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rewards that are more distant in the future (Koopmans, 1960; 
Fishburn and Rubinstein, 1982; Mazur, 1987; Madden and Bickel, 
2010). A discounting function specifies how much less subjective 
value a reward has at any given time in the future. An individual’s 
discounting function can be inferred from choices. For example, 
if a subject prefers $20 in a week equally to $10 today, then the 
subject discounts by 50% over that one week. Drug addicts dis-
count faster than non-addicts (Madden et al., 1997; Bickel et al., 
1999; Coffey et al., 2003; Dom et al., 2006). Thus one potential 
driver for addiction is that an addict may prefer a small immediate 
reward (drugs) over a large delayed reward (academic and career 
success, family, health, etc.). The ability to precommit is especially 
valuable when impulsive behavior is leading to serious problems 
such as drug abuse.

If each unit of time by which the reward is delayed causes 
the same attenuation of the reward’s value, then discounting is 
exponential. In other words, the subjective value is attenuated by 
γd, where d is the delay to the reward, and γ is the amount of attenu-
ation incurred by each unit of time. Exponential discounting is 
theoretically optimal in certain situations (Samuelson, 1937) and 
can be calculated recursively (Bellman, 1958; Sutton and Barto, 
1998). Exponential discounting also has the property that two 
rewards separated by a given delay will maintain their relative 
values whether they are considered well in advance or they are 
near at hand. However, behavioral studies show that humans and 
animals do not discount exponentially; real discounting is usually 
better fit by a hyperbolic function (Ainslie, 1975; Madden and Bickel, 

Introduction
Precommitment is a general mechanism to control impulsive 
behavior (Ainslie, 1975, 2001; Dripps, 1993). An alcoholic trying 
to quit may decide to avoid going to the bar, knowing that if he goes, 
he will drink. By avoiding the bar, he precommits to the decision 
of not drinking. Similarly, a heroin addict may take methadone 
even though it will preclude the euphoria of heroin. In general, 
precommitment is an action that alters the external environment 
(in the methadone example, the external environment includes 
the neuropharmacology of the individual) to foreclose the pos-
sibility of a future impulsive choice. It is important to note that 
precommitment is not synonymous with self-control: self-control 
entails an act of willpower to avoid an impulsive choice; precom-
mitment strategies actually constrain the agent’s future choices. 
The strategy of precommitment is ubiquitous in decision-making 
outside of addiction as well. Putting the ice cream out of sight, 
investing money in an inaccessible retirement fund, and pre-paid 
gym memberships can be precommitment devices.

Precommitment devices combat impulsivity, the overvaluation 
of immediate rewards relative to delayed rewards1. To describe 
impulsivity quantitatively, we use the generalized notion of delay 
discounting, the decrease in subjective value associated with 
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1To be precise, this is the economic notion of impulsivity; impulsivity can also refer 
to making a decision without waiting for sufficient information, inability to stop a 
prepotent action, and other related phenomena. But these other phenomena entail 
different mechanisms and are dissociable from delay discounting (Evenden, 1999; 
Reynolds et al., 2006).
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2010). In hyperbolic discounting, subjective value is attenuated by 
1 1/( )+ kd , where d is again the delay to reward, and k determines 
the steepness of the hyperbolic curve.

An agent using hyperbolic discounting will exhibit preference 
reversal (Strotz, 1955; Ainslie, 1992; Frederick et al., 2002). As 
the time at which a choice is considered changes, the preference 
order reverses. For example, the agent may prefer to receive $10 
today over $15 in a week, but prefer $15 in 53 weeks over $10 
in 52 weeks. Humans and animals consistently display preference 
reversal (Madden and Bickel, 2010). In fact, preference reversal is 
not exclusive to hyperbolic discounting. If discounting consists of 
a function that maps delay to an attenuation of subjective value, 
then exponential decay is the only discounting function in which 
preference reversal does not appear.

It has been suggested that preference reversal is the basis for 
precommitment (Ainslie, 1992). Preference reversal entails a con-
flict between current (non-impulsive) and future (impulsive) pref-
erences. This conflict leads the individual to commit to current 
preferences, to prevent the future self from undermining these 
preferences. For example, in 52 weeks, the agent will be given a 
choice between $10 then or $15 a week from then. If that choice is 
made freely, he will choose the $10. Because he presently prefers the 
$15, he may enter now into a contract that binds him to choosing 
the $15 option when the choice becomes available.

To explicitly test whether precommitment can be learned in a 
controlled setting, Rachlin and Green (1972) and Ainslie (1974) 
trained pigeons on tasks that required choosing between smaller-
sooner and larger-later options. After learning this paradigm, the 
pigeons were given an option preceding this choice, to inactivate 
the smaller-sooner option. Some pigeons that preferred smaller-
sooner over larger-later would nonetheless elect to inactivate the 
smaller-sooner option – thereby precommitting to the larger-later 
option. The pigeons’ willingness to precommit increased with the 
delay between precommitment and choice.

Here we develop a quantitative theory of how such pre-
commitment may occur, based on reinforcement learning. 
Precommitment has not previously been implemented in a rein-
forcement learning model. Four models have been proposed to 
explain how a biological learning system could plausibly calcu-
late hyperbolic discounting. First, in the average reward model 
(Tsitsiklis and Van Roy, 1999; Daw and Touretzky, 2000; Dezfouli 
et al., 2009), discounting across states is linear (i.e., each addi-
tional unit of delay subtracts a constant from the subjective 
value), but the slope of this linear discounting is set, based on 
the reward magnitude, such that the total discounting over d 
delay is 1 1/( )+ d . An average reward variable keeps track of the 
slope so that it is available for the linear discounting calculation 
at each state. Second, in a variant of the average reward model 
(Alexander and Brown, 2010), if R is the average reward per 
trial and V is the value after d delay, then the value after d + 1 
delay is calculated as VR/(V + R). This produces hyperbolic 
discounting across states, given a linear state-space (i.e., a chain 
of states with no branches or choices) leading to a reward. The 
third method of calculating hyperbolic discounting is semi-
Markov state representations, where a variable amount of time 
can elapse while the agent dwells within a single state (Daw, 
2003). The agent can simply compute the hyperbolic discount 

