeans of the consolidation signal Sij, we can abstract
from any particular network model or application domain.
Our theory is therefore not restricted to models of associative
memory, but may be applied as well to other connectionist
domains, given that the “required” synapse ensembles {ij|Sij 6= 0}
and their weights can be defined properly by Sij. The following
provides a minimal model to simulate the dynamics of effectual
connectivity during consolidation.

2.3. Modeling and Efficient Simulation of
Structural Plasticity
Figure 3A illustrates a minimal model of a “potential” synapse
that can be used to simulate the dynamics of ongoing structural
plasticity (Knoblauch, 2009a; Deger et al., 2012; Knoblauch et al.,
2014). Here a potential synapse ijν is the possible location of a real
synapse connecting neuron i to neuron j, for example, a cortical
location where axonal and dendritic branches of neurons i and j
are close enough to allow the formation of a novel connection by

spine growth and synaptogenesis (Krone et al., 1986; Stepanyants
et al., 2002). Note that there may be multiple potential synapses
per neuron pair, ν = 1, 2, . . .. The model assumes that a synapse
can be either potential but not yet realized (state π), realized but
still silent (state and weight 0), or realized and consolidated (state
and weight 1).

For real synapses, state transitions are modulated by the
consolidation signal Sij specifying synapses to be potentiated
and consolidated Then structural plasticity means the transition
processes between states π and 0 described by transition
probabilities pg := pr[state(t + 1) = 0|state(t) = π] and
pe|s := pr[state(t + 1) = π |state(t) = 0, Sij = s]. Similarly,
weight plasticity means the transitions between states 0 and 1
described by probabilities pc|s := pr[state(t + 1) = 1|state(t) =

pg

pe|s

pd|s

pc|sπ

0

1
pe|s

pg pc|s

pd|s

structural
plasticity

weight plasticity 
and consolidation

π 0 1

BA

FIGURE 3 | Two simple models (A,B) of a potential synapses that can

be used for simulating ongoing structural plasticity. State π corresponds

to potential but not yet realized synapses. State 0 corresponds to unstable

silent synapses not yet potentiated or consolidated. State 1 corresponds to

potentiated and consolidated synapses. Transition probabilities of actual

synapses (state 0 or 1) depend on a consolidation signal s = Sij that may be

identified with the synaptic tags (Frey and Morris, 1997) marking synapses

required to be consolidated for long-term memory storage. Thus, typically

pc|1 > pc|0 for synaptic consolidation 0 → 1 and pe|1 < pe|0, pd|1 < pd|0 for

synaptic elimination 0 → π and deconsolidation 1 → 0. All simulations assume

synaptogenesis π → 1 (by pg) in homeostatic balance with synaptic

elimination such that network connectivity P is constant over time.
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0, Sij = s] and pd|s := pr[state(t + 1) = 0|state(t) = 1, Sij =
s]. For simplicity, we do not distinguish between long-term
potentiation (LTP) and synaptic consolidation (or L-LTP), both
corresponding to the transition from state 0 to 1. In accordance
with the state diagram of Figure 3A, the evolution of synaptic

states can then be described by probabilities p(s)state(t) that a given
potential synapse receiving Sij = s is in a certain state ∈ {π, 0, 1}
at time step t = 0, 1, 2, . . .,

p(s)1 (t) = (1− pd|s(t))p
(s)
1 (t − 1)+ pc|s(t)p

(s)
0 (t − 1) (8)

p(s)0 (t) = (1− pc|s(t) − pe|s(t))p
(s)
0 (t − 1)+ pd|s(t)p

(s)
1 (t − 1)+

pgp
(s)
π (t − 1) (9)

p(s)π (t) = (1− pg)p
(s)
π (t − 1)+ pe|s(t)p

(s)
0 (t − 1)

= 1− p(s)1 (t)− p(s)0 (t) , (10)

where the consolidation signal s(t) = Sij(t) may depend on time.
The second model variant (Figure 3B) can be described in

a similar way except that pd|s describes the transition from
state 1 to state π . Model B is more convenient to analyze the
spacing effect. We will see that, in relevant parameter ranges,
both model variants behave qualitatively and quantitatively very
similar. However, in most simulations we have used model A.

Note that a binary synapse in the original Willshaw model
(Equation 1, Figures 1A,B) is a special case of the described
potential synapse (pg = pe|s = pd|s = 0, pc|s = s ∈

{0, 1}, Sij = Wij as in Equation 1). Then pruning following
a (developmental) learning phase (Figure 1C) can be modeled
by the same parameters except increasing pe|s > 0 to positive
values. Finally, adult learning with ongoing structural plasticity
can be modeled by introducing a homeostatic constraint to keep
P constant (cf., Equation 69 in Appendix B.1; cf., Knoblauch
et al., 2014), such that in each step the number of generated
and eliminated synapses are about the same. Figure 4 illustrates
such a simulation for pe|s = 1 − s and a fixed consolidation
signal Sij corresponding to the same memories as in Figure 1.
Here the instable silent (state 0) synapses take part in synaptic
turnover until they grow at a tagged location ijwith Sij = 1 where
they get consolidated (state 1) and escape further turnover. This
process of increasing effectual connectivity (see Equation 70 in
Appendix B.2) continues until all potential synapses with Sij = 1
have been realized and consolidated (Figure 4, t = 4) or synaptic
turnover comes to an end if all silent synapses have been depleted.

Microscopic simulation of large networks of potential
synapses can be expensive. We have therefore developed a
method for efficient simulation of structural plasticity on
a macroscopic level: Instead of the lower case probabilities
(Equations 8–10) we consider additional memory-specific upper-

case connectivity variables P(s)state defined as the fractions of
neuron pairs ij that receive a certain consolidation signal s(t) =
Sij(t) and are in a certain state ∈ {∅, π, 0, 1} (where ∅ denotes
neuron pairs without any potential synapses). In general it is

P(s)1 (t) = P(s)pot

∞
∑

n=1

p(n)
(

1− (1− p(s)1 (t))n
)

(11)

P(s)π (t) = P(s)pot

∞
∑

n=1

p(n)
(

p(s)π (t)
)n

(12)

P(s)0 (t) = P(s)pot − P(s)1 (t)− P(s)π (t) (13)

where p(s)1 and p(s)π are as in Equations (8, 10); P(s)pot is the
fraction of neuron pairs receiving s that have at least one potential
synapse; and p(n) is the conditional distribution of potential
synapse number n per neuron pair having at least one potential
synapse. Thus, we define a pre-/postsynaptic neuron pair ij to
be in state 1 iff it has at least one state-1 synapse; in state 0
iff it does not have a state-1 synapse but at least one state-0
synapse; and in state π if it is neither in state 1 nor state 0 but
has at least one potential synapse. See Fares and Stepanyants
(2009) for neuroanatomical estimates of p(n) in various cortical
areas.