factor (1/(1 + d)) over the entire duration, d, of the state. In the 
fourth model, exponential discounting is performed in parallel 
at various rates by a set of reinforcement learning “μAgents,” 
who collectively form the decision-making system of the overall 
agent (Kurth-Nelson and Redish, 2009). In the μAgents model, 
choices of the overall agent are derived by taking the average 
value belief over the set of μAgents. Averaging across a set of 
 different  exponential discount curves yields a good approxima-
tion of hyperbolic discounting (e.g., Sozou, 1998) that functions 
over multiple state transitions.

In this paper we first show that, of the four available hyperbolic 
discounting models, only the μAgents model can precommit. We 
then use the μAgents model to test specific predictions about the 
properties of precommitment behavior. Understanding the basis 
of precommitment may help to create situations where precom-
mitment will be successful in the treatment of addiction as well as 
inform the study of decision-making in general.

MaterIals and Methods
We compare four models in this paper. Each model is an imple-
mentation of temporal difference reinforcement learning (TDRL) 
(Sutton and Barto, 1998). Each model consisted of a simulated 
agent operating in an external world. The agent performed actions 
that influenced the state of the world, and in certain states the 
world supplied rewards to the agent. The available states of the 
world, together with the set of possible transitions between states, 
formed a state-space. Each state i was associated with a number 
R(i) (which may be 0) specifying how much reward the agent 
received upon leaving that state. In semi-Markov models, each 
state was also associated with a delay specifying the temporal 
extent of the state (how long the agent must wait before receiving 
the reward and/or transitioning to another state) (Daw, 2003). 
In fully-Markov models, each state had a delay of one time unit, 
so variable delays were modeled by increasing or decreasing the 
number of states.

The agent learned, for each state, the total expected future reward 
from that state, discounted by the delay to reach that reward (or 
rewards). This discounted expected future reward is called value. 
The value of state i is called V(i). Learning these values allowed the 
agent, faced with a choice between two states, to choose the state 
that would lead to more total expected reward2.

The parameter values used in the simulations are listed in 
Table 1.

μagents Model
The μAgents model is described in detail in Kurth-Nelson and 
Redish (2009). The model produces identical behavior (includ-
ing precommitment) in semi-Markov or fully-Markov state-
spaces.

In the μAgents model, the agent (which we will sometimes call 
“macro-agent” for clarity) consisted of a set of μAgents, each per-
forming TDRL independently. For a given state, different μAgents 

2Note that in this paper, a state contains a delay that is preceded by value of that sta-
te and followed by the reward (if any) of the state; this sequence is slightly different 
from Kurth-Nelson and Redish (2009), where reward comes at the “beginning” of 
the state. This difference has no effect on the behavior of the model.
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Because each μAgent had an independent discount rate, this 
model is considered to perform distributed discounting. One conse-
quence of distributed discounting is that although each individual 
μAgent performs exponential discounting, the overall discounting 
produced by the macro-agent approaches hyperbolic as the number 
of μAgents increases:

lim
N

i
x

i

N
xd

xµ

µ

γ γ γ
→∞

=
∑ ∫= =

+0 0

1 1

1

when hyperbolic discounting is implemented as a sum of 
exponentials, it is hyperbolic across multiple state transitions. 
For more details on how distributed exponential discount-
ing produces hyperbolic discounting, see Kurth-Nelson and 
Redish (2009). In this model we were also able to adjust the 
effective hyperbolic parameter k by biasing the distribution 
of μAgent exponential discount rates (γ) (Kurth-Nelson and 
Redish, 2009).

average reward Model
The average reward model (Tsitsiklis and Van Roy, 1999; Daw and 
Touretzky, 2000; Dezfouli et al., 2009) uses a fully-Markov state-
space. A variable r  tracked the average reward per timestep:

r r R← − +( )1 σ σ

where R was the reward received on this timestep, and σ controlled 
the rate at which r  changed. The reward prediction error δ, upon 
transition from state x to state y, was calculated as:

δ = + − −R y V y V x r( ) ( ) ( )

This produced linear discounting, because the value of x approached 
the value of y minus r  (which is effectively a constant because σ 
is very small). In a linear state space with d′ delay leading to R′ 
reward, r  would approach ′ + ′R d/( ),1  where (1 + d′) is the total 
length of a trial, including one time step to receive the reward), 
which is hyperbolic discounting as a function of total delay. In 
other words, the average reward model discounts linearly across a 
given state-space, but the total discounting across this state space is 
hyperbolic because the linear rate depends on the total delay of the 
state-space. The average reward model does not show hyperbolic 
discounting in a state-space with choices (branch points), because 
r  no longer approaches ′ + ′R d/( )1 .

hdtd Model
The HDTD model (Alexander and Brown, 2010) also uses a fully-
Markov state-space. In this model, average reward is tracked per 
trial rather than per timestep, but using the same update rule as 
the average reward model:

r r R← − +( )1 σ σ

The reward prediction error was calculated as:

δ = + −



 −R y V y

V x

r
V x( ) ( )

( )
( )1

In a linear state space with d ′ delay leading to R′ reward, r  would 
approach R'. Through algebra, V(x) would approach:

could learn different values. To select actions, the different val-
ues across μAgents were averaged. The only difference between 
μAgents was that each μAgent had a different discount rate.

Upon each state-transition from state x to state y, each μAgent 
i generated an error signal, δ

i
, reflecting the discrepancy between 

(discounted) value observed and value predicted:

δ γi i i
d

iR x V y V x= + ⋅ −( ( ) ( )) ( )
 

(1)

where V
i
(x) is the value of state x learned by μAgent i, γ

i
 is the 

discount rate of μAgent i, and d is the delay spent in state x. Note 
that the total benefit of moving from state x to state y is the reward 
received (R(x)) plus the reward expected in the future of the new 
state (V

i
(y)). Because future value is attenuated by a constant mul-

tiple (γ
i
) for each unit of delay, the discounting of each μAgent is 

exponential. The values of γ were spread uniformly over the inter-
val: [1/(N

μ
 + 1), 1 − 1/(N

μ
 + 1)], where N

μ 
is the number of μAgents. 

Thus if there were nine μAgents, they would have discount rates 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

To improve value estimates, each μAgent i used the error signal 
to update its V

i
(x) after each state-transition:

V x V xi i i( ) ( )← + αδ

where α is a learning rate in (0,1) common to all μAgents. α = 0.1 
was used in all simulations.

From some states, actions were available to the macro-agent. Let 
A be the set of possible actions. Since each action in our simula-
tions leads to a unique state, A is equivalently a set of states. The 
probability of selecting action a∈A was:

P a
V a

V b
b A

( )
( )

( )
=

∈∑
where V a( ) denotes the average value of state a across μAgents. 
Note that the probabilities sum to one across the set of available 
actions; exactly one action from A was chosen.

Table 1 | Parameters used in the model (except where noted otherwise).

Parameter Description Default value

CommoN

DC Delay between P and (C or N) 100

DS Delay between C and SS 1

RS Magnitude of smaller-sooner reward 10

DL Delay between C and LL 50

RL Magnitude of larger-later reward 50

α Learning rate 0.1

μAgeNTs moDel

Nμ Number of μAgents 1000

k Hyperbolic discount rate 1

AverAge rewArD moDel

σ Average reward update rate 0.002

HDTD moDel

σ Average reward update rate 0.01

semi-mArKov moDel

k Hyperbolic discount rate 1
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V Ri i
D( )SS S

S= ⋅ γ , and V Ri i
D( )LL L

L= ⋅ γ  for a given μAgent i. Thus, 
the value estimates averaged across μAgents approximated the 
hyperbolically discounted values:

V
R

kD
( )SS S

S

≈
+1  

(2)

and

V
R

kD
( )LL L

L

≈
+1  

(3)

At state C, if the agent always selected SS, then the value of C would 
approach the discounted value of SS. Since the agent sometimes 
selected LL, the actual value of C was between the discounted values 
of SS and LL. The steady-state value of state C, for a given μAgent 
i, was:

V C P V P V

P P

i i i i
D

i
D D

( ) ( ) ( ) ( ) ( )

( ) (

= ⋅ + ⋅( )⋅

= ⋅ ⋅ ++

SS SS LL LL

SS

C

S C

S

γ

γR LLL L
L C)⋅ ⋅ +R γ i

D D

where P V V V( ) ( )/( ( ) ( ))SS SS SS LL= +  is the probability of selecting 
SS from C, and P V V V( ) ( )/( ( ) ( ))LL LL SS LL= +  is the probabil-
ity of selecting LL from C. Thus, the average value of the C state 
approximated

V C P
k D D

P
k D D

S

C C

( ) ( )
( )

( )
( )

≈ ⋅
+ +

+ ⋅
+ +

SS LL
S

L

L

R R

1 1  
(4)

Precommitment can be defined as limiting one’s future options so 
that only the pre-selected option is available. This is represented 
in Figure 1 by the state P which precedes the SS vs. LL choice. At 
state P, a choice was available to either enter the SS vs. LL choice, 
or to enter a situation (state N) from which only the LL option was 
available. In either case, there was a delay D

C
 following the choice 

made at state P.
The value of state N, averaged across μAgents, approximated

V N
R

k D D
L

C

( ) ≈
+ +( )1 L  

(5)

in the steady-state. By definition, the macro-agent preferred to 
precommit if and only if V N V C( ) ( )> .

μagents Model precoMMIts
We examined choice behavior in the model, using a specific set of 
parameters designed to simulate the choice between a small reward 
available immediately (R

S
 = 10, D

S
 = 1) and a large reward avail-

able later (R
L
 = 50, D

L
 = 50). The discounting rate k was set to 1. 

The number of μAgents, N
μ
, was set to 1000. The preference of the 

model was measured from the choices made at steady-state (after 
learning). Using these parameters, the model preferred SS over LL 
by a ratio of 5.2:1 (Figure 2A).

We also looked at the precommitment behavior of the model; 
that is, the preference of the model for the N state over the C state. 
The precommitment delay, D

C
, was set to 100. Choices were again 

counted after the model had reached steady-state. Despite a strong 
preference for SS over LL, the model also exhibited a preference for 
N over C, by a ratio of 2.3:1 (Figure 2A). It is interesting to note 

′
′ +
R V y

R V y

( )

( )

which would produce hyperbolic discounting across states. In other 
words, in a linear chain of states, the value of a state is attenuated 
as a hyperbolic function of the temporal distance from that state 
to the reward. The HDTD model does not show hyperbolic dis-
counting in a state-space with choices (branch points), because r  
no longer approaches R'.

seMI-Markov Model
The semi-Markov model is a standard temporal difference rein-
forcement learning model in a semi-Markov state-space (Daw, 
2003). This model was identical to μAgents, except there was only 
a single reinforcement learning entity, and it used the following 
rule instead of Eq 1:

δ = +
+

−R x V y

kd
V x

( ) ( )
( )

1

where again k is the discount rate (set to 1 for these simulations), 
and d is the delay spent in state x before transitioning to state y.

results
We ran the μAgents model on the precommitment state-space illus-
trated in Figure 1. The states and transitions inside the dashed box 
represent a simple choice between a smaller reward (R