Summing over s we obtain further connectivity variables
P1, P0, Pπ from which we can finally determine the
familiar network connectivities defined in the previous
section,

Pstate(t) =
∑

s

P(s)state(t) for state ∈ {∅, π, 0, 1} (14)

P(t) = P0(t)+ P1(t) (15)

Ppot(t) = Pπ (t)+ P0(t)+ P1(t) (16)

P1S =
∑

s6=0

∑

state∈{∅,π,0,1}

P(s)state(t) (17)

Peff(t) =

∑

s6=0 P
(s)
1 (t)

P1S
. (18)

In general, the consolidation signal s = s(t) = Sij(t)
will not be constant but may be a time-varying signal
(e.g., if different memory sets are consolidated at different
times). To efficiently simulate a large network of many
potential synapses, we can partition the set of potential
synapses in groups that receive the same signal s(t). For
each group we can calculate the temporal evolution of state

probabilities p(s)π (t), p(s)0 (t), p(s)1 (t) of individual synapses from
Equations (8–10). From this we can then compute from
Equations (11–13) the group-specific macroscopic connectivity

variables P(s)π (t), P(s)0 (t), P(s)1 (t), and finally from Equations
(14–18) the temporal evolution of the various network
connectivities Pπ (t), P0(t), P1(t), P(t) as well as effectual
connectivity Peff(t) for certain memory sets. For such an
approach the computational cost of simulating structural
plasticity scales only with the number of different groups
corresponding to different consolidation signals s(t) (instead
of the number of potential synapses as for the microscopic
simulations).

Moreover, this approach is the basis for further simplifications
and the analysis of cognitive phenomena like the spacing effect
described in Appendix B. For example, for simplicity, the
following simulations and analyses assume that each neuron
pair ij can have at most a single potential synapse [i.e., p(1) =

1]. In previous works we have simulated also a model variant
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FIGURE 4 | Ongoing structural plasticity maintaining a constant anatomical connectivity P = 22/56 for the memory patterns of Figure 1 with actual,

potential and requested synapses as in Figure 2 and assuming only single potential synapses per neuron pair (p(1) = 1, pe|s = 1 − s, pc|s = s, pd|s = 0).

Note that Peff increases with time from the anatomical level Peff = 9/22 ≈ P at t = 1 toward the level of potential connectivity with Peff = 15/22 ≈ Ppot at t = 4.

Correspondingly, output noise ǫ̂ decreases with increasing Peff. At each time firing threshold 2 is chosen maximally to activate at least l = 3 neurons corresponding to

the mean cell assembly size in the output population.

allowing multiple synapses per neuron pair, where we observed
very similar results as for single synapses (Knoblauch et al., 2014).
As synapse number per connected neuron pair has sometimes
been reported to be narrowly distributed around a small number
(e.g., n = 4; cf., Fares and Stepanyants, 2009), one may also
identify each single synapse in our model with a group of about 4
real cortical synapses (see Section 4).

This assumption is actually justified by evidence that n is
narrowly distributed around a small number, e.g., n = 4 (Fares
and Stepanyants, 2009). This means that two neurons are either
unconnected or connected by a group of about four synapses
(which is actually a very surprising finding as it is unclear how
the neurons can regulate n; cf., Deger et al., 2012). This situation
is well consistent with our modeling assumption p(1) = 1 if we

identify each model synapse with such a group of about 4 real
synapses.

3. RESULTS

3.1. Information Storage Capacity,
Effectual Connectivity and its Relation to
Functional Measures of Brain Connectivity
For an information-theoretic evaluation, associative memories
are typically viewed as memory channels that transmit the
original content patterns vµ and retrieve corresponding retrieval
output pattern v̂µ (see Figure 5A). Thus, the absolute amount
of transmitted or stored information Cabs of all M memories
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FIGURE 5 | Relation between effectual connectivity Peff, information storage capacity C, and output noise ǫ̂. (A) Processing model for computing storage

capacity C := Cabs/Pmn for M given memory associations between input patterns uµ and output patterns vµ stored in the synaptic weights (Equation 1;

p := pr[uµ = 1], q := pr[vµ = 1]; k and l are mean cell assembly sizes in neuron populations u and v). During retrieval noisy address inputs ũµ with component errors

pab := pr[ũ
µ

i
= b|u

µ

i
= a] and input noise ǫ̃ := p10 + (1/q− 1)p01 are propagated through the network (Equation 2) yielding output patterns v̂µ with component errors

qab := pr[v̂
µ

j
= b|v

µ

j
= a] and output noise ǫ̂ = q10 + (1/q− 1)q01. The retrieved information is then the transinformation between vµ and v̂µ. To simplify analysis, we

assume independent transmission of individual (i.i.d.) memory bits v
µ

j
over a binary channel with transmission errors q01,q10. (B) Information storage capacity C(Peff )

(blue curve), and output noise ǫ̂(Peff ) (red curve) as functions of effectual connectivity Peff for a structurally plastic Willshaw network (similar to Figure 4) of

m = n = 100,000 neurons storing M = 106 cell assemblies of sizes k = l = 50 and having anatomical connectivity P = 0.1 assuming zero input noise (ǫ̃ = 0). Data

have been computed similar to Equation (37) using Equations (44–46) for 0 ≤ Peff ≤ P/p1.

equals the transinformation or mutual information (Shannon
and Weaver, 1949; Cover and Thomas, 1991)

Cabs := T(V̂;V) :=
∑

p(V̂,V) log2
p(V̂,V)

p(V̂) · p(V)
(19)

whereV := (v1, v2, . . . vM) and V̂ := (v̂1, v̂2, . . . , v̂M) correspond
to the sets of original and retrieved content patterns, and p(.) to
their probability distributions. If all M memories and n neurons
have independent and identically distributed (i.i.d) activities (e.g.,
same fraction q of active units per pattern and component
transmission error probabilities q01, q10), we can approximate
this memory channel by a simple binary channel transmitting
M · nmemory bits vµ

j 7→ v̂µ
j as assumed in Appendix A. Then

Cabs ≈ M · T(v̂µ; vµ) ≈ M · n · T(q, q01, q10) (20)

where T(v̂µ; vµ) is the transinformation for single memory
patterns and T(q, q01, q10) is the transinformation of a single
bit (see Equation 38). From this we obtain the normalized
information storage capacity C per synapse after dividing Cabs by
the number of synapses Pmn (similar to Equation 37).