S
) available 

after a short delay (D
S
) and a larger reward (R

L
) available after a 

long delay (D
L
). We will refer to the smaller-sooner choice as SS and 

the larger-later choice as LL. C was the state from which this choice 
is available. Although R

L
 was a larger reward than R

S
, SS could be 

the preferred choice if D
S
 was sufficiently shorter than D

L
, due to 

temporal discounting of future rewards.
Over the course of learning, each μAgent independently 

approached a steady-state estimate of the correct exponentially 
discounted value of each state. When values were fully learned, 

RL

RL

RS

DL

DL

DS

DC

DC

C

N

P

LL

LL

SS

Figure 1 | A reinforcement learning state-space with an option to 
precommit to a larger-later reward. This is the task on which the model was 
run. Time is schematically portrayed along the horizontal axis. The dashed box 
encloses the state-space for a simple two-alternative choice. From state C, 
the agent could choose a large reward RL following a long delay DL, or a small 
reward RS following a short delay DS. Preceding this simple choice was the 
option to precommit. From state P, the agent could either enter the simple 
choice by choosing C, or to precommit to the large delayed choice by choosing 
N. A precommitment delay DC separated P from the subsequent state.
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C chain must have a value above the corresponding state in the N 
chain. This means that if there was no delay D

C
, C would be preferred 

to N. However, during the delay D
C
, the C chain crossed under the 

N chain. This was possible because the μAgents collectively maintain 
a distribution of values for each state (which is collapsed to a single 
average value for the sake of action selection). The same average value 
can come from different distributions. In particular, the last state in the 
C chain had more value concentrated in the fast-discounting μAgents 
(because of the contribution from SS), while the corresponding state 
in the N chain had more value concentrated in the slow-discounting 
μAgents. Thus more of the value in the C chain was attenuated by the 
delay D

C
, allowing N to be preferred to C.

Note that in the limit as the number of μAgents goes to infin-
ity and the learning rate α goes to 0, the choice behavior of the 
μAgents model (including precommitment) becomes analytically 
equivalent to “mathematical” hyperbolic discounting. For exam-
ple, Figure 8A compares the precommitment behavior produced 
by either mathematical hyperbolic discounting or 1000 μAgents. 
In mathematical hyperbolic discounting, the value of each choice 
is calculated by the right-hand side of Eqs. 2–5. This produces 
“sophisticated” decision-making (O’Donoghue and Rabin, 1999), 
because the value of C is influenced by the relative probability of 
selecting SS vs. LL.

other hyperbolIc dIscountIng Models cannot precoMMIt
We investigated the behavior of three other models of hyperbolic 
discounting on the precommitment task. None of these models 
produce precommitment behavior, because they do not correctly 
implement hyperbolic discounting across two choices. In general, 
it is impossible to precommit (where precommitment is defined, 
using the state-space given in this paper, as preferring N over C 

that each μAgent that prefers SS over LL also prefers C over N (and 
vice versa), yet the system as a whole can prefer SS over LL while 
preferring N over C.

Thus, the model precommitted to LL even though SS was 
strongly preferred over LL. This shows that precommitment can 
occur for particular task parameters. We next varied the small reward 
magnitude, R

S
, to see in what range precommitment was possible 

(Figure 2B). If R
S
 was very small, then SS was not valuable and LL 

was preferred over SS. If R
S
 was very large, the model would not 

precommit because the SS choice was too valuable. However, there 
was a range of R

S
 where SS was preferred over LL but N was preferred 

over C. This range was where the model would choose to precom-
mit to avoid an impulsive choice. Note that in this graph we have 
manipulated only R

S
 for convenience; similar plots can be generated 

by manipulating any of these task parameters: R
S
, D

S
, R

L
, and D

L
.

To illustrate how precommitment arose in the μAgents model, we 
ran the model on a fully-Markov version of the precommitment state-
space (Figure 2C). Here, each state corresponds to a single time-step, 
so a delay is represented by a chain of states. Each circle represents the 
average value of one state. First, note that the values of states in the 
LL and N chains overlapped because they were the same temporal 
distance from the same reward (R

L
). The last state in the C chain 

necessarily had a value intermediate to the first states in the SS and 
LL chains3. Thus, if SS was preferred to LL, then the last state in the 

Figure 2 | The μAgents model exhibited precommitment behavior. 
(A) From P, the model chose N more often than C. However, when C was 
reached, the model chose SS more often than LL. This bar graph represents 
the same data as (B) at RS = 10. (B) plots the same information as (A), over a 
range of values of RS. For very small RS, LL > SS and N > C. For very large RS, 
SS > LL, and C > N. However, precommitment could occur because SS 
crossed LL at a different point than C crossed N, meaning that there was a 
range of RS for which SS > LL and N > C. (C) illustrates the change in the 

average value of each option over time. The distributed value representation 
of μAgents allowed average values to cross. The value of C prior to 
discounting across the DC interval was between the discounted values of SS 
and LL, and was therefore above N. However, during the DC interval, the value 
of C crossed under N, such that N > C at the time of the C/N choice. Note that 
(C) uses a fully Markov state-space to show how values are discounted 
through each intermediate time point. Each circle shows the value of one 
state after values are fully learned.

3This is because the last C state transitioned to both the first SS state and the first 
LL state. In temporal difference learning, the value of a state with multiple transi-
tions going out will converge to a weighted average of the discounted next states’ 
value plus reward. The average is weighted by the relative frequency of making each 
transition, which in this case is determined by the agent’s choice. Thus, the model is 
“sophisticated” (O’Donoghue and Rabin, 1999): the knowledge that it will choose 
SS is encoded in the value of the C state. 



Frontiers in Behavioral Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 184 | 6

Kurth-Nelson and Redish Precommitment in reinforcement learning

preferred C to N whenever it preferred SS to LL (Figures 4A,B). 
Like the average reward model, the C and N chains never cross 
(Figure 4C), so if SS is preferred to LL, then C is preferred to N. 
Again, the reason the HDTD model cannot precommit is that 
it only produces hyperbolic discounting across a linear state-
space. Both the average reward and HDTD models use an “aver-
age reward” variable to violate the Markov property, altering the 
discount rate based on the delay to reward. Because there is only 
a single “average reward” variable in each model, this mechanism 
works only when there is a single reward to track the delay to.

We also tested a semi-Markov model without distributed dis-
counting (Daw, 2003). This model did not exhibit precommitment 
behavior (Figures 5A,B). Whenever SS was preferred to LL, C was 
preferred to N.

precoMMItMent depends on task paraMeters
Precommitment is behavior that avoids the opportunity to choose 
an impulsive option even though that option would be preferred 
given the choice. In order to understand what kind of situations 
are most favorable to precommitment behavior, we looked at how 
precommitment preference can be maximized for a given ratio of 
preference between SS and LL. We again looked at precommitment 
over a range of R

S
, but this time adjusted D

S
 concurrently with 

R
S
 such that R kDS /( )1+ S  (the discounted value of the SS option) 

was held constant. We found that a smaller R
S
 (paired with a cor-

respondingly shorter D
S
) was always more favorable to precom-

mitment (Figure 6A). In other words, the model was more likely 
to precommit when the impulsive choice was smaller and more 
immediate. Equivalently, a very large, very late LL choice always 
produced greater precommitment than an equivalently valued but 
modestly large and late LL choice. (Decreasing R

S
 is equivalent to 

increasing R
L
, because choice is unaffected by equal scaling of the 

two reward magnitudes.)

while also preferring SS over LL) with temporal difference learning 
if we make the assumption that discounting preserves order (i.e., 
if x

1
 is greater than x

2
, then x

1
 discounted by d delay is greater than 

x
2
 discounted by the same d delay). Prior to discounting across 

the D
C
 interval, V(C) lies between V(SS) and V(LL), while V(N) 

is equal to V(LL). Thus the undiscounted V(C) is greater than the 
undiscounted V(N) if and only if V(SS) > V(LL). But both V(C) 
and V(N) are discounted by D

C
. Assuming discounting preserves 

order, then V(C) > V(N) ⇔V(SS) > V(LL).
Note that precommitment is possible in the μAgents model 

because the assumption that discounting preserves order is vio-
lated. Value is represented as a distribution across μAgents, so it 
is possible that the average undiscounted value of V(C) is greater 
than the average undiscounted value of V(N), but after discounting 
both distributions by the same delay, the average value of V(C) is 
less than the average value of V(N).

We implemented the average reward model of hyperbolic dis-
counting (Tsitsiklis and Van Roy, 1999; Daw and Touretzky, 2000; 
Dezfouli et al., 2009). In this model, when SS was preferred to LL, C 
was also preferred to N (Figures 3A,B). Although discounting as a 
function of total delay is hyperbolic in this model, the discounting 
from state to state is approximately linear (Figure 3C). The value of 
the last state in the C chain is between the discounted values of SS 
and LL, and this value is greater than the value of the corresponding 
state in the N chain (provided that SS is preferred to LL). Unlike in the 
μAgents model, the C and N chains never cross, so C is preferred to N 
at the time of the C/N choice (Figure 3C). The average reward model 
fundamentally fails to precommit because it only produces hyperbolic 
discounting across a linear state-space. When the state-space includes 
choices (branch points), discounting is no longer hyperbolic.

The HDTD model (Alexander and Brown, 2010) is a variant of 
the average reward model which allows for hyperbolic discount-
ing from state to state. Like the average reward model, HDTD 

Figure 3 | The average reward model of hyperbolic discounting cannot 
produce precommitment behavior. (A) At the selected parameters, SS was 
preferred to LL and C was preferred to N. This bar graph represents the same 
data as (B) at RS = 44.5. (B) As RS increased, the preference for C overtook N 
exactly at the same point as the preference for SS overtook LL, meaning that 

this model would not precommit to avoid an impulsive choice. (C) In the average 
reward model, the undiscounted value of C is again between the discounted 
values of SS and LL. However, the values of C and N never cross, so C is 
preferred to N whenever SS is preferred to LL. Note that discounting across 
states in this model is approximately linear.
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The delay D
C
 occurred before the SS vs. LL choice and therefore 

did not affect the relative preference for these options. This means 
that although the model held a constant preference for SS over LL 
as D

C
 varied, the model switched from strongly preferring not to 

precommit to strongly preferring to precommit as D
C
 increased.

precoMMItMent depends on dIscount rate
In the model, hyperbolic discounting arises as the average of many 
exponential discount curves. If the discount rates of the individ-
ual exponential functions are spread uniformly over the interval 
(0,1), then the sum of these functions approaches (as N

μ
 → ∞) a 

We next investigated the effect of changing the delay D
C 

on pre-
commitment behavior. Rachlin and Green (1972) observed that 
precommitment increases as the delay increases between the first 
and second choices. To look for a similar effect in the model, we 
plotted the relative preference for N (i.e., V N V N V C( )/( ( ) ( ))+ ) 
against a changing D

C
 (Figure 6B). As D

C
 increased, we observed 

an increase in preference for N, asymptotically approaching a 
constant as D

C
 → ∞. This matches the result of Rachlin and 

Green (1972). We found a qualitatively similar effect of vary-
ing D

C 
for any given values of k, D

S
, R

S
, D

L
, and R

L
 (data not 

shown).