In our first experiment we have investigated the relation
between information storage capacity and effectual connectivity
Peff during ongoing structural plasticity. For this we have
assumed a larger network of size m = n = 100000 with
anatomical connectivity P = 0.1 and larger cell assemblies
with sizes k = l = 50, but otherwise a similar setting as
for the toy example illustrated by Figure 4. Figure 5B shows
output noise ǫ̂ and normalized capacityC as functions of effectual
connectivity Peff for a given number of M = 106 random

memories. Interestingly, both ǫ̂ and C turn out to be monotonic
functions of Peff because output errors decrease with increasing
Peff (see Equations 45, 46). Therefore, also output noise ǫ̂(Peff)
decreases with increasing Peff whereas, correspondingly, stored
information per synapse C(Peff) increases with Peff. Because
monotonic functions are invertible, we can thus conclude that
effectual connectivity Peff is an equivalentmeasure of information
storage capacity or the transinformation (=mutual information)
between the activity patterns of two neuron populations u and
v. As can be seen from our data, C(Peff) tends to be even linear
over a large range, C ∼ Peff, until saturation occurs if ǫ̂ → 0
approaches zero corresponding to high-fidelity retrieval outputs.

Next, based on the this equivalence between Peff and C, we
work out the close relationship between Peff and commonly
used functional measures of brain connectivity. Recall that we
have introduced “effectual connectivity” as a measure of memory
related synaptic connectivity (Figure 2C) that shares with other
definitions of connectivity (such as anatomical and potential
connectivity) the idea that any “connectivity” measure should
correspond to the chance of finding a connection element (such
as an actual or potential synapse) between two cells. By contrast,
in brain imaging and connectome analysis (Friston, 1994; Sporns,
2007) the term “connectivity” has amore heterogeneousmeaning
ranging from patterns of synaptic connections (anatomical
connectivity) and correlations between neural activity (functional
connectivity) to causal interactions between brain areas. The
latter is also referred to as “effective connectivity” although
usually measured in information theoretic terms (bits) such
as delayed mutual information or transfer entropy (Schreiber,
2000). For example, in the simplest case the transfer entropy
between activities u(t) and v(t) measured in two brain areas u
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and v is defined as

Tu→v :=
∑

p(v(t + 1), u(t), v(t)) log2
p(v(t + 1)|u(t), v(t))

p(v(t + 1)|v(t))
(21)

where p(.) denotes the distribution of activity patterns (see
Equation 4 in Schreiber, 2000)2 . Such ideas of effective
connectivity come from the desire to extract directions of
information flow between two brain areas from measured neural
activity, contrasting with (symmetric) correlation measures that
can neither detect processing directions nor distinguish between
causal interactions and correlated activity due to a common
cause.

To see the relation between these functional measures
of “effective connectivity” and Peff, first, note that transfer
entropy equals the well-known conditional transinformation or
conditional mutual information between v(t + 1) and u(t) given
v(t) (Dobrushin, 1959; Wyner, 1978),

T(v(t + 1); u(t)|v(t)) :=

∑

p(v(t + 1), u(t), v(t)) log2
p(v(t + 1), u(t)|v(t))

p(v(t + 1)|v(t)) · p(u(t)|v(t))
(22)

=
∑

p(v(t + 1), u(t), v(t)) log2

p(v(t + 1)|u(t), v(t)) · p(u(t)|v(t))

p(v(t + 1)|v(t)) · p(u(t)|v(t))
= Tu→v . (23)

Second, we may apply this to one-step retrieval in an associative
memory (Equation 2). Then u(t) = ũµ is a noisy input, and the
update v(t + 1) = F(u(t)) = v̂µ produces the corresponding
output pattern, where the mapping F corresponds to activity
propagation through the associative network. As here the update
does not depend on the old state v(t), we may approximate
transfer entropy by the regular transinformation or mutual
information

Tu→v = T(v(t + 1); u(t)|v(t)) ≈ T(F(u(t)); u(t)) (24)

= I(u(t))− I(u(t)|F(u(t))) (25)

= I(F(u(t)))− I(F(u(t))|u(t))
(26)

where I(X) := −
∑

x p(x) log p(x) is the Shannon information
of a random variable X, and I(X|Y) := −

∑

x,y p(x, y) log p(x|y)

the conditional information of X given Y (Shannon and Weaver,
1949; Cover and Thomas, 1991). Thus, up to normalization,
transfer entropy Tu→v ≈ T(F(u(t)); u(t)) = T(v̂µ; ũµ) has a
very similar form as storage capacity Cabs in Equation (20). If
F(u) is deterministic, the second term in Equation (26) vanishes
and transfer entropy equals the output information I(F(u(t))) ≤
I(u(t)). If F(u) is also invertible, the second term in Equation
(25) would vanish and Tu→v = I(u(t)) = I(F(u(t))) =

Cabs/M. However, in the associative memory application many

2 The general case considers delay vectors (u(t), u(t − 1), . . . , u(t − K + 1) and

(v(t), v(t − 1), . . . , v(t − L+ 1)) instead of u(t) and v(t).

input patterns are (ideally) mapped to one memory and F(u) is
noninvertible and thus Tu→v = I(F(u(t))) < I(u(t)). Moreover,
in more realistic cortex models F is also nondeterministic as
v(t + 1) will depend not only on activity u(t) from a single input
area, but also on inputs from further cortical and subcortical
areas as well as on numerous additional noise sources. Thus, in
fact it will be Tu→v < I(F(u(t))).

Third, we can compare Tu→v to information storage capacity
(Equation 20) by normalizing to single memory patterns,

Cabs

M
=

CPmn

M
= T(v̂µ; vµ) = T(F(u(t); vµ(u(t))) (27)

= I(F(u(t)))− I(F(u(t))|vµ(u(t))) (28)

where µ(u(t)) is a function determining the memory index of the
input pattern uµ(u(t)) best matching the current input ũ = u(t).
Thus, comparing Equation (26) to Equation (28) yields generally

Tu→v −
Cabs

M
= I(F(u(t))|vµ(u(t)))− I(F(u(t))|u(t)) ≥ 0 . (29)

where the bound is true as vµ(u(t)) is a deterministic function
of u(t). In particular, for deterministic F, transfer entropy

Tu→v =
Cabs
M + I(F(u(t))|vµ(u(t))) typically exceeds normalized

capacity Cabs
M , whereas equality follows for I(F(u(t))|vµ(u(t))) =

I(F(u(t))|u(t)), for example, error-free retrieval with F(u(t)) =

vµ(u(t)). Appendix A.4 shows that equality holds generally as well
for nondeterministic propagation of activity (e.g., Equation 2
with Nj 6= 0) if we assume that component retrieval errors
occur independently with probabilities q01 := pr[v̂µ

j = 1|vµ
j =

0] ≈ pr[v̂µ
j = 1|vµ

j = 0, ũ] = pr[v̂µ
j = 1|ũ] and q10 :=

pr[v̂µ
j = 0|vµ

j = 1] ≈ pr[v̂µ
j = 0|vµ

j = 1, ũ] = pr[v̂µ
j = 0|ũ]

corresponding to the same (nondeterministic, i.i.d.) processing
model as we have presumed in our capacity analysis (Figure 5A;
see also Appendix A, Equations 42–43 or Equations 45–46 for
Willshaw networks). Then normalizing transfer entropy TE and
information capacity CN per output unit yields (see Equations
53, 38)

TE :=
Tu→v

n

>
≈ T(q, q01, q10) ≈ CN :=

Cabs

Mn
=

CPm

M
. (30)

Thus, “effective connectivity” as measured by transfer entropy
becomes (up to normalization) equivalent to the information
storage capacity C of associative networks (see Equation 37 with
Equation 38).