Figure 5 | The semi-markov model of hyperbolic discounting (without 
distributed discounting) cannot produce precommitment behavior. (A) At 
the selected parameters, SS was preferred to LL and C was preferred to N. This 
bar graph represents the same data as (B) at RS = 3.46. (B) As RS increased, the 
preference for C overtook N exactly at the same point as the preference for SS 

overtook LL, meaning that this model would not precommit to avoid an 
impulsive choice. Note that in this model, each state has a long temporal extent 
(and replacing long states with one-step states produces different discounting), 
so it is not possible to plot intermediate discounted values as in 
Figures 2C, 3C, and 4C.

Figure 4 | The HDTD model of hyperbolic discounting cannot produce 
precommitment behavior. (A) At the selected parameters, SS was preferred to 
LL and C was preferred to N. This bar graph represents the same data as (B) at 
RS = 1.5. (B) As RS increased, the preference for C overtook N exactly at the same 

point as the preference for SS overtook LL, meaning that this model would not 
precommit to avoid an impulsive choice. (C) In the HDTD model, the undiscounted 
value of C is between the discounted values of SS and LL. However, the values of 
C and N never cross, so C is preferred to N whenever SS is preferred to LL.
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LL. Second, it makes the D
C
 interval effectively longer (because 

k is simply a time dilation factor), so the difference in discount-
ing between D

C
 + D

S
 and D

C 
+ D

L
 is diminished. The first effect 

dominates when D
C
 is small, and the second effect dominates when 

D
C
 is large.
As k increased, the amount of delay D

C 
needed to produce pre-

commitment also increased (Figure 7D). This is because faster 
discounters have a stronger preference for SS over LL, and more D

C
 

was needed to overcome this preference. However, if k was manipu-
lated while holding the SS vs. LL preference constant (by adjusting 
the magnitude of R

S
), then the opposite effect was seen. For a given 

degree of preference for SS over LL, faster discounters required less 
D

C
 to achieve precommitment (Figure 7E).

precoMMItMent depends on shape of dIscount curve
As described above, the fidelity of the model’s approximation to 
true hyperbolic discounting depended on the number of μAgents. 
Because precommitment in the model depended on non-expo-
nential discounting, we investigated how changing the number of 
μAgents influenced precommitment behavior. With 1000 μAgents, 
the model produced precommitment that was very similar to 
the precommitment produced by true hyperbolic discounting. 
However, we found that reducing the number of μAgents to 100 
eliminated precommitment preference under the selected param-
eters (Figure 8A). The difference between the discount curves with 
100 vs. 1000 exponentials was slight (Figure 8B), indicating that 
precommitment behavior is highly sensitive to the precise shape 
of the discount curve.

To understand why precommitment occurred with 1000 but 
not with 100 μAgents, we tested the model with 100 μAgents but 
adjusted the slowest γ from 0.99 to 0.999 (0.999 is the slowest γ when 
there are 1000 μAgents). This adjustment was sufficient to recover 
precommitment behavior (data not shown), suggesting that the 
presence of this very slow discounting component was necessary 
for precommitment. The γ = 0.999 μAgent had little relative effect 
on values that are discounted over short delays, because those aver-
age values received a significant contribution from other μAgents. 
But on values discounted over long delays, the γ = 0.999 μAgent 
had a predominant effect, contributing far more than 1/100th of 
the average value. The γ = 0.999 μAgent effectively propped up 
the tail of the average discount curve without having a significant 
impact on the early part of the curve. This enhanced the degree 
of preference reversal inherent in the curve, which is the feature 
essential for precommitment.

dIscussIon
In this paper, we have presented a reinforcement learning account 
of precommitment. The advance decision (precommitment) to 
avoid an impulsive choice is a natural consequence of hyperbolic 
discounting, because in hyperbolic discounting, preferences reverse 
as a choice is viewed from a distance. Our model performs hyper-
bolic discounting by using a set of independent “μAgents” perform-
ing exponential discounting in parallel, each at a different rate. 
This model demonstrates that a reinforcement learning system, 
implementing hyperbolic discounting, can exhibit precommit-
ment. Precommitment also illustrates the more general problem of 
non-exponential discounting in complex state-spaces that include 

 hyperbolic function 1 1/( )+ kd  with k = 1. Altering the distribution 
of exponential discount rates to a non-uniform distribution alters 
the resulting average and can produce hyperbolic functions with 
any desired value of k (Kurth-Nelson and Redish, 2009).

We took advantage of this to test the behavior of the model at 
different values of k. We found that the effect of varying k depended 
on the task parameters. Specifically, the effect of changing k was 
opposite for different values of D

C
 (Figure 7A). For small D

C
, faster 

discounting (larger k) led to less precommitment (Figure 7B). 
But for large D

C
, faster discounting led to more precommitment 

(Figure 7C). As k increased, the relative preference for smaller-
sooner over larger-later also increased (not shown). The reason 
for these opposite results at different values of D

C
 is that increas-

ing k has two effects. First, it boosts the preference for SS over 

Figure 6 | Precommitment depends on task parameters. 
(A) Precommitment was greater when the reward ratio RL/RS was larger. On 
the x axis, DS and RS were simultaneously manipulated so that the SS vs. LL 
preference was held constant. Despite the constant SS vs. LL preference, the 
preference for precommitment increased as the size of the small reward 
decreased. (B) Precommitment increases with the delay (DC) between 
commitment and choice. At the selected parameters, LL was preferred 0.196 
as much as SS. When there was no delay between commitment and choice, 
C was preferred over N by the same ratio. As DC increased, the relative 
preference for N increased, despite no change in the relative preference for SS 
vs. LL. This figure was generated with mathematical hyperbolic discounting.
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Figure 7 | The discounting rate has a complex interaction with 
precommitment behavior. (A) Precommitment preference plotted against k 
and DC. The heavy black lines show the intersection of the planes DC = 5 and 
DC = 100 with this surface, representing the lines in (B) and (C). (B) When DC 
was small (DC = 5), faster discounting yielded less precommitment. The 
dashed line represents the value of k above which SS was preferred over LL. 
(C) When DC was large (DC = 100), faster discounting yielded greater 
precommitment. The dashed line represents the value of k above which SS 
was preferred over LL. (D) As k increased, the amount of DC required to prefer 