Figure 6 shows upper bounds TE ≤ OE := I(vµ
j ) and lower

bounds TE≥CN of transfer entropy as functions of output noise
level ǫ̂ = qq10 + (1 − q)q01 for different activities q of output
patterns (cf., Equations 26, 29, 30). For low output noise (ǫ̂ → 0)
both Tu→v and C approach the full information content of the
stored memory set. In general both TE and CN are monotonic
functions of ǫ̂ for relevant (sufficiently low) noise levels ǫ̂. While
TE increases with ǫ̂ for deterministic retrieval (Nj = 0; cf.
Equation 2), TE becomes a decreasing function of ǫ̂ already for
low levels of intrinsic noise (Nj on the order of single synaptic
inputs; see panel D). Similar decreases are obtained even without
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A B

C D

FIGURE 6 | Transfer entropy, output entropy and information capacity. (A) Normalized transfer entropy (TE := Tu→v/n) is bounded by normalized information

storage capacity (solid; CN := CPm/M ≤TE; see Equation 30 with Equation 38) and output entropy (dashed; OE := I(v̂
µ

j
) ≥TE), where TE = OE for deterministic

retrieval and TE = CN for non-deterministic retrieval with independent output noise (see text for details). The curves show TE,CN,OE as functions of output noise

ǫ̂ = (1− q)q01 assuming only add noise q01 = pr[v̂j = 1|vj = 0] but no miss noise q10 = pr[v̂j = 0|vj = 1] = 0 (e.g., as it is the case for optimal “pattern part” retrieval;

see Equation 46 in Appendix A.2). Different curves correspond to different fractions q of active units in a memory pattern (thick, medium, and thin lines correspond to

q = 0.5, q = 0.1, and q = 0.01, respectively). (B) Contour plot of CN = min TE as function of output noise ǫ̂ and activity parameter q for q10 = 0. (C) Contour plot of

OE=max TE as function of output noise ǫ̂ and activity parameter q for q10 = 0. (D) TE (thick solid) and CN (thin dashed) as functions of ǫ̂ for simulated retrieval (zero

input noise ǫ̃ = 0) in Willshaw networks of size n = 10,000 storing M = 1000 cell assemblies of size k = 100 (q = 0.01) and increasing Peff from 0 to 1 (markers

correspond to Peff = 0.001,0.01,0.1,0.15,0.2, . . . ,0.95,1). Each data point corresponds to averaging over 10 networks each performing 10,000 retrievals of 100

memories (see Equations 51, 52). Different curves correspond to different levels of intrinsic noise Nj in output neurons vj (see Equation 2; Nj uniformly distributed in

[0;Nmax] for Nmax = 0,1, 10,100 as indicated by black, blue, green, red lines). Note that, already for low noise levels, retrieval is non-deterministic such that TE

becomes monotonic decreasing in ǫ̂ and, thus, similar or even equivalent to CN (and effectual connectivity Peff; see Figure 5B and Equation 49; cf. Figures 7, 8).

intrinsic noise, Nj = 0, if the target assembly vµ receives (noisy)
synaptic inputs from multiple cortical populations (data not
shown; cf., Braitenberg and Schüz, 1991).

Our results thus show that, at least for realistic intrinsic noise
and/or inter-columnar synaptic connectivity, transfer entropy
Tu→v becomes equivalent to information capacity C. Because
of the monotonic (or even linear) dependence of C on Peff (see
Figure 5B and Equation 49; cf. Figures 7, 8), transfer entropy
is equivalent also to effectual connectivity Peff. Thus, we may
interpret effectual connectivity Peff as an essentially equivalent
measure of “effective connectivity” as previously defined for
functional brain imaging. Still, due to its anatomical definition,
Peff can only measure a potential causal interaction. For example,
if both the synaptic connections from brain area u to v and

the reverse connections from v to u have high Peff, we will
not be able to infer the direction of information flow in
a certain memory task unless we measure the actual neural
activity.

3.2. Storage Capacity of a Macrocolumnar
Cortical Network
A typical cortical macrocolumn comprises on the order of n =

105 neurons below about 1 mm2 cortex surface, where the
anatomical connectivity is about P = 0.1 and the potential
connectivity about Ppot = 0.5 corresponding to a filling fraction
f := P/Ppot = 0.2 (Braitenberg and Schüz, 1991; Hellwig,
2000; Stepanyants et al., 2002). Sizes of cell assemblies have been
estimated to be somewhere between 50 and 500 in entorhinal
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FIGURE 7 | Exact storage capacities for a finite Willshaw network having the size of a cortical macrocolumn (n = 105). (A) Contour plot of pattern

capacity Mǫ (maximal number of stored memories or cell assemblies) as a function of assembly size k (number of active units in a memory pattern) and effectual

network connectivity Peff assuming output noise level ǫ = 0.01 and no input noise (ũ = uµ). (B) Weight capacity C
wp
ǫ (in bit/synapse) corresponding to maximal Mǫ in

(A) for networks without structural plasticity. (C) Total storage capacity Ctot
ǫ (in bit/non-silent synapse) corresponding to maximal Mǫ in ( A) for networks with structural

plasticity. Note that Ctot may increase even further if less than the maximum Mǫ memories are stored (see text for details). (D) Minimal anatomical connectivity

P1 = p1Peff ≤ P required to achieve the data in ( A-C). Data computed as described in Appendix A.1. Red and blue dashed lines correspond to plausible values of

Peff for networks with and without structural plasticity (assuming P = 0.1, Ppot = 0.5). Note that only the area below the magenta dashed line (P1 = 0.1) is consistent

with P = 0.1. Our exact data is in good agreement with earlier approximative data (Knoblauch et al., 2014, Figure 5) unless k is very small (e.g., k < 50).

cortex (Waydo et al., 2006). Given these data we can try to
estimate the numberM of local cell assemblies or memories that
can be stored in a macrocolumn (Sommer, 2000). In a previous
work (Knoblauch et al., 2014, Figure 5) we have estimated
the storage capacity for the Willshaw model (Figures 1, 4) by
approximating dendritic potential distributions by Gaussians.
However, this approximation can be off as, in particular, for
sparse activity dendritic potentials can strongly deviate from
Gaussians. We have therefore developed a method to compute
the exact storage capacity for theWillshawmodel storing random
memories (see Appendix A). Figure 7 shows corresponding
contour plots of pattern capacity Mǫ , weight capacity C

wp
ǫ , total

synaptic capacity Ctot
ǫ , and the required minimal anatomical

connectivity P1 (assuming that all silent synapses have been

pruned in the end). We can make several observations: First, the
exact results can significantly deviate from the approximations
(cf., Knoblauch et al., 2014, Figure 5). In particular, for extremely
sparse activity (k < 10) the Gaussian assumption seems violated
and the true capacities are significantly lower than estimated
previously. Still, for larger more realistic 50 < k < 500 the new
data is in good agreement with the previous Gaussian estimates,
and for even larger k > 500 the true capacities even slightly
exceed the previous estimates. Second, the previous conclusions,
therefore, largely hold: Without structural plasticity (Peff = P =

0.1) the storage capacity would be generally very low and only
a small number of memories could be stored. For very sparse
k ≈ 50 not even a single memory could be stored and thus, the
cell assembly hypothesis would be inconsistent with experimental
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FIGURE 8 | Storage capacities for binary zip nets (A,B) and Bayesian neural networks (C,D) having the size of a cortical macrocolumn (n = 105). (A)

Contour plot of the pattern capacity Mǫ of an optimal binary zip net (employing the optimal covariance or homosynaptic learning rule; see Knoblauch, 2016) with

P = P1 = 0.1 as a function of cell assembly size k and potential network connectivity Ppot (which is here an upper bound on the achievable effectual connectivity Peff).

(B) Total storage capacity Ctot
ǫ for zip nets including structural plasticity for the setting of (A). (C) Contour plot of the pattern capacity Mǫ of an optimal Bayesian

associative network (Knoblauch, 2011) without structural plasticity as a function of cell assembly size k and anatomical network connectivity P. (D) Weight capacity

C
wp
ǫ for the Bayesian net for the setting of (C). Other parameters are as assumed for Figure 7 (ǫ = 0.01, ũ = uµ). Data computed as described in Appendix A.3. Red

and blue dashed lines correspond to plausible values for Ppot and P, respectively.

estimates of k. Third, by contrast, networks including structural
plasticity increasing Peff from P = 0.1 to Ppot ≈ 0.5 can store
many more memories: For example, for k = 50, the pattern
capacity increases from M ≈ 0 to about M ≈ 800, 000. For
k = 500, there is still an increase from M ≈ 13, 000 to M ≈

45, 000. Fourth, correspondingly, networks without structural
plasticity would have only a very small weight capacity Cwp: For

example, at Peff = P = 0.1 it is Cwp ≈ 0bps for k ≤ 50
and still Cwp < 0.07 bps for k = 500. Fifth, by contrast,
networks with structural plasticity have a much higher total

synaptic capacityCtot, i.e., they can store muchmore information
per actual synapse and are therefore also much more energy-
efficient, in particular for sparse activity: Although the very high

values Ctot → log n are approached only for unrealistically low
k and high Peff, they can still store Ctot ≈ 0.5 bps for realistic

Peff = 0.5 and k = 50. This high value appears to decrease,
however, to only Ctot ≈ 0.06 bps for k = 500 which would
suggest that, for relatively large cell assemblies with k = 500, a

network without structural plasticity (at P = 0.1) would be more
efficient than a network with structural plasticity (at Peff = 0.5).
However, as the Willshaw model is known to be sub-optimal for
relatively large k ≫ log n, we will re-discuss this issue below for
a more general network model. Sixth, another weakness of the

Willshaw model is that the fraction p1 := 1 − (1 − k2

n2
)M of 1-

synapses is coupled both to cell assembly size k and number of
stored memories M (due to the fixed synaptic threshold θ = 1,
cf., Equation 1). Therefore, the residual (minimal) anatomical
connectivity of a pruned network P1 = p1Peff depends also
on k,M, and we can obtain P1 ≈ P = 0.1 consistent with
physiology only in a limited range of the k-Peff-planes of Figure 7.
At least, physiological k ≈ 50 and Peff ≈ 0.5 match physiological
P1 = 0.1, whereas larger k ≫ 50 would require P1 being larger
than the anatomical connectivity P = 0.1. As many cortical areas
comprise significant fractions P0 > 0 of silent synapses we may
as well allow for smaller P1 < P = 0.1 satisfying P0 + P1 = P
(where Ctot would become a measure only of energy efficiency,
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but no longer of space efficiency), but the very high values of
Ctot ≫ 1 can generally be reached only for tiny fractions of
1-synapses.

In order to overcome some weaknesses of the Willshaw
model we have recently proposed a novel network model (so
called binary “zip nets”) where the fraction p1 of potentiated
1-synapses is no longer coupled to cell assembly size k and
number M (Knoblauch, 2009b, 2010b, 2016). Instead, the model
assumes that synaptic thresholds θij (see Equation 1) are under
homeostatic control to maintain a constant fractions p1 (or P1) of
potentiated 1-synapses. We have shown for the limitMpq → ∞

that this model can reach for p1 = 0.5 up to a “zip” factor
ζ ≈ 0.64 almost the same high storage capacitiesMǫ and C

wp
ǫ as

the optimal Bayesian neural network (Kononenko, 1989; Lansner
and Ekeberg, 1989; Knoblauch, 2011), although requiring only
binary synapses. Moreover, if compressed by structural plasticity,
zip nets can also reach Ctot

ǫ → log n for p1 → 0, similar to
the Willshaw model. As the Willshaw model is optimal only
for extremely sparse activity (k ≤ log n) it is thus interesting
to evaluate the performance gain of structural plasticity for
physiological k using the zip net instead of the Willshaw model.
Figure 8 shows data from evaluating storage capacity of a cortical
macrocolumn of size n = 105 both for the zip net model (upper
panels) and the Bayesian model (lower panels), the latter being a
benchmark for the optimal network without structural plasticity
(Knoblauch, 2011). In order to compute the capacity of the
zip net we have assumed physiological anatomical connectivity
P = P1 = 0.1 where structural plasticity “moves” the P1n2

relevant 1-synapses to the most useful locations within the limits
given by potential connectivity Ppot (as P1 is fixed, unlike to
the Willshaw model, final Peff after learning may be lower than
Ppot in zip nets; see Appendix A.3 for methodological details).
We can make the following observations: First, as expected, for
high connectivity and very sparse activity (e.g., k ≪ 100) the
zip nets may perform worse than the Willshaw model (because
the Willshaw model then performs close to the optimal Bayesian
net). Second, for more physiological parameters Ppot ≤ 0.5, k ≥

50 the zip net can store significantly more memories than the
Willshaw model, for example, for Ppot = 0.5 the zip net reaches
M ≈ 1000000 for k = 50 and still M ≈ 120, 000 for
k = 500. Third, also the total synaptic capacity Ctot is higher
than for the Willshaw network, for example for Ppot = 0.5,
it is Ctot ≈ 0.6 for k = 50 and still Ctot ≈ 0.5 for k =

500 (remember that the corresponding value for the Willshaw
model required unphysiological P1 > 0.1). Fourth, although
the Bayesian network can store significantly more memories M
it has only a moderate storage capacity below Cwp = 0.25.
In fact, for plausible cell assembly sizes, the binary synapses
of the zip net with structural plasticity at P = 0.1 and
Ppot = 0.5 achieve more than double the capacity of the optimal
(but biologically implausible) Bayesian network with real-valued
synapses at P = 0.1.