precommitment also increased. Faster discounting increased the amount of 
DC required to produce precommitment. When k was less than 4/45, LL was 
preferred over SS, so N was preferred over C even when there was no 
precommitment delay. (e) The SS–LL preference ratio was held constant by 
adjusting RS. Under this condition, the amount of DC required to precommit 
grew as k increased. In other words, for a given SS–LL preference, agents 
with slower discounting will require a much longer DC to achieve 
precommitment. This figure was generated with mathematical hyperbolic 
discounting.
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predIctIons of the Model and IMplIcatIons for treatIng 
addIctIon
Avoiding situations where a drug choice is immediately available 
may be the most important step in recovery from addiction. In this 
section, we outline the predictions of our model and discuss the 
implications for what factors may bias addicts’ decisions toward 
choosing to avoid such situations.

Pigeons show increased precommitment behavior when the 
delay (called D

C
 in this paper) between the first and second choice 

is increased (Rachlin and Green, 1972). Our model reproduced 
this result (Figure 6B). This suggests that when designing pre-
commitment interventions, long pre-choice delays are critical. An 
addict with a bag of heroin in his pocket may not choose to take 
methadone, but if the choice to take methadone could be presented 
further in advance, the addict may be willing to precommit. In 
general, if we can find out when addicts are going to have access 
to drug choices, we should offer precommitment devices as far in 
advance from these choices as possible.

Hyperbolic discounting also implies other properties of pre-
commitment behavior. These properties would hold in any model 
that correctly implements hyperbolic discounting across multiple 
choices. First, hyperbolic discounting predicts that precommit-
ment will be most differentially reinforced when the smaller-sooner 
reward is small in magnitude relative to the larger-later reward 
(Figure 6A). This is true even when the delays are modulated 
such that the two rewards themselves retain the same preference 
ratio. Thus a very large, very late reward should be more effective 
at producing precommitment than a modest but earlier delayed 
reward. Likewise, precommitment interventions are likely to be 
more successful when the impulsive choice is more immediate. 
This is promising for treatment because often the “larger-later” 
reward is a healthy, productive life, which is very large and very late. 
This prediction also suggests that precommitment devices may be 
more useful for drugs that deliver a small reward following a short 
latency, such as cigarettes.

Second, hyperbolic discounting predicts that precommitment 
behavior is influenced by discount rate. In situations where D

C
 is 

small, a faster discount rate makes the model less likely to precommit 
(Figure 7B). On the other hand, when D

C
 is large, a faster discount 

rate actually makes the model more likely to precommit (Figure 7C). 
Conversely, this means that individuals with a faster discount rate 
will see more benefit from lengthening D

C
. This result runs counter 

to the intuition that impulsive, fast discounting individuals would be 
less likely to commit to long-range strategies. In fact, they are very 
likely to commit, because when the choice is viewed in advance, the 
SS and LL discount nearly identically, and the LL has a larger mag-
nitude. In other words, for faster discounters, the hyperbolic curve 
flattens out faster. For a given degree of preference for SS over LL, 
faster discounters require less D

C
 to prefer precommitment (Figure 

7E). This implies that measuring an individual’s discount rate could 
help to determine what intervention strategies will be effective. If an 
individual is on the cusp of indecision, offering a precommitment 
device with a short delay may be sufficient for faster discounters, 
but ineffective for slow discounters. This also suggests the idea of 
two different addiction phenotypes, one for slow discounters and 
one for fast discounters. Slow discounters may not respond to the 
intervention strategies that work for fast discounters.

choices. To our knowledge, no other reinforcement learning models 
of hyperbolic discounting function correctly in such state-spaces. It 
is interesting to note that our model also matches Ainslie’s (1975) 
prediction for bundled choices. Ainslie observed that even if SS 
is preferred when a choice is considered in isolation, hyperbolic 
discounting implies that if the present choice dictates the outcome 
of several future choices, LL may be preferred. Because our model 
implements hyperbolic discounting over complex state-spaces, it 
matches this prediction (data not shown).

In this paper, we have also made quantitative predictions about 
precommitment behavior, extending the work of Ainslie (1975, 
2001). Except for the prediction that subtle changes in the discount 
curve affect precommitment, all of the predictions here are gen-
eral consequences of hyperbolic discounting, whether in a model-
free or model-based system, and do not depend specifically on 
the μAgents model. To our knowledge, none of these predictions 
have been tested behaviorally. These predictions may inform the 
development of strategies to encourage precommitment behavior 
in patients with addiction.

Figure 8 | Precommitment is highly dependent on the shape of the 
discount curve. (A) These graphs plot the average (across 200 trials) number 
of times each choice was selected at different values of DC. The blue line 
shows choices made when Nμ = 1000, and the red line shows choices made 
when Nμ = 100. (B) The shape of the average discount function depends on 
the number of μAgents. Red shows the average discounting of 100 μAgents 
and green shows the average discounting of 1000 μAgents. If a perfect 
hyperbolic function is plotted on this graph, it overlies the green curve. For 
reference, exponential discount curves with γ = 0.1 and γ = 0.9 are plotted in 
blue. The vertical axis is log scale to make visible the separation of the red and 
green curves. In this figure, k = 5.
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Some have argued that the brain implements a decision-making 
system in which each reward is assigned a single hyperbolically 
discounted subjective value (Kable and Glimcher, 2009), as sug-
gested by fMRI correlates of hyperbolically discounted subjective 
value (Kable and Glimcher, 2007). However, fMRI is spatially and 
temporally averaged, which could blur an underlying distribution 
of exponentials to look like a hyperbolic representation. Even if the 
fMRI data do reflect an underlying hyperbolic representation, this 
does not disprove the existence of multiple exponentials elsewhere 
in the brain. A distribution of exponentials would need to be aver-
aged before taking an action, producing a hyperbolic representation 
downstream.