In summary, the new data confirms our previous conclusion
that structural plasticity strongly increases space and
energy efficiency of associative memory storage in neural
networks under physiological conditions (Knoblauch et al.,
2014).

3.3. Structural Plasticity and the Spacing
Effect
In previous works we have linked structural plasticity and
cognitive effects like retrograde amnesia, absence of catastrophic
forgetting, and the spacing effect (Knoblauch, 2009a; Knoblauch
et al., 2014). Here we focus on a more detailed analysis of
the spacing effect that learning is most efficient if learning is
distributed in time (Ebbinghaus, 1885; Crowder, 1976; Greene,
1989). For example, learning a list of vocabularies in two sessions
each lasting 10 min is more efficient than learning in a single
session of 20 min. We have explained this effect by slow ongoing
structural plasticity and fast synaptic weight plasticity: Thus,
spaced learning is useful because during the (long) time gaps
between two (or more) learning sessions structural plasticity
can grow many novel synapses that are potentially useful for
storing new memories and that can quickly be potentiated and
consolidated by synaptic weight plasticity during the (brief)
learning sessions (Knoblauch et al., 2014, Section 7.3).

Appendix B.2 develops a simplified theory of the spacing
effect that is based on model variant B of a potential synapse
(which can more easily be analyzed than model A; see Figure 3)
and the concept and methods proposed in Section 2.3. In
particular, with (Equations 73–75) we can easily compute
the temporal evolution of effectual connectivity Peff(t) for
arbitrary rehearsal sequences of a novel set of memories to
be learned. As output noise ǫ̂ is a decreasing function of Peff
(see Figure 5B), we can use Peff as a measure of retrieval
performance.

To illustrate the effect of spaced vs. non-spaced rehearsal (or
consolidation) on Peff, and to verify the theory in Appendix B.2,
Figure 9 shows the temporal evolution of Peff(t) for different
models and synapse parameters. It can be seen that for high
potential connectivity Ppot ≈ 1 and low deconsolidation
probability pd|s ≈ 0 the spacing effect is most pronounced and
the network easily realizes high-performance long-term memory
(with high Peff; see panel A). Larger pd|0 > 0 is plausible to
model short-termmemory, whereas realizing long-termmemory
would then require repeated consolidation steps (panels B–D).
Significant spacing effects are visible for any parameter set.
Comparing the microscopic simulations of both synapse models
from Figure 3 to the macroscopic simulations using the methods
of Section 2.3 and Appendix B.2, it can be seen that all model and
simulation variants behave qualitatively and quantitatively very
similar. This justifies to use the theory of Appendix B.2 in the
following analysis of recent psychological experiments exploring
the spacing effect.

For example, Cepeda et al. (2008) describe an internet-based
learning experiment investigating the spacing effect over longer
time intervals of more than a year (up to 455 days). The structure
of the experiment followed Figure 10. The subjects had to learn
a set of facts in an initial study session. After a gap interval (0–
105 days) without any learning the subjects restudied the same
material. After a retention interval (RI; 7–350 days) there was the
final test.

These experiments showed that the final recall performance
depends both on the gap and the RI showing the following
characteristics: First, for any gap duration, recall performance
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FIGURE 10 | Structure of a typical study of spacing effects on learning. Study episodes are separated by a varying gap, and the final study episode and test

are separated by a fixed retention interval. Figure modified from Cepeda et al. (2008).

decline as a function of RI in a negatively accelerated fashion,
which corresponds to the familiar “forgetting curve.” Second,
for any RI greater than zero, an increase in study gap causes

recall to first increase and then decrease. Third, as RI increases,
the optimal gap increases, whereas that ratio of optimal gap
to RI declines. The following shows that our simple associative
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memory model based on structural plasticity can explain most of
these characteristics.

It is straight-forward tomodel the experiments of Cepeda et al.
(2008) by applying our model of structural plasticity and synaptic
consolidation. Figure 11 illustrates Peff(t) for a learning protocol
as employed in the experiments: In an initial study session facts
are learned until time t(1) when some desired performance level

P(1)
eff

is reached. After a gap the facts are rehearsed briefly at time

t(2) reaching a performance equivalent to P(2)
eff
. After the retention

interval at time t(3) performance still corresponds to an effectual

connectivity P(3)
eff
.

Similar to Cepeda et al. (2008), we want to optimize the

gap duration in order to maximize P(3)
eff

for a given retention

interval RI. After the second rehearsal at time t(2), Peff
decays exponentially by a fixed factor 1 − pd|0 per time step

(Equation 74). Therefore, P(3)
eff

= P(2)
eff
(1−pd|0)

t(3)−t(2) is a function

of P(2)
eff

that decreases with the retention interval length t(3) − t(2).

We can therefore equivalently maximize P(2)
eff

with respect to the

gap length 1t := t(2) − t(1). For pc|s = s, pe|1 = pd|1 = 0, a good

approximation of P(2)
eff

follows from Equation (73),

P(2)
eff

≈

PPpot + [(Ppot − P)P(1)
eff

− PpotP
(t1)
1 ](1− pd|0)

1t

−Ppot(P − P(t1)1 )(1− pe|0)1t

Ppot − P(t1)1 (1− pd|0)1t − [P − P(t1)1 ](1− pe|0)1t
,(31)

where P(t1)1 := P(t0)1 (1 − P1S)(1 − pd|0)
t(1) + P1SP

(1)
eff

with P(t0)1
denoting the initial fraction of consolidated synapses at time

0.3 Since P(2)
eff

does not depend on the RI we can already see
that the optimal gap interval 1t depends on the RI neither
(which contrasts with the experiments reporting that optimal 1t
increases with RI). Optimizing 1t yields the optimality criterion
(see Appendix B.3)

P(1)
eff

− P(t1)1

P − P(t1)1

+ (α − 1)
P(1)
eff

Ppot
xα − αxα−1 = 0 . (32)

with

x := (1− pd|0)
1t = e1t ln(1−pd|0) ⇔ 1t =

ln x

ln(1− pd|0)
(33)

α :=
ln(1− pe|0)

ln(1− pd|0)
, (34)

which can easily be evaluated using standard Newton-type
numerical methods. Note that Equation (32) can be used to link
neuroanatomical and neurophysiological to psychological data.

3 Note that a constant (instead of decaying) “background” consolidation P1 can

be modeled, for example, by using P(t0)1 = 0 and then excluding the initially

consolidated synapses from further simulation. This means to simulate a network

with anatomical connectivity P′ = P−P1, potential connectivity P′pot = Ppot−P1,
no initial consolidation with P′1 = 0, and otherwise same parameters as the

original network. Then the effectual connectivity can be computed from P(1)1 =

P(1)1

′
+ P1SP1 using Equation (18) where P(1)1

′
mn is obtained from the simulation.
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FIGURE 11 | Modeling the spacing effect experiment of Cepeda et al.

(2008) as illustrated by Figure 10. Curves show effectual connectivity Peff

as function of time t according to the theory of synapse model A (green solid;

Figure 3A; see Appendix B.1) and synapse model B (magenta dashed;

Figure 3B; see Equations 73–75). In an initial study session, facts are learned

until some desired performance level P
(1)
eff

is reached at time t(1) = 10. After a

gap the facts are rehearsed briefly at time t(2) = 30 reaching a performance

equivalent to P
(2)
eff

. After the retention interval at time t(3) = 90 performance has

decreased corresponding to an effectual connectivity P
(3)
eff

. Parameters were

P = 0.1, Ppot = 0.4, P1 = 0, P1S = 0.1, pc|s = s, pe|0 = 0.1, pd|0 = 0.005,

and pe|1 = pd|1 = 0.

For example, given the optimal gap 1topt from psychological
experiments, Equation (32) gives a constraint on the remaining
network and learning parameters. Alternatively, we can solve
Equation (32) to determine the optimal gap 1topt given the
remaining parameters.

We have verified Equation (32) by simulations illustrated
in Figure 12 (compare simulation data to Cepeda et al.,
2008, Figure 3). For these simulations we chose physiologically
plausible model parameters: Similarly as before we used Ppot =
0.4 (Stepanyants et al., 2002; DePaola et al., 2006), P = 0.1
(Braitenberg and Schüz, 1991; Hellwig, 2000). Further, we used

P(t0)1 = 0.02 as neurophysiological experiments investigating
two-state properties of synapses suggest that about 20% of
synapses are in the “up” state (Petersen et al., 1998; O’Connor
et al., 2005)4 . Then we chose a small consolidation load
P1S = 0.001 assuming that the small set of novel facts
is negligible compared to the presumably large set of older
memories. As before, we assumed pg in homeostatic balance to
maintain a constant anatomical connectivity P(t) (Equation 69)
and binary consolidation signals s = Sij ∈ {0, 1} with pc|s = s
and pd|1 = pe|1 = 0 for any synapse ij. For the remaining learning

4 It may bemore realistic that the total number of “up”-synapses is kept constant by

homeostatic processes (i.e., P1/P = 0.2). However, here we were more interested

in verifying our theory which assumes exponential decay of “up”-synapses. To

account for homeostasis with constant P1 one may proceed as described in

footnote 3. Nevertheless, the qualitative behavior of the model does not strongly

depend on P1 or P(t0)1 unless their values being close to P which would strongly

impair learning.
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FIGURE 12 | Simulation of the spacing effect described by Cepeda et al. (2008, Figure 3) using synapse model variant A (green lines) and B (magenta

lines; see Figure 3). Each curve shows final effectual connectivity Peff = P
(3)
eff

as a function of rehearsal gap 1t for different retention intervals (RI = 7, 35, 70, 350

days) assuming an experimental setting as in illustrated in Figures 10, 11. Initially, memory facts were rehearsed for tr1=10 time steps (1 time step = 1 h). After the

gap, memory facts were rehearsed again for a single time step (tr2=1). Finally, after RI steps the resulting effectual connectivity was tested. Red dashed lines indicate

optimal gap interval length for synapse model B as computed from solving Equation (32). Different panels correspond to different synapse parameters pe|0 and pd|0:

Elimination probabilities are pe|0 = 0.1 (top panels A,D), pe|0 = 0.01 (middle panels B,E), and pe|0 = 0.001 (bottom panels C,F). Deconsolidation probabilities are

pd|0 = 0.0001 (left panels A–C) and pd|0 = 0.001 (right panels D–F). Remaining model parameters are described in the main text.
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parameters pe|0 and pd|0 we have chosen several combinations to
test their relevance for fitting the model to the observed data.

The simulation results of Figure 12 imply the following
conclusions: First, the simulations show that the optimal gap
determined by Equation (32) closely matches the simulation
results, for both synapse models (Figure 3). Second, for fixed
deconsolidation pd|0, larger pe|0 implies smaller optimal gaps
1topt. Thus, faster synaptic turnover implies smaller optimal
gaps. Third, for fixed turnover pe|0, larger pd|0 implies smaller
1topt. Thus, faster deconsolidation implies also smaller optimal
gaps. Fourth, together this means that faster (weight and
structural) plasticity implies smaller optimal gaps. Fifth, although
model variants A and B (Figure 3) behave very similar for
most parameters settings, they can differ significantly for some
parameter combinations. For example, for pe|0 = pd|0 = 0.001
(panel F) the peak in Peff of model A is more than a third larger
than the peak of model B. In fact, there the curve of model B
is almost flat. Still, even here, the optimal gap interval length is
very similar for the two models. An obvious reason why model A
sometimes performs better than model B is that deconsolidation
of a synapse in model A does not necessarily imply elimination
as in model B (see Figure 3). Sixth, our simple model already
satisfies two of the three characteristics of the spacing effect
mentioned above: Both the forgetting effect and the existence
of an optimal time gap can be observed in a wide parameter
range. Best fits to the experimental data occurred for pe|0 = 0.01
and pd|0 = 0.0002 (between parameters of panels B,C; data not
shown). Last, however, our simple model cannot reproduce the
third characteristic: As argued above, the optimal gap interval
length 1topt does not depend on the retention interval RI. This
is in contrast to the experiments of Cepeda et al. (2008) reporting
that 1topt increases with RI.

Nevertheless, we have shown in some preliminary simulations
that a slight extension of the model can easily resolve the latter
discrepancy (Knoblauch, 2010a): By mixing two populations of
synapses having different plasticity parameters corresponding
to a small and large optimal gap (or fast and slow plasticity),
respectively, it is possible to obtain a dependence of optimal
spacing as in the experiments.