In order to precommit, hyperbolic discounting must function 
across multiple state transitions, which in general is not possible in a 
non-distributed system that estimates values using only local infor-
mation. If the brain represents single hyperbolically discounted 
values at each state, then the decision-making system must use 
some type of non-local information, such as multiple variables to 
track the time until each possible reward, or a look-ahead system 
to anticipate future rewards.

To our knowledge, precommitment of the form described here 
has not been empirically studied in humans. If precommitment 
is a product of reinforcement learning, implemented in the basal 
ganglia, then interfering with these brain structures should pre-
vent precommitment. For example, Parkinson’s patients would 
be impaired in learning precommitment strategies. On the other 
hand, brain structures such as frontal cortex that are not nec-
essary for basic operant conditioning would not be necessary 
for precommitment.

MultIple systeMs and cognItIve precoMMItMent
In this paper we have presented a model of precommitment arising 
from hyperbolic discounting in an automated (habitual, model-
free) learning system, using cached values to decide on actions 
without planning or cognitive involvement. An alternative possibil-
ity is that precommitment may be produced by a cognitive (look-
ahead, model-based) system. The role for an interaction between 
automated and cognitive systems has been discussed extensively, 
especially in the context of impulsive choice and addiction (Tiffany, 
1990; Bickel et al., 2007; Redish et al., 2008; Gläscher et al., 2010). 
The cognitive system might recognize that the automated system 
will make a suboptimal choice and precommit to effectively over-
ride the automated system (“If I go to the bar, I will drink. Therefore 
I will not go to the bar.”) (Ainslie, 2001; Bernheim and Rangel, 2004; 
Isoda and Hikosaka, 2007; Johnson et al., 2007; Redish et al., 2008). 
Rats appear to project themselves mentally into the future when 
making a difficult decision (Johnson and Redish, 2007). In humans, 
vividly imagining a delayed outcome slows the discounting to that 
outcome (Peters and Büchel, 2010). Constructing a cognitive repre-
sentation of the future may allow an individual to carefully weigh 
the possible outcomes, even when those outcomes have never been 
experienced. The cognitive resources needed for this deliberation 
may be depleted by placing demands on working memory (Hinson 
et al., 2003) or self-control (Vohs et al., 2008).

Both automated and cognitive systems are likely to play a role 
in precommitment. To begin to identify the role of each system, 
we should look at the empirically distinguishable properties of 

The μAgents model also makes a prediction that is not made by 
hyperbolic discounting alone. Subtle changes in the shape of the 
discount function, independent of overall discount rate, alter the 
preference for precommitment (Figure 8). This has two implica-
tions. First, it is likely that whatever the mechanism of discount-
ing in humans and animals, it is not perfectly hyperbolic. Small 
fluctuations in the shape of the curve could determine whether an 
individual is willing to precommit. These differences could occur 
between individuals, in which case measuring precisely the shape 
of the discounting curve for an individual could help establish 
treatment patterns. The fluctuations could also occur within an 
individual over time (Mobini et al., 2000; Schweighofer et al., 2008), 
and may help to explain both spontaneous relapse and spontaneous 
recovery. Second, if humans and animals implement some form of 
distributed discounting, precommitment could be a very sensitive 
assay to determine exactly how discounting is being calculated.

Discount curves can be changed by context (Dixon et al., 2006), 
diet (Schweighofer et al., 2008), pharmacological state (de Wit et al., 
2002), availability of working memory capacity (Hinson et al., 
2003), and possibly cognitive training (Kendall and Wilcox, 1980; 
Nelson and Behler, 1989). For example, Schweighofer et al. (2008) 
showed that increasing dietary tryptophan slows discounting, and 
specifically increases task-related activation of parts of the stria-
tum associated with slow discounting (Tanaka et al., 2007). Such 
manipulations could potentially have a large impact on whether 
people decide to engage in precommitment strategies.

neurobIology of precoMMItMent
Reinforcement learning models have been used to describe the 
learning processes embodied in the basal ganglia (Doya, 1999). 
During learning tasks, midbrain dopamine neurons fire in a pat-
tern that closely matches the δ signal of temporal difference rein-
forcement learning (Ljungberg et al., 1992; Montague et al., 1996; 
Hollerman and Schultz, 1998). Both functional imaging and elec-
trophysiological recording suggest that cached values are repre-
sented in striatum (Samejima et al., 2005; Tobler et al., 2007). The 
hypothesis that these brain structures implement reinforcement 
learning has helped to link a theoretical understanding of behavior 
with neurophysiological experiments.

If certain brain structures implement reinforcement learn-
ing, then reinforcement learning models may also be able to 
make predictions about the neurophysiology of precommit-
ment. For example, our model implies that if precommitment 
is the preferred strategy, then selecting the choice option should 
produce a pause in dopamine firing (at the transition from P 
to C, the average δ is V C D V PC( )/( ) ( )1+ − , which is negative  
because V C D V P V N DC C( )/( ) ( ) ( )/( )1 1+ < < + .

There is also some evidence that the brain may implement dis-
tributed discounting. A sum of exponentials may in some cases be a 
statistically better fit to the time courses of human forgetting (Rubin 
and Wenzel, 1996; Rubin et al., 1999), suggesting the possibility of a 
distributed learning and memory process. During delay discounting 
tasks, there is a distribution across the striatum of areas correlated 
with different discount rates (Tanaka et al., 2004), consistent with 
the theory of a distributed set of agents exponentially discounting 
in parallel. For a more complete discussion of the evidence for dis-
tributed discounting, see Kurth-Nelson and Redish (2009).
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