4. DISCUSSION

In this theoretical work we have identified roles of structural
plasticity and effectual connectivity Peff for network performance,
measuring brain connectivity, and optimizing learning protocols.
Analyzing how many cell assemblies or memories can be stored
in a cortical macrocolumn (of size 1mm3), we find a strong
dependence of storage capacity on Peff and cell assembly size
k (see Figures 7, 8). We find that, without structural plasticity,
when cell assemblies would have a connectivity close to the
low anatomical connectivity P ≈ 0.1, only a small number of
relatively large cell assemblies could be stably stored (Latham
and Nirenberg, 2004; Aviel et al., 2005) and, correspondingly,
retrieval would not be energy efficient (Attwell and Laughlin,
2001; Laughlin and Sejnowski, 2003; Lennie, 2003; Knoblauch
et al., 2010; Knoblauch, 2016). It thus appears that storing and

efficiently retrieving a large number of small cell assemblies as
observed in some areas of the medial temporal lobe (Waydo
et al., 2006) would require structural plasticity increasing Peff
from the low anatomical level toward the much larger level of
potential connectivity Ppot ≈ 0.5 (Stepanyants et al., 2002).
Similarly, our model predicts ongoing structural plasticity for
any cortical area that exhibits sparse neural activity and high
capacity.

Moreover, we have shown a close relation between our
definition of effectual connectivity Peff and previous measures
of functional brain connectivity. While the latter, for example
transfer entropy, are solely based on correlations between neural
activity in cortical areas (Schreiber, 2000), our definition of Peff
as the fraction of realized required synapses has also a clear
anatomical basis (Figure 2). Via the link of memory channel
capacity C(Peff) used to measure storage capacity of a neural
network, we have shown that Peff is basically an equivalent
measure of functional connectivity as transfer entropy. By this,
it may become possible to establish an anatomically grounded
link between structural plasticity and functional connectivity.
For example, this could enable predictions on which cortical
areas exhibit strong ongoing structural plasticity during certain
cognitive tasks.

Further, as one example linking cognitive phenomena to its
potential anatomical basis, we have more closely investigated the
spacing effect that learning becomes more efficient if rehearsal
is distributed to multiple sessions (Crowder, 1976; Greene, 1989;
Cepeda et al., 2008). In previous works we have already shown
that the spacing effect can easily be explained by structural
plasticity and that, therefore, structural plasticity may be the
common physiological basis of various forms of the spacing
effect (Knoblauch, 2009a; Knoblauch et al., 2014). Here we have
extended these results to explain some recent long-term memory
experiments investigating the optimal time gap between two
learning sessions (Cepeda et al., 2008). For a given retention
interval, our model, if fitted to neuroanatomical data, can easily
explain the profile of the psychological data, in particular, the
existence of an optimal gap that maximizes memory retention.
It is even possible to analyze this profile, linking the optimal
gap to parameters of the synapse model, in particular, the
rate of deconsolidation pd|0 and elimination pe|0. Our results
show that small optimal gaps correspond to fast structural and
weight plasticity with a high synaptic turnover rate pe|0 and
relative large pd|0 with a high forgetting rate, whereas large
gaps correspond to slow plasticity processes. This result has two
implications: First, it may be used to explain the remaining
discrepancy that in the psychological data the time gap depends
on the retention interval, whereas in our model it does not: As
preliminary simulations indicate, the experimental data could be
reproduced by mixing (at least) two synapse populations with
different sets of parameters, where they could be both within the
same cortical area (stable vs. unstable synapses; cf., Holtmaat
and Svoboda, 2009) or distributed to different areas (e.g., fast
plasticity in the medial temporal lobe, and slower plasticity in
neocortical areas). Moreover, as the temporal profile of optimal
learning depends on parameters of structural plasticity, it may
become possible in future experiments to link behavioral data
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on memory performance to physiological data on structural
plasticity in cortical areas where these memories are finally
stored.

Although we have concentrated on analyzing one-step
retrieval in feed-forward networks, our results apply as well
to recurrent networks and iterative retrieval (Hopfield, 1982;
Schwenker et al., 1996; Sommer and Palm, 1999): Obviously,
all results on the temporal evolution of Peff (including the
results on the spacing effect) depend only on synapses having
proper access to consolidation signals Sij by either repeated
rehearsal or memory replay, and therefore hold independently of
network and retrieval type. However, linking Peff to output noise
(Equation 3) needs to assume a particular retrieval procedure.
At least one-step retrieval is known to be almost equivalent
for both feedforward and recurrent networks yielding almost
identical output noise and pattern capacity Mǫ (Knoblauch,
2008). Estimating retrieved information for pattern completion
in auto-associative recurrent networks, however, requires to
subtract the information already provided by the input patterns
ũµ. Here information storage capacity C is maximal if ũµ

contains half of the one-entries (or information) of the original
pattern uµ, which leads to factor 1/2 and 1/4 decreases of M
and C compared to hetero-association (cf., Equations 48, 49 for
λ = 1/2; Palm and Sommer, 1992). Nevertheless, up to such
scaling, our results demonstrating C increasing with Peff are still
valid. Similarly, our capacity analyses of Mǫ and Cǫ can also
be applied to iterative retrieval by requiring that the one-step
output noise level ǫ is smaller than the initial input noise ǫ̃. As
typically output noise ǫ̂ steeply decreases with input noise ǫ̃ (cf.
Equation 45), additional retrieval steps will drive ǫ̂ toward zero,
with activity quickly converging to the memory attractor.

Our theory depends on the assumption that potential
connectivity Ppot is significantly larger than anatomical
connectivity P. This assumption may be challenged by
experimental findings suggesting that cortical neuron pairs
are either unconnected or have multiple (e.g., 4 or 5) instead
of single synapses (Fares and Stepanyants, 2009) and the
corresponding theoretical works to explain these findings (Deger
et al., 2012; Fauth et al., 2015b). For example, Fauth et al. (2015a)
predict that narrow distributions of synapse numbers around
4 or 5 follow from a regulatory interaction between synaptic

and structural plasticity, where connections having a smaller
synapse number cannot stably exist. If true this would mean
that most potential synapses could never become stable actual
synapses because the majority of potentially connected neuron
pairs have less than 4 potential synapses (e.g., see Fares and
Stepanyants, 2009, Figure 1). As a consequence, actual Ppot
would be significantly lower than assumed in our work, perhaps
only slightly larger than P, strongly limiting a possible increase
of effectual connectivity Peff by structural plasticity. On the other
hand, the data of Fares and Stepanyants (2009) are based only
on neuron pairs having very low distances (< 50µm), whereas
our model rather applies to cortical macrocolumns where most
neuron pairs have much larger distances. Thus, unlike Fauth et al.
(2015a), our theory of structural plasticity increasing effectual
connectivity and synaptic storage efficiency predicts that neuron

pairs within a macrocolumn should typically be connected by a
much smaller synapse number (e.g., 1 or perhaps 2).
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